1
|
Lin C, Wang W, Li M, Lin Y, Yang Z, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen K, Kuo C, Lin Y, Hsiao H, Lin K, Lin S, Chen Y, Yu M, Su L, Wang S. Boosting the detection performance of severe acute respiratory syndrome coronavirus 2 test through a sensitive optical biosensor with new superior antibody. Bioeng Transl Med 2022; 8:e10410. [PMID: 36248235 PMCID: PMC9538096 DOI: 10.1002/btm2.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in late 2019 leading to the COVID-19 disease pandemic that triggered socioeconomic turmoil worldwide. A precise, prompt, and affordable diagnostic assay is essential for the detection of SARS-CoV-2 as well as its variants. Antibody against SARS-CoV-2 spike (S) protein was reported as a suitable strategy for therapy and diagnosis of COVID-19. We, therefore, developed a quick and precise phase-sensitive surface plasmon resonance (PS-SPR) biosensor integrated with a novel generated anti-S monoclonal antibody (S-mAb). Our results indicated that the newly generated S-mAb could detect the original SARS-CoV-2 strain along with its variants. In addition, a SARS-CoV-2 pseudovirus, which could be processed in BSL-2 facility was generated for evaluation of sensitivity and specificity of the assays including PS-SPR, homemade target-captured ELISA, spike rapid antigen test (SRAT), and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Experimentally, PS-SPR exerted high sensitivity to detect SARS-CoV-2 pseudovirus at 589 copies/ml, with 7-fold and 70-fold increase in sensitivity when compared with the two conventional immunoassays, including homemade target-captured ELISA (4 × 103 copies/ml) and SRAT (4 × 104 copies/ml), using the identical antibody. Moreover, the PS-SPR was applied in the measurement of mimic clinical samples containing the SARS-CoV-2 pseudovirus mixed with nasal mucosa. The detection limit of PS-SPR is calculated to be 1725 copies/ml, which has higher accuracy than homemade target-captured ELISA (4 × 104 copies/ml) and SRAT (4 × 105 copies/ml) and is comparable with qRT-PCR (1250 copies/ml). Finally, the ability of PS-SPR to detect SARS-CoV-2 in real clinical specimens was further demonstrated, and the assay time was less than 10 min. Taken together, our results indicate that this novel S-mAb integrated into PS-SPR biosensor demonstrates high sensitivity and is time-saving in SARS-CoV-2 virus detection. This study suggests that incorporation of a high specific recognizer in SPR biosensor is an alternative strategy that could be applied in developing other emerging or re-emerging pathogenic detection platforms.
Collapse
Affiliation(s)
- Chih‐Yen Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Wen‐Hung Wang
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Meng‐Chi Li
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Optical Sciences CenterNational Central UniversityTaoyuanTaiwan
| | - Yu‐Ting Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Zih‐Syuan Yang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | | | | | - Kai‐Ren Chen
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | - Chien‐Cheng Kuo
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | | | - Hui‐Hua Hsiao
- Division of Hematology and Oncology, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Kun‐Der Lin
- Division of Endocrinology and MetabolismKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Shang‐Yi Lin
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Laboratory MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Yen‐Hsu Chen
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Ming‐Lung Yu
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Hepatobiliary Section, Department of Internal Medicine, and Hepatitis CenterKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Li‐Chen Su
- General Education CenterMing Chi University of TechnologyNew Taipei CityTaiwan
- Organic Electronics Research CenterMing Chi University of TechnologyNew Taipei CityTaiwan
| | - Sheng‐Fan Wang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
2
|
Boso G, Lam O, Bamunusinghe D, Oler AJ, Wollenberg K, Liu Q, Shaffer E, Kozak CA. Patterns of Coevolutionary Adaptations across Time and Space in Mouse Gammaretroviruses and Three Restrictive Host Factors. Viruses 2021; 13:v13091864. [PMID: 34578445 PMCID: PMC8472935 DOI: 10.3390/v13091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 10/26/2022] Open
Abstract
The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Oscar Lam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
- Correspondence:
| |
Collapse
|
3
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
4
|
Boi S, Rosenke K, Hansen E, Hendrick D, Malik F, Evans LH. Endogenous retroviruses mobilized during friend murine leukemia virus infection. Virology 2016; 499:136-143. [PMID: 27657834 DOI: 10.1016/j.virol.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses.
Collapse
Affiliation(s)
- Stefano Boi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Kyle Rosenke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Ethan Hansen
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Duncan Hendrick
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Frank Malik
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| |
Collapse
|
5
|
Christensen T. Human endogenous retroviruses in neurologic disease. APMIS 2016; 124:116-26. [DOI: 10.1111/apm.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
|
6
|
Kozak CA. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014; 7:1-26. [PMID: 25549291 PMCID: PMC4306825 DOI: 10.3390/v7010001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
Collapse
|
7
|
Evans LH, Boi S, Malik F, Wehrly K, Peterson KE, Chesebro B. Analysis of two monoclonal antibodies reactive with envelope proteins of murine retroviruses: one pan specific antibody and one specific for Moloney leukemia virus. J Virol Methods 2014; 200:47-53. [PMID: 24556162 DOI: 10.1016/j.jviromet.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 01/08/2023]
Abstract
Many monoclonal antibodies (MAbs) reactive with various proteins of murine leukemia viruses (MuLVs) have been developed. In this report two additional MAbs with differing and unusual specificities are described. MAb 573 is reactive with the envelope protein of all MuLVs tested including viruses in the ecotropic, xenotropic, polytropic and amphotropic classes. Notably, MAb 573 is one of only two reported MAbs that react with the envelope protein of amphotropic MuLVs. This MAb appears to recognize a conformational epitope within the envelope protein, as it reacts strongly with live virus and live infected cells, but does not react with formalin-fixed or alcohol-fixed infected cells or denatured viral envelope protein in immunoblots. In contrast, Mab 538 reacts only with an epitope unique to the envelope protein of the Moloney (Mo-) strain of MuLV, a prototypic ecotropic MuLV that is the basis for many retroviral tools used in molecular biology. MAb 538 can react with live cells and viruses, or detergent denatured or fixed envelope protein. The derivation of these antibodies as well as their characterization with regard to their isotype, range of reactivity with different MuLVs and utility in different immunological procedures are described in this study.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States.
| | - Stefano Boi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States; Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (CA), Italy
| | - Frank Malik
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Kathy Wehrly
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, United States
| |
Collapse
|
8
|
Profound amplification of pathogenic murine polytropic retrovirus release from coinfected cells. J Virol 2012; 86:7241-8. [PMID: 22514353 DOI: 10.1128/jvi.00225-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.
Collapse
|
9
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
10
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
11
|
Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J Virol 2008; 83:2429-35. [PMID: 19116259 DOI: 10.1128/jvi.01926-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.
Collapse
|
12
|
Hartley JW, Evans LH, Green KY, Naghashfar Z, Macias AR, Zerfas PM, Ward JM. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology 2008; 5:1. [PMID: 18177500 PMCID: PMC2253558 DOI: 10.1186/1742-4690-5-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/04/2008] [Indexed: 12/16/2022] Open
Abstract
The mouse macrophage-like cell line RAW264.7, the most commonly used mouse macrophage cell line in medical research, was originally reported to be free of replication-competent murine leukemia virus (MuLV) despite its origin in a tumor induced by Abelson MuLV containing Moloney MuLV as helper virus. As currently available, however, we find that it produces significant levels of ecotropic MuLV with the biologic features of the Moloney isolate and also MuLV of the polytropic or MCF class. Newborn mice developed lymphoma following inoculation with the MuLV mixture expressed by these cells. These findings should be considered in interpretation of increasingly widespread use of these cells for propagation of other viruses, studies of biological responses to virus infection and use in RNA interference and cell signalling studies.
Collapse
Affiliation(s)
- Janet W Hartley
- Laboratory of Immunopathology, NIAID, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Peterson KE, Evans LH, Wehrly K, Chesebro B. Increased proinflammatory cytokine and chemokine responses and microglial infection following inoculation with neural stem cells infected with polytropic murine retroviruses. Virology 2006; 354:143-53. [PMID: 16875710 DOI: 10.1016/j.virol.2006.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/22/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
Proinflammatory cytokines and chemokines are often detected in brain tissue of patients with neurological diseases such as multiple sclerosis (MS), HIV-associated dementia (HAD) and Alzheimer's disease (AD). We have utilized a mouse model of retrovirus-induced neurological disease to examine how these proinflammatory responses contribute to neuropathogenesis. In previous studies with this model, a correlation was found between neurovirulence and cytokine and chemokine expression. However, it was unclear whether the induction of these cytokines and chemokines was in response to specific virus envelope determinants or was regulated by the level of virus infection in the brain. In the current study, we demonstrated that multiple polytropic retroviruses induced cytokine and chemokine mRNA expression following increased virus levels in the brain. Increased virus levels of polytropic viruses also correlated with increased neuropathogenesis. In contrast, the ecotropic retrovirus, FB29, did not induce cytokine or chemokine mRNA expression or neurological disease, despite virus levels either similar to or higher than the polytropic retroviruses. As polytropic and ecotropic viruses utilize different receptors for entry, these receptors may play a critical role in the induction of these innate immune responses in the brain.
Collapse
Affiliation(s)
- Karin E Peterson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
14
|
Evans LH, Lavignon M, Peterson K, Hasenkrug K, Robertson S, Malik F, Virtaneva K. In vivo interactions of ecotropic and polytropic murine leukemia viruses in mixed retrovirus infections. J Virol 2006; 80:4748-57. [PMID: 16641268 PMCID: PMC1472087 DOI: 10.1128/jvi.80.10.4748-4757.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mixed retrovirus infections are the rule rather than the exception in mice and other species, including humans. Interactions of retroviruses in mixed infections and their effects on disease induction are poorly understood. Upon infection of mice, ecotropic retroviruses recombine with endogenous proviruses to generate polytropic viruses that utilize different cellular receptors. Interactions among the retroviruses of this mixed infection facilitate disease induction. Using mice infected with defined mixtures of the ecotropic Friend murine leukemia virus (F-MuLV) and different polytropic viruses, we demonstrate several dramatic effects of mixed infections. Remarkably, inoculation of F-MuLV with polytropic MuLVs completely suppressed the generation of new recombinant viruses and dramatically altered disease induction. Co-inoculation of F-MuLV with one polytropic virus significantly lengthened survival times, while inoculation with another polytropic MuLV induced a rapid and severe neurological disease. In both instances, the level of the polytropic MuLV was increased 100- to 1,000-fold, whereas the ecotropic MuLV level remained unchanged. Surprisingly, nearly all of the polytropic MuLV genomes were packaged within F-MuLV virions (pseudotyped) very soon after infection. At this time, only a fractional percentage of cells in the mouse were infected by either virus, indicating that the co-inoculated viruses had infected the same small subpopulation of susceptible cells. The profound amplification of polytropic MuLVs in coinfected mice may be facilitated by pseudotyping or, alternatively, by transactivation of the polytropic virus in the coinfected cells. This study illustrates the complexity of the interactions between components of mixed retrovirus infections and the dramatic effects of these interactions on disease processes.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Alamgir ASM, Owens N, Lavignon M, Malik F, Evans LH. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs. J Virol 2005; 79:4664-71. [PMID: 15795252 PMCID: PMC1069548 DOI: 10.1128/jvi.79.8.4664-4671.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.
Collapse
Affiliation(s)
- A S M Alamgir
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
16
|
Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 2005; 15:179-211. [PMID: 15782388 DOI: 10.1002/rmv.465] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that human endogenous retroviruses (HERVs) play a role in autoimmune diseases is subject to increasing attention. HERVs represent both putative susceptibility genes and putative pathogenic viruses in the immune-mediated neurological disease multiple sclerosis (MS). Gammaretroviral HERV sequences are found in reverse transcriptase-positive virions produced by cultured mononuclear cells from MS patients, and they have been isolated from MS samples of plasma, serum and CSF, and characterised to some extent at the nucleotide, protein/enzyme, virion and immunogenic level. Two types of sequences, HERV-H and HERV-W, have been reported. No known HERV-H or HERV-W copy contains complete ORFs in all prerequisite genes, although several copies have coding potential, and several such sequences are specifically activated in MS, apparently resulting in the production of complete, competent virions. Increased antibody reactivity to specific Gammaretroviral HERV epitopes is found in MS serum and CSF, and cell-mediated immune responses have also been reported. Further, HERV-encoded proteins can have neuropathogenic effects. The activating factor(s) in the process resulting in protein or virion production may be members of the Herpesviridae. Several herpes viruses, such as HSV-1, VZV, EBV and HHV-6, have been associated with MS pathogenesis, and retroviruses and herpes viruses have complex interactions. The current understanding of HERVs, and specifically the investigations of HERV activation and expression in MS are the major subjects of this review, which also proposes to synergise the herpes and HERV findings, and presents several possible pathogenic mechanisms for HERVs in MS.
Collapse
Affiliation(s)
- Tove Christensen
- Institute of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Evans LH, Lavignon M, Taylor M, Alamgir ASM. Antigenic subclasses of polytropic murine leukemia virus (MLV) isolates reflect three distinct groups of endogenous polytropic MLV-related sequences in NFS/N mice. J Virol 2003; 77:10327-38. [PMID: 12970417 PMCID: PMC228382 DOI: 10.1128/jvi.77.19.10327-10338.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polytropic murine leukemia viruses (MLVs) are generated by recombination of ecotropic MLVs with members of a family of endogenous proviruses in mice. Previous studies have indicated that polytropic MLV isolates comprise two mutually exclusive antigenic subclasses, each of which is reactive with one of two monoclonal antibodies termed MAb 516 and Hy 7. A major determinant of the epitopes distinguishing the subclasses mapped to a single amino acid difference in the SU protein. Furthermore, distinctly different populations of the polytropic MLV subclasses are generated upon inoculation of different ecotropic MLVs. Here we have characterized the majority of endogenous polytropic MLV-related proviruses of NFS/N mice. Most of the proviruses contain intact sequences encoding the receptor-binding region of the SU protein and could be distinguished by sequence heterogeneity within that region. We found that the endogenous proviruses comprise two major groups that encode the major determinant for Hy 7 or MAb 516 reactivity. The Hy 7-reactive proviruses correspond to previously identified polytropic proviruses, while the 516-reactive proviruses comprise the modified polytropic proviruses as well as a third group of polytropic MLV-related proviruses that exhibit distinct structural features. Phylogenetic analyses indicate that the latter proviruses reflect features of phylogenetic intermediates linking xenotropic MLVs to the polytropic and modified polytropic proviruses. These studies elucidate the relationships of the antigenic subclasses of polytropic MLVs to their endogenous counterparts, identify a new group of endogenous proviruses, and identify distinguishing characteristics of the proviruses that should facilitate a more precise description of their expression in mice and their participation in recombination to generate recombinant viruses.
Collapse
Affiliation(s)
- Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
18
|
McKane BW, Ramachandran S, Yang J, Xu XC, Mohanakumar T. Xenoreactive anti-Galalpha(1,3)Gal antibodies prevent porcine endogenous retrovirus infection of human in vivo. Hum Immunol 2003; 64:708-17. [PMID: 12826373 DOI: 10.1016/s0198-8859(03)00081-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery of porcine endogenous retroviruses (PERV) has raised concerns regarding the safety of pig to human xenotransplantation. In this study, we examined PERV infection of human cells in vivo. Furthermore, we examined the effect of human xenoreactive natural antibody on in vivo PERV infection. Human peripheral blood leukocyte reconstituted severe combined immunodeficiency mice were transplanted with porcine aortic endothelial cells (PAEC). PERV gene expression was readily detected in human leukocytes after transplantation. In contrast, human leukocytes harvested from mice treated with human serum or anti-Galalpha(1,3)Gal antibody prevented PERV infection in 6 of 8 mice. These results provide the first evidence that PERV can infect human cells in vivo and that natural xenoreactive antibody can prevent this infection.
Collapse
Affiliation(s)
- Brice W McKane
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Wensel DL, Li W, Cunningham JM. A virus-virus interaction circumvents the virus receptor requirement for infection by pathogenic retroviruses. J Virol 2003; 77:3460-9. [PMID: 12610121 PMCID: PMC149514 DOI: 10.1128/jvi.77.6.3460-3469.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During ongoing C-type retrovirus infection, the probability of leukemia caused by insertional gene activation is markedly increased by the emergence of recombinant retroviruses that repeatedly infect host cells. The murine mink cell focus-inducing (MCF) viruses with this property have acquired characteristic changes in the N-terminal domain of their envelope glycoprotein that specify binding to a different receptor than the parental ecotropic virus. In this report, we show that MCF virus infection occurs through binding to this receptor (termed Syg1) and, remarkably, by a second mechanism that does not utilize the Syg1 receptor. By the latter route, the N-terminal domain of the ecotropic virus glycoprotein expressed on the cell surface in a complex with its receptor activates the fusion mechanism of the MCF virus in trans. The rate of MCF virus spread through a population of permissive human cells was increased by establishment of trans activation, indicating that Syg1 receptor-dependent and -independent pathways function in parallel. Also, trans activation shortened the interval between initial infection and onset of cell-cell fusion associated with repeated infection of the same cell. Our findings indicate that pathogenic retrovirus infection may be initiated by virus binding to cell receptors or to the virus envelope glycoprotein of other viruses expressed on the cell surface. Also, they support a broader principle: that cooperative virus-virus interactions, as well as virus-host interactions, shape the composition and properties of the retrovirus quasispecies.
Collapse
Affiliation(s)
- David L Wensel
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Rulli K, Lobelle-Rich PA, Trubetskoy A, Lenz J, Levy LS. Tissue distribution and timing of appearance of polytropic envelope recombinants during infection with SL3-3 murine leukemia virus or its weakly pathogenic SL3DeltaMyb5 mutant. J Virol 2001; 75:522-6. [PMID: 11119621 PMCID: PMC113945 DOI: 10.1128/jvi.75.1.522-526.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A time course analysis was performed to identify the sites of formation and timing of appearance of polytropic recombinant viruses following infection of NIH/Swiss mice with the murine retrovirus SL3-3 murine leukemia virus (SL3) or with a weakly pathogenic mutant termed SL3DeltaMyb5. The results indicated that (i) polytropic recombinant viruses occur initially in the thymus of SL3-infected animals, (ii) the timing of appearance of polytropic recombinants in bone marrow is not consistent with their participation in the previously reported formation of transplantable tumor-forming cells at 3 to 4 week postinoculation, and (iii) the efficient generation of recombinant virus is correlated with efficient tumor induction.
Collapse
Affiliation(s)
- K Rulli
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
21
|
Audit M, Déjardin J, Hohl B, Sidobre C, Hope TJ, Mougel M, Sitbon M. Introduction of a cis-acting mutation in the capsid-coding gene of moloney murine leukemia virus extends its leukemogenic properties. J Virol 1999; 73:10472-9. [PMID: 10559365 PMCID: PMC113102 DOI: 10.1128/jvi.73.12.10472-10479.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inoculation of newborn mice with the retrovirus Moloney murine leukemia virus (MuLV) results in the exclusive development of T lymphomas with gross thymic enlargement. The T-cell leukemogenic property of Moloney MuLV has been mapped to the U3 enhancer region of the viral promoter. However, we now describe a mutant Moloney MuLV which can induce the rapid development of a uniquely broad panel of leukemic cell types. This mutant Moloney MuLV with synonymous differences (MSD1) was obtained by introduction of nucleotide substitutions at positions 1598, 1599, and 1601 in the capsid gene which maintained the wild-type (WT) coding potential. Leukemias were observed in all MSD1-inoculated animals after a latency period that was shorter than or similar to that of WT Moloney MuLV. Importantly, though, only 56% of MSD1-induced leukemias demonstrated the characteristic thymoma phenotype observed in all WT Moloney MuLV leukemias. The remainder of MSD1-inoculated animals presented either with bona fide clonal erythroid or myelomonocytic leukemias or, alternatively, with other severe erythroid and unidentified disorders. Amplification and sequencing of U3 and capsid-coding regions showed that the inoculated parental MSD1 sequences were conserved in the leukemic spleens. This is the first report of a replication-competent MuLV lacking oncogenes which can rapidly lead to the development of such a broad range of leukemic cell types. Moreover, the ability of MSD1 to transform erythroid and myelomonocytic lineages is not due to changes in the U3 viral enhancer region but rather is the result of a cis-acting effect of the capsid-coding gag sequence.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Capsid/genetics
- Capsid/physiology
- Cell Line
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Gene Products, gag/genetics
- Gene Products, gag/physiology
- Genes, Viral
- Leukemia, Erythroblastic, Acute/classification
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Myelomonocytic, Acute/classification
- Leukemia, Myelomonocytic, Acute/pathology
- Leukemia, Myelomonocytic, Acute/virology
- Mice
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/physiology
- Mutagenesis
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Terminal Repeat Sequences
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- M Audit
- Institut de Génétique Moléculaire de Montpellier (IGMM), IFR24, CNRS-UMR5535, and Université Montpellier II, F-34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Lander JK, Chesebro B, Fan H. Appearance of mink cell focus-inducing recombinants during in vivo infection by moloney murine leukemia virus (M-MuLV) or the Mo+PyF101 M-MuLV enhancer variant: implications for sites of generation and roles in leukemogenesis. J Virol 1999; 73:5671-80. [PMID: 10364317 PMCID: PMC112626 DOI: 10.1128/jvi.73.7.5671-5680.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One hallmark of murine leukemia virus (MuLV) leukemogenesis in mice is the appearance of env gene recombinants known as mink cell focus-inducing (MCF) viruses. The site(s) of MCF recombinant generation in the animal during Moloney MuLV (M-MuLV) infection is unknown, and the exact roles of MCF viruses in disease induction remain unclear. Previous comparative studies between M-MuLV and an enhancer variant, Mo+PyF101 MuLV, suggested that MCF generation or early propagation might take place in the bone marrow under conditions of efficient leukemogenesis. Moreover, M-MuLV induces disease efficiently following both intraperitoneal (i.p.) and subcutaneous (s.c.) inoculation but leukemogenicity by Mo+PyF101 M-MuLV is efficient following i.p. inoculation but attenuated upon s. c. inoculation. Time course studies of MCF recombinant appearance in the bone marrow, spleen, and thymus of wild-type and Mo+PyF101 M-MuLV i.p.- and s.c.-inoculated mice were carried out by performing focal immunofluorescence assays. Both the route of inoculation and the presence of the PyF101 enhancer sequences affected the patterns of MCF generation or early propagation. The bone marrow was a likely site of MCF recombinant generation and/or early propagation following i.p. inoculation of M-MuLV. On the other hand, when the same virus was inoculated s.c., the primary site of MCF generation appeared to be the thymus. Also, when Mo+PyF101 M-MuLV was inoculated i.p., MCF generation appeared to occur primarily in the thymus. The time course studies indicated that MCF recombinants are not involved in preleukemic changes such as splenic hyperplasia. On the other hand, MCFs were detected in tumors from Mo+PyF101 M-MuLV s. c.-inoculated mice even though they were largely undetectable at preleukemic times. These results support a role for MCF recombinants late in disease induction.
Collapse
Affiliation(s)
- J K Lander
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
23
|
Evidence for Copurification of HERV-K–Related Transcripts and a Reverse Transcriptase Activity in Human Platelets From Patients With Essential Thrombocythemia. Blood 1997. [DOI: 10.1182/blood.v90.10.4022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have previously reported that particles resembling retroviral particles and possessing an RNA-directed DNA polymerase activity can be prepared from platelets. Furthermore, we and others have shown that these particles are present at higher levels in patients with essential thrombocythemia and polycythemia vera. We show here that these particles package RNA molecules that encode HERV-K–related pol genes. A subset of the RNA molecules that are packaged are likely to encode the RNA directed DNA polymerase activity and, because these RNAs possess long/full-length open reading frames for the reverse transcriptase and RNaseH (also for part of the integrase domains in genomic clones) of HERV-K, we propose that these transcripts are indeed strong candidates for encoding the enzyme activity found in these particles. Moreover, by using a modification of the polymerase chain reaction-based reverse transcriptase assay in which activated DNA is added during cDNA synthesis to suppress DNA polymerase-mediated RNA-directed DNA synthesis, we have found that the particle-associated enzyme behaves like a retroviral reverse transcriptase, further supporting the conclusion that retrovirus-like, perhaps HERV-K sequences, encode this enzyme activity.
Collapse
|
24
|
Lavignon M, Richardson J, Evans LH. A small region of the ecotropic murine leukemia virus (MuLV) gag gene profoundly influences the types of polytropic MuLVs generated in mice. J Virol 1997; 71:8923-7. [PMID: 9343260 PMCID: PMC192366 DOI: 10.1128/jvi.71.11.8923-8927.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vast majority of recombinant polytropic murine leukemia viruses (MuLVs) generated in mice after infection by ecotropic MuLVs can be classified into two major antigenic groups based on their reactivities to two monoclonal antibodies (MAbs) termed Hy 7 and 516. These groups very likely correspond to viruses formed by recombination of the ecotropic MuLV with two distinct sets of polytropic env genes present in the genomes of inbred mouse strains. We have found that nearly all polytropic MuLVs identified in mice infected with a substrain of Friend MuLV (F-MuLV57) are reactive with Hy 7, whereas mice infected with Moloney MuLV (Mo-MuLV) generate major populations of both Hy 7- and 516-reactive polytropic MuLVs. We examined polytropic MuLVs generated in NFS/N mice after inoculation with Mo-MuLV-F-MuLV57 chimeras to determine which regions of the viral genome influence this difference between the two ecotropic MuLVs. These studies identified a region of the MuLV genome which encodes the nucleocapsid protein and a portion of the viral protease as the only region that influenced the difference in polytropic-MuLV generation by Mo-MuLV and F-MuLV57.
Collapse
Affiliation(s)
- M Lavignon
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|