1
|
Izmailov A, Minyazeva I, Markosyan V, Safiullov Z, Gazizov I, Salafutdinov I, Markelova M, Garifulin R, Shmarov M, Logunov D, Islamov R, Pospelov V. Biosafety Evaluation of a Chimeric Adenoviral Vector in Mini-Pigs: Insights into Immune Tolerance and Gene Therapy Potential. Biomedicines 2024; 12:2568. [PMID: 39595134 PMCID: PMC11592036 DOI: 10.3390/biomedicines12112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The biosafety of gene therapy products remains a major challenge to their introduction into the clinic. In particular, the problem of immunogenicity of viral vectors is the focus of attention. Large animals such as pigs, whose anatomical and physiological characteristics are similar to those of humans, have an advantage in testing vector systems. METHODS We performed a comprehensive in vitro and in vivo study to evaluate the biosafety of a chimeric adenoviral vector carrying a green fluorescent protein gene (Ad5/35F-GFP) in a mini-pig model. RESULTS Transcriptome and secretome analyses of mini-pig leucocytes transduced with Ad5/35F-GFP revealed changes restraining pro-inflammatory processes and cytokine production. No adverse effects were revealed through the clinical, instrumental, laboratory, and histological examinations conducted within a week after the direct or autologous leucocyte-mediated administration of Ad5/35F-GFP to mini-pigs. The decrease in cytokine levels in the blood of experimental animals is also consistent with the in vitro data and confirms the immune tolerance of mini-pigs to Ad5/35F-GFP. CONCLUSIONS Here, we show the safety of Ad5/35F in a mini-pig model and provide evidence that Ad5/35F is a promising vector for gene therapy. These results advance our understanding of vector-host interactions and offer a solid foundation for the clinical application of this vector.
Collapse
Affiliation(s)
- Andrei Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Irina Minyazeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Vage Markosyan
- Department of Topographic Anatomy and Operative Surgery, Kazan State Medical University, 420012 Kazan, Russia;
| | - Zufar Safiullov
- Department of Anatomy, Kazan State Medical University, 420012 Kazan, Russia; (Z.S.); (I.G.)
| | - Ilnaz Gazizov
- Department of Anatomy, Kazan State Medical University, 420012 Kazan, Russia; (Z.S.); (I.G.)
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (M.M.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (M.M.)
| | - Ravil Garifulin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Maksim Shmarov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.S.); (D.L.)
| | - Denis Logunov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.S.); (D.L.)
| | - Rustem Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia; (I.M.); (R.G.)
| | - Vadim Pospelov
- LLC “Impulse of Life”, Marshala Biryuzova Str., 32, 123060 Moscow, Russia;
| |
Collapse
|
2
|
Liu Z, Tang G, Peng Y, Lan J, Xian Y, Tian X, Chen D. The short fiber knobs of human adenovirus in species F elicit cross-neutralizing antibody responses. Heliyon 2024; 10:e35783. [PMID: 39170224 PMCID: PMC11337035 DOI: 10.1016/j.heliyon.2024.e35783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Human adenovirus (HAdV) type 40 in species F (HAdV-F40) and HAdV-F41 represent the third most prevalent causative agents of non-bacterial acute gastroenteritis in infants and young children, following norovirus and rotavirus. Despite their significant contribution to global child morbidity, vaccines to preemptively combat these viruses remain elusive. In this study, we investigate the potential for cross-neutralization between HAdV-F40 and HAdV-F41 using immune sera with the short fiber knob (SFK). We implemented a series of assays to evaluate the responses, including enzyme-linked immunosorbent, micro-neutralization, immunofluorescence, and quantitative polymerase chain reaction. Our results demonstrate that immune sera with HAdV-F40 SFK or HAdV-F41 SFK could effectively neutralize both HAdV-F40 and HAdV-F41, indicating a mutual cross-neutralizing effect. Notably, the immune sera with HAdV-F40 SFK demonstrated a stronger neutralization effect, suggesting the potential to develop a subunit vaccine that can simultaneously counteract both viruses. These findings underscore the potential of SFK immunization in evoking a cross-neutralizing antibody response between HAdV-F40 and HAdV-F41. This suggests a promising avenue for developing subunit vaccines against HAdV-F40 and HAdV-F41 and provides a novel perspective on the potential of neutralizing antibodies to protect against these two types of HAdV.
Collapse
Affiliation(s)
- Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guolu Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Jixian Lan
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Yuting Xian
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
4
|
E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proc Natl Acad Sci U S A 2020; 118:2015794118. [PMID: 33443154 DOI: 10.1073/pnas.2015794118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.
Collapse
|
5
|
Zhang Y, Wu J, Zhang H, Wei J, Wu J. Extracellular Vesicles-Mimetic Encapsulation Improves Oncolytic Viro-Immunotherapy in Tumors With Low Coxsackie and Adenovirus Receptor. Front Bioeng Biotechnol 2020; 8:574007. [PMID: 33042975 PMCID: PMC7525182 DOI: 10.3389/fbioe.2020.574007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
The oncolytic adenovirus (Adv) exhibited poor infection efficiency in tumor cells with low coxsackie and adenovirus receptor (CAR) on the cell surface, which limits the therapeutic efficacy of the Adv-mediated cancer gene therapy. In addition, the abundant adenovirus neutralizing antibodies also abrogate the viral infection of cancer cells. Therefore, novel strategies are required to overcome these two major hurdles to improve the Adv-mediated cancer virotherapy. We constructed a recombinant adenovirus expressing the extracellular domain of PD1 (Ad5-P). The 293T cells expressing VSV-G protein on the cell surface (293T-VSV-G) were infected with Ad5-P. Then Ad5-P infected 293T-VSV-G cells were harvested and squeezed stepwisely through a serial of polycarbonate membranes. Next, the extracellular vesicles-mimetic (EVM) encapsulated Ad5-P (EVM/VSV-G Ad5-P) were collected by density gradient centrifugation. In cell lines with low CAR expression, EVM/VSV-G Ad5-P showed a significantly improved infection efficiency, oncolytic ability, and soluble PD-1 production. In passively immunized mice with Ad5 neutralizing antibody, EVM/VSV-G Ad5-P successfully escaped from antibodies, and the soluble PD-1expression of Ad5-P was significantly prolonged. Finally, EVM/VSV-G Ad5-P treatment significantly improved the antitumor immune responses and prolonged survival of mice with HCC ascites. The EVM/VSV-G Ad5-P not only bypasses the limitation of low CAR expression in tumor cells to improve the viral entry, but also significantly protects the virus from the neutralization antibodies. The EVM encapsulation technology can be successfully used for loading of non-enveloped viruses to generate the extracellular vesicle-mimetic encapsulated viral particles. Our results provide a novel strategy in OVs manufacture to improve the efficacy of tumor oncolytic virotherapy.
Collapse
Affiliation(s)
- Yonghui Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Henan Key Laboratory of Stem Cell Differentiation and Modification, Stem Cell Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,People's Hospital of Henan University, Zhengzhou, China
| | - Junyi Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Lu J, Wang R, Huang Y, Yu Y, Zhou X, Huang P, Yang Z. A novel human monoclonal antibody potently neutralizes human adenovirus serotype 7 by primarily targeting the adenovirus hexon protein. Virology 2020; 543:20-26. [PMID: 32056843 DOI: 10.1016/j.virol.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022]
Abstract
Human adenovirus serotype 7 (HAdV-7), belonging to species B, has caused severe lower respiratory tract diseases and even deaths recently. However, no adenovirus vaccine or therapeutic is available thus far. In this study, a HAdV-7-specific human monoclonal antibody (HMAb), 3-3E, isolated from single plasma cells obtained from the peripheral blood mononuclear cells of HAdV-7-infected patients showed potent HAdV-7 neutralization activity. The results showed HMAb 3-3E only binds to the hexon protein of intact HAdV-7 or the recombinant hexon protein and it does not bind to other intact virion particles. This could mean the antibody recognizes a conformational epitope of the hexon protein. Further, HMAb 3-3E potently neutralized HAdV-7 in vitro at low concentrations. In vivo studies showed HMAb 3-3E protected from HAdV-7 infection in a murine model. Therefore, HMAb 3-3E is promising as a safe and effective prophylactic and therapeutic treatment for HAdV-7 infection.
Collapse
Affiliation(s)
- Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaowei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
7
|
Tian X, Wu H, Zhou R. Molecular evolution of human adenovirus type 16 through multiple recombination events. Virus Genes 2019; 55:769-778. [PMID: 31385187 DOI: 10.1007/s11262-019-01698-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Human mastadenoviruses (HAdVs) are non-enveloped, double-stranded DNA viruses that are comprised of more than 85 types classified within seven species (A-G) based on genomics. All HAdV prototypes and many newly defined type genomes have been completely sequenced and are available. Computational analyses of the prototypes and newly emergent HAdV strains provide insights into the evolutionary history and molecular adaptation of HAdV. Most types of HAdV-B are important pathogens causing severe respiratory infections or urinary tract infections and are well characterized. However, HAdV-16 of the B1 subspecies has rarely been reported and its genome is poorly characterized. In this study, bioinformatics analysis, based on genome sequences obtained in GenBank, suggested that HAdV-16, a prototype HAdV-B species, evolved from multiple intertypic recombination events. HAdV-16 genome contains the hexon loop 1 to loop 2 region from HAdV-E4, the partial hexon conserved region 4 (C4) from the subspecies HAdV-B2, genome region 30,897-33,384 containing the fiber gene from SAdV-35, and other genomic parts from the subspecies HAdV-B1. Moreover, analysis of sequence similarity with HAdV-E4 LI, LII, and SAdV-36 strains demonstrated the recombination events happened rather early. Further, amino acid sequence alignment indicated that the amino acid variations occurred in hypervariable regions (HVRs). Especially, the major difference in HVR7, which contains the critical neutralization epitope of HAdV-E4, between HAdV-16 and HAdV-E4 might explain the low level of cross-neutralization between these strains. Our findings promote better understanding on HAdV evolution, predicting newly emergent HAdV strains, and developing novel HAdV vectors.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Heiniö C, Sorsa S, Siurala M, Grönberg-Vähä-Koskela S, Havunen R, Haavisto E, Koski A, Hemminki O, Zafar S, Cervera-Carrascon V, Munaro E, Kanerva A, Hemminki A. Effect of Genetic Modifications on Physical and Functional Titers of Adenoviral Cancer Gene Therapy Constructs. Hum Gene Ther 2019; 30:740-752. [PMID: 30672366 DOI: 10.1089/hum.2018.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.
Collapse
Affiliation(s)
- Camilla Heiniö
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Mikko Siurala
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Riikka Havunen
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Anniina Koski
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,3 Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Sadia Zafar
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Víctor Cervera-Carrascon
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Eleonora Munaro
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,4 Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland.,5 Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Liu T, Fan Y, Li X, Gu S, Zhou Z, Xu D, Qiu S, Li C, Zhou R, Tian X. Identification of adenovirus neutralizing antigens using capsid chimeric viruses. Virus Res 2018; 256:100-106. [PMID: 30096411 DOI: 10.1016/j.virusres.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 01/07/2023]
Abstract
Human adenoviruses (HAdV) 3 and 7 can cause acute respiratory disease epidemics and outbreaks. Identification of neutralizing epitopes is vital for surveillance and vaccine development. In this study, we generated the recombinant capsid-chimeric human adenoviruses rAd3E-Fk7, containing the Ad3E backbone and the HAdV-7 fiber knob, and rAd3E-H7Fk7, which contain an Ad3E backbone but HAdV-7 hexon and fiber knob. In vitro neutralization tests with these chimeric adenoviruses using both mouse and human antisera indicated that hexon and fiber knob are the major targets recognized by neutralizing antibodies against HAdV-3 or HAdV-7, and other capsid proteins including the penton base and fiber shaft may not contribute to neutralizing antibody responses. In conclusion, both hexon and fiber knob structures in HAdV-3 and HAdV-7 may be the proteins which induce neutralizing antibody responses and thus may be important for adenovirus vaccine and drug development.
Collapse
Affiliation(s)
- Tiantian Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510310, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shujun Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Duo Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018; 6:biomedicines6030081. [PMID: 30049954 PMCID: PMC6165093 DOI: 10.3390/biomedicines6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Adenoviral vectored vaccines against infectious diseases are currently in clinical trials due to their capacity to induce potent antigen-specific B- and T-cell immune responses. Heterologous prime-boost vaccination with adenoviral vector and, for example, adjuvanted protein-based vaccines can further enhance antigen-specific immune responses. Although leading to potent immune responses, these heterologous prime-boost regimens may be complex and impact manufacturing costs limiting efficient implementation. Typically, adenoviral vectors are engineered to genetically encode a transgene in the E1 region and utilize the host cell machinery to express the encoded antigen and thereby induce immune responses. Similarly, adenoviral vectors can be engineered to display foreign immunogenic peptides on the capsid-surface by insertion of antigens in capsid proteins hexon, fiber and protein IX. The ability to use adenoviral vectors as antigen-display particles, with or without using the genetic vaccine function, greatly increases the versatility of the adenoviral vector for vaccine development. This review describes the application of adenoviral capsid antigen-display vaccine vectors by focusing on their distinct advantages and possible limitations in vaccine development.
Collapse
|
11
|
Identification of a Critical and Conformational Neutralizing Epitope in Human Adenovirus Type 4 Hexon. J Virol 2018; 92:JVI.01643-17. [PMID: 29093098 PMCID: PMC5752955 DOI: 10.1128/jvi.01643-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023] Open
Abstract
Human adenovirus type 4 (HAdV-4) is an epidemic virus that contributes to serious acute respiratory disease (ARD) in both pediatric and adult patients. However, no licensed drug or vaccine is currently available to the civilian population. The identification of neutralizing epitopes of HAdV-4 should allow the development of a novel antiviral vaccine and a novel gene transfer vector, and an effective neutralizing monoclonal antibody (MAb) will be useful in developing appropriate antiviral drugs. In this study, we report that MAb MN4b shows strong neutralizing activity against HAdV-4. MN4b recognizes a conformational epitope (418AGSEK422) within hypervariable region 7 (HVR7). Mutations within this site permitted HAdV-4 mutants to escape neutralization by MN4b and to resist neutralization by animal and human anti-HAdV-4 sera. A recombinant virus, rAd3-A4R7-1, containing the identified neutralizing epitope in the HVR7 region of HAdV-3 hexon, successfully induced antiserum that inhibited HAdV-4 infection. These results indicate that a small surface loop of HAdV-4 hexon is a critical neutralization epitope for this virus. The generation of MN4b and the identification of this neutralizing epitope may be useful in developing therapeutic treatment, a subunit vaccine, and a novel vector that can escape preexisting neutralization for HAdV-4. IMPORTANCE Neutralizing antibodies are considered good tools for the prevention of human adenovirus type 4 (HAdV-4) infections. The identification of the epitopes recognized by such neutralizing antibodies is important for the generation of recombinant antiviral vaccines. However, until now, no neutralizing epitope has been reported for HAdV-4. Here, we developed a serotype-specific neutralizing MAb directed against HAdV-4, MN4b. We provide evidence that MN4b recognizes a conformational epitope within HVR7 of HAdV-4 hexon. Antisera generated to this conformational epitope displayed on HAdV-3 hexon inhibited infection of AD293 cells by HAdV-4. Our findings are very important for the development of therapeutic treatment, a subunit vaccine, and a novel vector for HAdV-4.
Collapse
|
12
|
|
13
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Wong M, Woolford L, Hasan NH, Hemmatzadeh F. A Novel Recombinant Canine Adenovirus Type 1 Detected from Acute Lethal Cases of Infectious Canine Hepatitis. Viral Immunol 2017; 30:258-263. [PMID: 28426340 DOI: 10.1089/vim.2016.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, canine adenoviruses (CAdVs) from two acute fatal cases of infectious canine hepatitis (ICH) were analyzed using molecular detection and sequencing of the pVIII, E3, and fiber protein genes. Pathological findings in affected dogs were typical for CAdV-1 associated disease, characterized by severe centrilobular to panlobular necrohemorrhagic hepatitis and the development of disseminated intravascular coagulation in the terminal stages of disease. Comparison of partial genome sequences revealed that although these newly detected viruses mainly had CAdV-1 genome characteristics, their pVIII gene was more similar to that of CAdV-2. This likely suggests that a recombination has occurred between CAdV-1 and CAdV-2, which possibly explains the cause of vaccine failure or increased virulence of the virus in the observed ICH cases.
Collapse
Affiliation(s)
- Magdelene Wong
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Lucy Woolford
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| | - Noor Haliza Hasan
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, University Malaysia Sabah , Sabah, Malaysia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Science, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
15
|
Rojas LA, Condezo GN, Moreno R, Fajardo CA, Arias-Badia M, San Martín C, Alemany R. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J Control Release 2016; 237:78-88. [DOI: 10.1016/j.jconrel.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/28/2022]
|
16
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
17
|
Fedaoui N, Ayed NB, Yahia AB, Hammami W, Touzi H, Triki H. Genetic variability of human adenovirus type 8 causing epidemic and sporadic cases of keratoconjunctivitis. Arch Virol 2016; 161:1469-76. [DOI: 10.1007/s00705-016-2804-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
18
|
Uusi-Kerttula H, Hulin-Curtis S, Davies J, Parker AL. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses 2015; 7:6009-42. [PMID: 26610547 PMCID: PMC4664994 DOI: 10.3390/v7112923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sarah Hulin-Curtis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - James Davies
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alan L Parker
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
19
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
20
|
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 2015; 10:2875-84. [PMID: 25483662 PMCID: PMC5443060 DOI: 10.4161/hv.29594] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Collapse
|
21
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
22
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
23
|
Production of chimeric adenovirus. Methods Mol Biol 2013; 1089:231-43. [PMID: 24132489 DOI: 10.1007/978-1-62703-679-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The use of chimeric pseudotyped vectors is a common way to modify the adenoviral tropism by replacing the fiber protein. In this chapter the procedure to generate a chimeric adenovirus pre-stock from a plasmid containing the adenoviral genome is described. Also, the chimeric adenovirus replicative cycle to increase the yield in further productions is determined. Finally, two different protocols, in culture plates and in suspension cultures, to produce the virus at large scale are also detailed.
Collapse
|
24
|
Identification of a suppressor mutation that improves the yields of hexon-modified adenovirus vectors. J Virol 2013; 87:9661-71. [PMID: 23824800 DOI: 10.1128/jvi.00462-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated hexon-modified adenovirus serotype 5 (Ad5) vectors that are not neutralized by Ad5-specific neutralizing antibodies in mice. These vectors are attractive for the advancement of vaccine products because of their potential for inducing robust antigen-specific immune responses in people with prior exposure to Ad5. However, hexon-modified Ad5 vectors displayed an approximate 10-fold growth defect in complementing cells, making potential vaccine costs unacceptably high. Replacing hypervariable regions (HVRs) 1, 2, 4, and 5 with the equivalent HVRs from Ad43 was sufficient to avoid Ad5 preexisting immunity and retain full vaccine potential. However, the resulting vector displayed the same growth defect as the hexon-modified vector carrying all 9 HVRs from Ad43. The growth defect is likely due to a defect in capsid assembly, since DNA replication and late protein accumulation were normal in these vectors. We determined that the hexon-modified vectors have a 32°C cold-sensitive phenotype and selected revertants that restored vector productivity. Genome sequencing identified a single base change resulting in a threonine-to-methionine amino acid substitution at the position equivalent to residue 342 of the wild-type protein. This mutation has a suppressor phenotype (SP), since cloning it into our Ad5 vector containing all nine hypervariable regions from Ad43, Ad5.H(43m-43), increased yields over the version without the SP mutation. This growth improvement was also shown for an Ad5-based hexon-modified vector that carried the hexon hypervariable regions of Ad48, indicating that the SP mutation may have broad applicability for improving the productivity of different hexon-modified vectors.
Collapse
|
25
|
Abstract
We incorporated a previously identified mutation that reduces the fidelity of the DNA polymerase into a human adenovirus vector. Using this mutator vector, we demonstrate rapid selection of resistance to a neutralizing anti-hexon monoclonal antibody due to a G434D mutation in hexon that precludes antibody binding. Since mutator adenoviruses can accumulate compound mutations that are unattainable using traditional random mutagenesis techniques, this approach will be valuable to the study of antivirals and host factor interactions.
Collapse
|
26
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Toivonen R, Koskenvuo J, Merentie M, Söderström M, Ylä-Herttuala S, Savontaus M. Intracardiac injection of a capsid-modified Ad5/35 results in decreased heart toxicity when compared to standard Ad5. Virol J 2012. [PMID: 23190872 PMCID: PMC3546865 DOI: 10.1186/1743-422x-9-296] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Clinical gene therapy trials for cardiovascular diseases have demonstrated the crucial role of efficient gene delivery and transfection technologies in achieving clinically relevant results. We hypothesized that the use of tropism-modified adenoviruses would improve transduction efficacy and to this end we analyzed the transduction efficiency and toxicity of standard Ad5 and tropism-modified Ad5/35 in combination with ultrasound-guided intramyocardial gene delivery. METHODS Ultrasound-guided intracardiac injections were used to deliver 1 × 10(10) pfu/ml Ad5-lacZ and Ad5/35-lacZ vectors into mouse left ventricle wall. Since Ad5/35 uses human CD46 as its primary receptor, we used transgenic hCD46Ge mice expressing human CD46 at levels comparable to man. Mice were sacrificed 6 or 14 days post-injection and immunohistochemistry and X-gal staining were used to detect transgene and viral receptor expression. Virus-induced cardiac toxicity was evaluated by a pathologist. RESULTS The intramyocardial injection was well tolerated and both Ad5-lacZ and Ad5/35-lacZ were able to give robust transgene expression after a single injection. Interestingly, while Ad5-lacZ was able to generate greater transgene expression than Ad5/35-lacZ, it also evoked more severe tissue damage with large areas of interstitial inflammatory cell infiltration and myocyte necrosis. CONCLUSIONS Ultrasound-guided intramyocardial injection is an effective and safe way to deliver vectors to the heart. The observed severe tissue damage of Ad5-lacZ greatly undermines the efficient transgene expression and suggests that Ad5/35 capsid modification can result in safer adenoviral vectors for cardiovascular gene therapy, although at the cost of some vector transduction efficacy.
Collapse
Affiliation(s)
- Raine Toivonen
- Turku Centre for biotechnology, University of Turku, Tykistökatu 6B 5th floor, Turku, FIN-20520, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Miralles M, Segura MM, Puig M, Bosch A, Chillon M. Efficient amplification of chimeric adenovirus 5/40S vectors carrying the short fiber protein of Ad40 in suspension cell cultures. PLoS One 2012; 7:e42073. [PMID: 22860056 PMCID: PMC3409147 DOI: 10.1371/journal.pone.0042073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/02/2012] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus 40 (Ad40) is a promising tool for gene therapy of intestinal diseases. Since the production of Ad40 in vitro is extremely inefficient, chimeric Adenovirus 5/40S vectors carrying the Ad40 short fiber on the Ad5 capsid have been developed. However, Ad5/40S productivity is low. We hypothesized that low productivity was a result of inefficient viral entry into producer cells during amplification. To this end, we have developed a production strategy based on using 211B cells (expressing Ad5 fiber) during amplification steps, while Ad5/40S infectivity is further improved by adding polybrene during infections. In addition, the optimal harvesting time was determined by evaluating the Ad5/40S viral cycle. The developed production strategy significantly reduces the number of amplification cycles and duration of the process. Finally, to further facilitate Ad5/40S production, 211B cells were adapted to suspension thus allowing to easily upscale the production process in bioreactors.
Collapse
Affiliation(s)
- Marta Miralles
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Mercedes Segura
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Puig
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Assumpció Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillon
- Center of Animal Biotechnology and Gene Therapy (CBATEG), and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Kaufmann JK, Nettelbeck DM. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol Med 2012; 18:365-76. [PMID: 22633438 DOI: 10.1016/j.molmed.2012.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/27/2022]
Abstract
Several challenges need to be addressed when developing viruses for clinical applications in gene therapy, vaccination, or viral oncolysis, including specific and efficient target cell transduction, virus delivery via the blood stream, and evasion of pre-existing immunity. With rising frequency, these goals are tackled by generating chimeric viruses containing nucleic acid fragments or proteins from two or more different viruses, thus combining different beneficial features of the parental viruses. These chimeras have boosted the development of virus-based treatment regimens for major inherited and acquired diseases, including cancer. Using adenoviruses as the paradigm and prominent examples from other virus families, we review the technological and functional advances in therapeutic virus chimera development and recent successful applications that can pave the way for future therapies.
Collapse
Affiliation(s)
- Johanna K Kaufmann
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
30
|
Steffensen MA, Jensen BAH, Holst PJ, Bassi MR, Christensen JP, Thomsen AR. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses. PLoS One 2012; 7:e34884. [PMID: 22514686 PMCID: PMC3326056 DOI: 10.1371/journal.pone.0034884] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 12/22/2022] Open
Abstract
Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii). To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.
Collapse
Affiliation(s)
- Maria Abildgaard Steffensen
- Institute of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Johannes Holst
- Institute of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Institute of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Institute of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Institute of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Bruder JT, Semenova E, Chen P, Limbach K, Patterson NB, Stefaniak ME, Konovalova S, Thomas C, Hamilton M, King CR, Richie TL, Doolan DL. Modification of Ad5 hexon hypervariable regions circumvents pre-existing Ad5 neutralizing antibodies and induces protective immune responses. PLoS One 2012; 7:e33920. [PMID: 22496772 PMCID: PMC3320611 DOI: 10.1371/journal.pone.0033920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
The development of an effective malaria vaccine is a high global health priority. Vaccine vectors based on adenovirus type 5 are capable of generating robust and protective T cell and antibody responses in animal models and are currently being evaluated in clinical trials for HIV and malaria. They appear to be more effective in terms of inducing antigen-specific immune responses as compared with non-Ad5 serotype vectors. However, the high prevalence of neutralizing antibodies to Ad5 in the human population, particularly in the developing world, has the potential to limit the effectiveness of Ad5-based vaccines. We have generated novel Ad5-based vectors that precisely replace the hexon hypervariable regions with those derived from Ad43, a subgroup D serotype with low prevalence of neutralizing antibody in humans. We have demonstrated that these hexon-modified adenovectors are not neutralized efficiently by Ad5 neutralizing antibodies in vitro using sera from mice, rabbits and human volunteers. We have also generated hexon-modified adenovectors that express a rodent malaria parasite antigen, PyCSP, and demonstrated that they are as immunogenic as an unmodified vector. Furthermore, in contrast to the unmodified vector, the hexon-modified adenovectors induced robust T cell responses in mice with high levels of Ad5 neutralizing antibody. We also show that the hexon-modified vector can be combined with unmodified Ad5 vector in prime-boost regimens to induce protective responses in mice. Our data establish that these hexon-modified vectors are highly immunogenic even in the presence of pre-existing anti-adenovirus antibodies. These hexon-modified adenovectors may have advantages in sub-Saharan Africa where there is a high prevalence of Ad5 neutralizing antibody in the population.
Collapse
Affiliation(s)
- Joseph T Bruder
- Research, GenVec, Inc., Gaithersburg, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Samson M, Jung D. Intracellular trafficking and fate of chimeric adenovirus 5/F35 in human B lymphocytes. J Gene Med 2012; 13:451-61. [PMID: 21766397 DOI: 10.1002/jgm.1588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Investigation of the molecular processes that control the development and function of lymphocytes is essential for our understanding of humoral immunity, as well as lymphocyte-associated pathogenesis. Adenovirus-mediated gene transfer provides a powerful tool for investigating these processes. However, we observed variation in transgene expression among normal human peripheral blood B lymphocytes from different donors and at distinct stages of differentiation. It is recognized that efficient gene transfer is highly dependent on the intracellular route by which the viruses travel within the host cell. Thus, we aimed to examine this aspect in the present study. METHODS We analyzed the binding, uptake, intracellular trafficking and fate of CY3-labelled Ad5/F35 vectors in lymphoid cell lines and primary B cells. Furthermore, we decreased protein synthesis levels and rapid endocytosis in a plasma cell line exhibiting a high level of protein synthesis activity and activated transcription and endocytosis in primary B cells, which are less active than plasma cells. RESULTS Major differences in intracellular trafficking pattern between B cells and plasma cell line U266 were identified that explain the observed divergence in transgene expression efficiency. Importantly, modification of the transcriptional or translational activity of U266 cells reverted the Ad5/F35 endocytic trafficking to that seen in B cells, with a loss of transgene expression, whereas activation of B cells with phorbol 12-myristate 13-acetate had the opposite effects. CONCLUSIONS Taken together, these results suggest that Ad5/F35 is more efficiently transduced in cells with a strong transcriptional activity as a result of differences in intracellular trafficking. This finding extends our current knowledge of the mechanisms of adenovirus-mediated gene transfer.
Collapse
|
33
|
Di B, Mao Q, Zhao J, Li X, Wang D, Xia H. A rapid generation of adenovirus vector with a genetic modification in hexon protein. J Biotechnol 2011; 157:373-8. [PMID: 22226912 DOI: 10.1016/j.jbiotec.2011.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 01/25/2023]
Abstract
The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy.
Collapse
Affiliation(s)
- Bingyan Di
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Kim J, Kim PH, Kim SW, Yun CO. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials 2011; 33:1838-50. [PMID: 22142769 DOI: 10.1016/j.biomaterials.2011.11.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022]
Abstract
With the reason that systemically administered adenovirus (Ad) is rapidly extinguished by innate/adaptive immune responses and accumulation in liver, in vivo application of the Ad vector is strictly restricted. For achieving to develop successful Ad vector systems for cancer therapy, the chemical or physical modification of Ad vectors with polymers has been generally used as a promising strategy to overcome the obstacles. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of therapeutic Ad vectors and well accomplished to extend circulation time in blood and reduce liver toxicity. However, although polymer-coated Ads can successfully evacuate from a series of guarding systems in vivo and locate within tumors by enhanced permeability and retention (EPR) effect, the possibility to entering into the target cell is few and far between. To endow targeting moiety to polymer-coated Ad vectors, a diversity of ligands such as tumor-homing peptides, growth factors or antibodies, have been introduced with avoiding unwanted transduction and enhancing therapeutic efficacy. Here, we will describe and classify the characteristics of the published polymers with respect to Ad vectors. Furthermore, we will also compare the properties of variable targeting ligands, which are being utilized for addressing polymer-coated Ad vectors actively.
Collapse
Affiliation(s)
- Jaesung Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | | | | | | |
Collapse
|
35
|
Bowser BS, Chen HS, Conway MJ, Christensen ND, Meyers C. Human papillomavirus type 18 chimeras containing the L2/L1 capsid genes from evolutionarily diverse papillomavirus types generate infectious virus. Virus Res 2011; 160:246-55. [PMID: 21762735 PMCID: PMC3163805 DOI: 10.1016/j.virusres.2011.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023]
Abstract
Papillomaviruses (PVs) comprise a large family of viruses infecting nearly all vertebrate species, with more than 100 human PVs identified. Our previous studies showed that a mutant chimera HPV18/16 genome, consisting of the upper regulatory region and early ORFs of HPV18 and the late ORFs of HPV16, was capable of producing infectious virus in organotypic raft cultures. We were interested in determining whether the ability of this chimeric genome to produce infectious virus was the result of HPV18 and HPV16 being similarly oncogenic, anogenital types and whether more disparate PV types could also interact functionally. To test this we created a series of HPV18 chimeric genomes where the ORFs for the HPV18 capsid genes were replaced with the capsid genes of HPV45, HPV39, HPV33, HPV31, HPV11, HPV6b, HPV1a, CRPV, and BPV1. All chimeras were able to produce infectious chimeric viral particles, although with lower infectivity than wild-type HPV18. Steps in the viral life cycle and characteristics of the viral particles were examined to identify potential causes for the decrease in infectivity.
Collapse
Affiliation(s)
- Brian S. Bowser
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033 USA
| | - Horng-Shen Chen
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033 USA
| | - Michael J. Conway
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033 USA
| | - Neil D. Christensen
- Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA, 17033 USA
| | - Craig Meyers
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033 USA
| |
Collapse
|
36
|
Raki M, Sarkioja M, Escutenaire S, Kangasniemi L, Haavisto E, Kanerva A, Cerullo V, Joensuu T, Oksanen M, Pesonen S, Hemminki A. Switching the fiber knob of oncolytic adenoviruses to avoid neutralizing antibodies in human cancer patients. J Gene Med 2011; 13:253-61. [DOI: 10.1002/jgm.1565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
37
|
Katayama K, Furuki R, Yokoyama H, Kaneko M, Tachibana M, Yoshida I, Nagase H, Tanaka K, Sakurai F, Mizuguchi H, Nakagawa S, Nakanishi T. Enhanced in vivo gene transfer into the placenta using RGD fiber-mutant adenovirus vector. Biomaterials 2011; 32:4185-93. [PMID: 21411139 DOI: 10.1016/j.biomaterials.2011.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/19/2011] [Indexed: 11/19/2022]
Abstract
Among viral vectors, the fiber-mutant adenovirus vector carrying the Arg-Gly-Asp (RGD) peptide sequence (Ad-RGD) seems to have potential for both clinical gene therapy and basic research. As a part of a thorough evaluation of Ad-RGD in preclinical studies, we designed an experiment to investigate in detail the distribution of Ad-RGD compared with conventional adenovirus vector (WT-Ad) in pregnant mice. Surprisingly, Ad-RGD had substantial placental tropism, at 10-100 times that of WT-Ad. Transgene expression was sustained for at least 7 days, and Ad-RGD expressing firefly luciferase or red fluorescent protein has so far caused no placental dysfunction leading to fetal death. Ad-RGD showed high levels of transduction efficiency in in vitro-differentiated trophoblast stem cells, in which higher expression of αvβ3 integrin than in undifferentiated cells was observed. Our results suggest that the use of Ad-RGD or another RGD-mediated targeting strategy holds promise for drug delivery to the placenta.
Collapse
Affiliation(s)
- Kazufumi Katayama
- Department of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rogozhin V, Logunov D, Shchebliakov D, Shmarov M, Khodunova E, Galtseva I, Belousova R, Naroditsky B, Gintsburg A. An Efficient Method for the Delivery of the Interleukin-2 Gene to Human Hematopoietic Cells using the
Fiber-Modified Recombinant Adenovirus. Acta Naturae 2011; 3:100-6. [PMID: 22649700 PMCID: PMC3347609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recombinant human adenovirus serotype 5 (Ad5/35F-IL2) with modified fibres containing the C-terminal domain fiber-knob of human adenovirus serotype 35, carrying the gene of recombinant human IL-2, has been designed. As a result of the fiber modification, the adenovirus can efficiently deliver the genetic information to bone marrow leukocytes and the tumor blood cells KG-1A (human myeloblastic leukemia cells) and U937 (human histiocytic lymphoma cells), which are normally resistant to Ad5 infection. The flow cytometry data reveal that the modified Ad5/35F penetrates into a population of monocytes, granulocytes, and blast cells of human bone marrow. The expression of interleukin-2 in CAR-negative bone marrow leukocytes (3682.52 ± 134.21 pg/ml) and the cell lines KG-1A (748.3 ± 32.8 pg/ml) and U937 (421.5 ± 59.4 pg/ml) transduced with adenovirus Ad5/35F-IL2 is demonstrated. The fiber-modified adenovirus can be used as a vector for the efficient gene delivery of interleukin-2 to human normal and tumor hematopoietic cells.
Collapse
Affiliation(s)
- V.N. Rogozhin
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation ,Moscow state academy of veterinary medicine and biotechnology named K.I.
Skryabin
| | - D.Yu. Logunov
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation
| | - D.V. Shchebliakov
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation
| | - M.M. Shmarov
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation
| | - E.E. Khodunova
- National Research Center for Hematology, Ministry of Health and Social
Development of the Russian Federation
| | -
I.V. Galtseva
- National Research Center for Hematology, Ministry of Health and Social
Development of the Russian Federation
| | - R.V. Belousova
- Moscow state academy of veterinary medicine and biotechnology named K.I.
Skryabin
| | - B.S. Naroditsky
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation
| | - A.L. Gintsburg
- Gamaleya Research Institute of Epidemiology and Microbiology, Ministry of
Health and Social Development of the Russian Federation
| |
Collapse
|
39
|
Abstract
Recombinant adenoviruses are attractive vectors for short-term expression in mouse liver and primary cell lines. Various versatile vector systems have been developed which can be used for the reliable production of recombinant adenoviruses. This protocol describes the entire process for the production of recombinant adenoviruses using the AdEasy system. This protocol will give a practical step-by-step description from the cloning of the gene of interest until the in vivo administration in mice. The entire process will take about 8 weeks to complete.
Collapse
Affiliation(s)
- Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
40
|
Ranki T, Hemminki A. Serotype chimeric human adenoviruses for cancer gene therapy. Viruses 2010; 2:2196-2212. [PMID: 21994616 PMCID: PMC3185575 DOI: 10.3390/v2102196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/16/2010] [Accepted: 09/22/2010] [Indexed: 11/16/2022] Open
Abstract
Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus, enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.
Collapse
Affiliation(s)
- Tuuli Ranki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland; E-Mail:
- HUSLAB, Helsinki University Central Hospital, P.O. Box 100, 00029 HUS, Helsinki, Finland
- Haartman Institute & Transplantation Laboratory, University of Helsinki, P.O. Box 21, 00014 University of Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, P.O.Box 20, 00014 University of Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland; E-Mail:
- HUSLAB, Helsinki University Central Hospital, P.O. Box 100, 00029 HUS, Helsinki, Finland
- Haartman Institute & Transplantation Laboratory, University of Helsinki, P.O. Box 21, 00014 University of Helsinki, Finland
- Finnish Institute for Molecular Medicine, University of Helsinki, P.O.Box 20, 00014 University of Helsinki, Finland
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +358-9-1912 5464; Fax: +358-9-1912 5465
| |
Collapse
|
41
|
Seregin SS, Amalfitano A. Improving adenovirus based gene transfer: strategies to accomplish immune evasion. Viruses 2010; 2:2013-2036. [PMID: 21994718 PMCID: PMC3185744 DOI: 10.3390/v2092013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022] Open
Abstract
Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1) Ad-capsid-display of specific inhibitors or ligands; (2) covalent modifications of the entire Ad vector capsid moiety; (3) the use of tissue specific promoters and local administration routes; (4) the use of genome modified Ads; and (5) the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.
Collapse
Affiliation(s)
- Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; E-Mail:
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; E-Mail:
- Department of Pediatrics, Michigan State University, East Lansing, MI 48824, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-517-884-5324; Fax: +1-517-353-8957
| |
Collapse
|
42
|
Zhong Z, Shi S, Han J, Zhang Z, Sun X. Anionic liposomes increase the efficiency of adenovirus-mediated gene transfer to coxsackie-adenovirus receptor deficient cells. Mol Pharm 2010; 7:105-15. [PMID: 19968324 DOI: 10.1021/mp900151k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite remarkable progress in the research of both viral and nonviral gene delivery vectors, the drawbacks in each delivery system have limited their clinical applications. Therefore, one of the concepts for developing novel vectors is to overcome the limitations of individual vectors by combining them. In the current study, adenoviral vectors were formulated with anionic liposomes to protect them from neutralizing antibodies and to improve their transduction efficiency in Coxsackievirus-adenovirus receptor (CAR) deficient cells. A calcium-induced phase change method was applied to encapsulate adenovirus 5 (Ad5) into anionic liposomes to formulate the complexes of Ad5 and anionic liposomes (Ad5-AL). Meanwhile, the complexes of Ad5 and cationic liposomes (Ad5-CL) were also prepared as controls. LacZ gene expression in CAR overexpressing cells (A549) and CAR deficient cells (CHO and MDCK) was measured by either qualitative or quantitative detection. Confocal laser scanning microscopy was performed to determine intracellular location of Ad5 after their infection. Human sera with a high titer of antiadenovirus antibody were used to assess the neutralizing antibody protection ability of the complexed vectors. Accompanying the enhanced gene expression, a high ability to introduce Ad5 into cytoplasm and nucleus mediated by Ad5-AL was also observed in CAR deficient cells. Additionally, antibody neutralizing assay indicated that neutralizing serum inhibited naked Ad5 and Ad5-CL at rather higher dilution than Ad5-AL, which demonstrated Ad5-AL was more capable of protecting Ad5 from neutralizing than Ad5-CL. In conclusion, anionic liposomes prepared by the calcium-induced phase change method could significantly enhance the transduction ability of Ad5 in CAR deficient cells.
Collapse
Affiliation(s)
- Zhirong Zhong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, P. R. China
| | | | | | | | | |
Collapse
|
43
|
Uil TG, de Vrij J, Vellinga J, Rabelink MJWE, Cramer SJ, Chan OYA, Pugnali M, Magnusson M, Lindholm L, Boulanger P, Hoeben RC. A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 2010; 11:990-1004. [PMID: 19757488 DOI: 10.1002/jgm.1395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many studies aimed at retargeting adenovirus (Ad) rationally focus on genetic modification of fiber, which is the primary receptor-binding protein of Ad. Retargeted fibers ultimately require functional validation in the viral context. METHODS Lentiviral vectors (LV) were used to express fiber variants in cells. Infections with a fiber gene-deleted Ad vector yielded fiber-pseudotyped viruses. An enzyme-linked immunosorbent assay and slot blot-based assays probed target binding-ability of retargeted fibers. Differential treatments with an alkylating agent prior to western blot analysis allowed for examination of intra- and extracellular redox states of fibers. RESULTS In the present study, LV-based fiber-pseudotyping of Ad is presented as an accelerated means to test new fibers. LV-mediated gene transfer yielded stable and uniform populations of fiber variant-expressing cells. These populations were found to effectively support fiber-pseudotyping of Ad. As a secondary objective of the study, we functionally assessed a chimeric fiber harboring a tumor antigen-directed single-chain antibody fragment (scFv). This fiber was shown to trimerize and achieve a degree of binding to its antigenic target. However, its capsid incorporation ability was impaired and, moreover, it was unable to confer a detectable level of target binding upon Ad. Importantly, subsequent analyses of this fiber revealed the improper folding of its scFv constituent. CONCLUSIONS LV-based fiber-pseudotyping was established as a convenient method for testing modified fibers for functionality within Ad particles. Furthermore, a new chimeric fiber was found to be inadequate for Ad retargeting. The folding difficulties encountered for this particular fiber might be generally inherent to the use (i.e. for genetic Ad capsid incorporation) of complex, disulfide bridge-containing natural ligands.
Collapse
Affiliation(s)
- Taco G Uil
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2:468-502. [PMID: 21994645 PMCID: PMC3185605 DOI: 10.3390/v2020468] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-512-471-1972; Fax: +1-512-471-7474
| |
Collapse
|
45
|
Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin Biol Ther 2010; 9:1521-31. [PMID: 19780714 DOI: 10.1517/14712590903307388] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based vectors offer several benefits showing their potential for use in a variety of vaccine applications. Recombinant Ad-based vaccines possess potent immunogenic potential, capable of generating humoral and cellular immune responses to a variety of pathogen-specific antigens expressed by the vectors. Ad5 vectors can be readily produced, allowing for usage in thousands of clinical trial subjects. This is now coupled with a history of safe clinical use in the vaccine setting. However, traditional Ad5-based vaccines may not be generating optimal antigen-specific immune responses, and generate diminished antigen-specific immune responses when pre-existing Ad5 immunity is present. These limitations have driven initiation of several approaches to improve the efficacy of Ad-based vaccines, and/or allow modified vaccines to overcome pre-existing Ad immunity. These include: generation of chemically modified Ad5 capsids; generation of chimeric Ads; complete replacement of Ad5-based vaccine platforms with alternative (human and non-human origin) Ad serotypes, and Ad5 genome modification approaches that attempt to retain the native Ad5 capsid, while simultaneously improving the efficacy of the platform as well as minimizing the effect of pre-existing Ad immunity. Here we discuss recent advances in- and limitations of each of these approaches, relative to their abilities to overcome pre-existing Ad immunity.
Collapse
Affiliation(s)
- Sergey S Seregin
- Michigan State University, Department of Microbiology and Molecular Genetics, 4194 Biomedical and Physical Sciences Bldg, East Lansing, MI 48823, USA
| | | |
Collapse
|
46
|
Ferreyra L, Giordano M, Martinez L, Isa MB, Barril P, Masachessi G, Grutadauria S, Pavan J, Nates S. A novel human adenovirus hexon protein of species D found in an AIDS patient. Arch Virol 2009; 155:27-35. [DOI: 10.1007/s00705-009-0539-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|
47
|
Schoggins JW, Falck-Pedersen E. Serotype 5 Adenovirus fiber (F7F41S) chimeric vectors incur packaging deficiencies when targeting peptides are inserted into Ad41 short fiber. Virology 2009; 395:10-20. [PMID: 19782383 DOI: 10.1016/j.virol.2009.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/17/2009] [Accepted: 08/28/2009] [Indexed: 01/25/2023]
Abstract
Adenovirus is a well-established viral gene transfer model system that presents two major hurdles when being considered for cell-specific targeting applications. First is the need to detarget the vector from inherent host binding mechanisms, and second is the need to establish a productive and stable method to retarget the vector to a desired cell receptor. In previous studies we had generated an adenovirus vector platform that lacks the normal targeting attributes derived from the fiber and penton capsid proteins. In the current study we characterized our detargeted Ad5-based vectors (Ad5.F7F41S and Ad5.F7F41SDeltaRGD) as platforms for novel retargeted viruses. The experimental strategy relied on incorporating small peptide ligands into several sites of the Ad 41short fiber knob domain (AB, CD, HI, G and Cterm). Reengineering of Ad41 short fiber resulted either in a bypass to fiber 7 usage, or in a dominant negative packaging/production deficiency phenotype. Under specific growth conditions we could remedy some of the capsid deficiencies and generate high titer viruses. However when examined by Western blot analysis, the resulting viruses were still defective in capsid content. The tandem fiber F7F41S platform has revealed an unanticipated sensitivity of Adenovirus packaging to fiber 41short structural modifications. These studies indicate fiber assembly into an intact virion or fiber influenced capsid stability as a bottleneck to efficient particle production. We also demonstrate that virus particles characterized as mature virions following CsCl banding can vary significantly in capsid protein content. Considering the complexity of virus entry into a target cell, modified "mature virions" may be compromised at the level of transduction not only through the intended modification, but also by virtue of secondary structural packaging conflicts.
Collapse
Affiliation(s)
- John W Schoggins
- Weill Medical College of Cornell University, Hearst Research Foundation, Department of Microbiology and Immunology, Molecular Biology Graduate Program, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
49
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 PMCID: PMC2771947 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
| | | | - Dinesh S. Bangari
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
50
|
Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 2009; 83:5567-73. [PMID: 19279092 DOI: 10.1128/jvi.00405-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major obstacle to the use of adenovirus vectors derived from common human serotypes, such as human adenovirus 5 (AdHu5), is the high prevalence of virus-neutralizing antibodies in the human population. We previously constructed a variant of chimpanzee adenovirus 68 (AdC68) that maintained the fundamental properties of the carrier but was serologically distinct from AdC68 and resisted neutralization by AdC68 antibodies. In the present study, we tested whether this modified vector, termed AdCDQ, could induce transgene product-specific CD8(+) T cells in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ mutant vector in vitro nevertheless impair the vector's capacity to transduce cells and to stimulate a transgene product-specific CD8(+) T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on adenovirus vectors in vivo.
Collapse
|