1
|
Zhou Q, Shi D, Tang YD, Zhang L, Hu B, Zheng C, Huang L, Weng C. Pseudorabies virus gM and its homologous proteins in herpesviruses induce mitochondria-related apoptosis involved in viral pathogenicity. PLoS Pathog 2024; 20:e1012146. [PMID: 38669242 PMCID: PMC11051632 DOI: 10.1371/journal.ppat.1012146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan-Dong Tang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Longfeng Zhang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Li C, Wang M, Cheng A, Wu Y, Tian B, Yang Q, Gao Q, Sun D, Zhang S, Ou X, He Y, Huang J, Zhao X, Chen S, Zhu D, Liu M, Jia R. N-Linked Glycosylation and Expression of Duck Plague Virus pUL10 Promoted by pUL49.5. Microbiol Spectr 2023; 11:e0162523. [PMID: 37378543 PMCID: PMC10434065 DOI: 10.1128/spectrum.01625-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Duck plague virus (DPV) is a member of the alphaherpesvirus subfamily, and its genome encodes a conserved envelope protein, protein UL10 (pUL10). pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. Few studies have been conducted on DPV pUL10. In this study, we identified the characteristics of pUL10, such as the type of glycosylation modification and subcellular localization. The characteristic differences in pUL10 in transfection and infection suggest that there are other viral proteins that participate in pUL10 modification and localization. Therefore, pUL49.5, the interaction partner of pUL10, was explored. We found that pUL10 interacts with pUL49.5 during transfection and infection. Their interaction entailed multiple interaction sites, including noncovalent forces in the pUL49.5 N-terminal domains and C-terminal domains and a covalent disulfide bond between two conserved cysteines. pUL49.5 promoted pUL10 expression and mature N-linked glycosylation modification. Moreover, deletion of UL49.5 in DPV caused the molecular mass of pUL10 to decrease by approximately3 to 10 kDa, which suggested that pUL49.5 was the main factor affecting the N-linked glycosylation of DPV pUL10 during infection. This study provides a basis for future exploration of the effect of pUL10 glycosylation on virus proliferation. IMPORTANCE Duck plague is a disease with high morbidity and mortality rates, and it causes great losses for the duck breeding industry. Duck plague virus (DPV) is the causative agent of duck plague, and DPV UL10 protein (pUL10) is a homolog of glycoprotein M (gM), which is conserved in herpesviruses. pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. In this study, we systematically explored whether pUL49.5 (a partner of pUL10) plays roles in the localization, modification, and expression of pUL10.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Qun Gao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu City, Sichuan, China
| |
Collapse
|
3
|
Li C, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B. The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Front Microbiol 2021; 12:631523. [PMID: 33679658 PMCID: PMC7933518 DOI: 10.3389/fmicb.2021.631523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Tang H, Mori Y. Glycoproteins of HHV-6A and HHV-6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:145-165. [PMID: 29896667 DOI: 10.1007/978-981-10-7230-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses' entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.
Collapse
Affiliation(s)
- Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Striebinger H, Funk C, Raschbichler V, Bailer SM. Subcellular Trafficking and Functional Relationship of the HSV-1 Glycoproteins N and M. Viruses 2016; 8:83. [PMID: 26999189 PMCID: PMC4810273 DOI: 10.3390/v8030083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. gN is a resident of the endoplasmic reticulum that in the presence of gM is translocated to the trans Golgi network. gM and gN are covalently linked by a single disulphide bond formed between cysteine 46 of gN and cysteine 59 of gM. Exit of gN from the endoplasmic reticulum requires the N-terminal core of gM composed of eight transmembrane domains but is independent of the C-terminal extension of gM. Co-transport of gN and gM to the trans Golgi network also occurs upon replacement of conserved cysteines in gM and gN, suggesting that their physical interaction is mediated by covalent and non-covalent forces. Deletion of gN/UL49.5 using bacterial artificial chromosome (BAC) mutagenesis generated mutant viruses with wild-type growth behaviour, while full deletion of gM/UL10 resulted in an attenuated phenotype. Deletion of gN/UL49.5 in conjunction with various gM/UL10 mutants reduced average plaque sizes to the same extent as either single gM/UL10 mutant, indicating that gN is nonessential for the function performed by gM. We propose that gN functions in gM-dependent as well as gM-independent processes during which it is complemented by other viral factors.
Collapse
Affiliation(s)
- Hannah Striebinger
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University München, Munich 80336, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70569, Germany.
| | - Verena Raschbichler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University München, Munich 80336, Germany.
| | - Susanne M Bailer
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University München, Munich 80336, Germany.
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70569, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany.
| |
Collapse
|
6
|
Striebinger H, Zhang J, Ott M, Funk C, Radtke K, Duron J, Ruzsics Z, Haas J, Lippé R, Bailer SM. Subcellular trafficking and functional importance of herpes simplex virus type 1 glycoprotein M domains. J Gen Virol 2015; 96:3313-3325. [DOI: 10.1099/jgv.0.000262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hannah Striebinger
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| | - Jie Zhang
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Melanie Ott
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Kerstin Radtke
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Johanne Duron
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Zsolt Ruzsics
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
- University Medical Centre Freiburg, Department for Medical Microbiology and Hygiene, Institute of Virology, Hermann-Herder-Straße 11, Freiburg, Germany
| | - Jürgen Haas
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
- Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Roger Lippé
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| |
Collapse
|
7
|
Identification of non-essential loci within the Meleagrid herpesvirus 1 genome. Virol J 2015; 12:130. [PMID: 26307059 PMCID: PMC4550065 DOI: 10.1186/s12985-015-0362-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. Methods Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. Results Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. Conclusions The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome. Electronic supplementary material The online version of this article (doi10.1186/s12985-015-0362-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Us9-Independent Axonal Sorting and Transport of the Pseudorabies Virus Glycoprotein gM. J Virol 2015; 89:6511-4. [PMID: 25833054 DOI: 10.1128/jvi.00625-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
Axonal sorting and transport of fully assembled pseudorabies virus (PRV) virions is dependent on the viral protein Us9. Here we identify a Us9-independent mechanism for axonal localization of viral glycoprotein M (gM). We detected gM-mCherry assemblies transporting in the anterograde direction in axons. Furthermore, unlabeled gM, but not glycoprotein B, was detected by Western blotting in isolated axons during Us9-null PRV infection. These results suggest that gM differs from other viral proteins regarding axonal transport properties.
Collapse
|
9
|
Herpes simplex virus 1 gN partners with gM to modulate the viral fusion machinery. J Virol 2014; 89:2313-23. [PMID: 25505065 DOI: 10.1128/jvi.03041-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus, where they incorporate the viral genome. They then transit through the two nuclear membranes and are wrapped by a host-derived envelope. In the process, several HSV-1 proteins are targeted to the nuclear membranes, but their roles in viral nuclear egress are unclear. Among them, glycoprotein M (gM), a known modulator of virus-induced membrane fusion, is distributed on both the inner and outer nuclear membranes at the early stages of the infection, when no other viral glycoproteins are yet present there. Later on, it is found on perinuclear virions and ultimately redirected to the trans-Golgi network (TGN), where it cycles with the cell surface. In contrast, transfected gM is found only at the TGN and cell surface, hinting at an interaction with other viral proteins. Interestingly, many herpesvirus gM analogs interact with their gN counterparts, which typically alters their intracellular localization. To better understand how HSV-1 gM localization is regulated, we evaluated its ability to bind gN and discovered it does so in both transfected and infected cells, an interaction strongly weakened by the deletion of the gM amino terminus. Functionally, while gN had no impact on gM localization, gM redirected gN from the endoplasmic reticulum (ER) to the TGN. Most interestingly, gN overexpression stimulated the formation of syncytia in the context of an infection by a nonsyncytial strain, indicating that gM and gN not only physically but also functionally interact and that gN modulates gM's activity on membrane fusion. IMPORTANCE HSV-1 gM is an important modulator of virally induced cell-cell fusion and viral entry, a process that is likely finely modulated in time and space. Until now, little was known of the proteins that regulate gM's activity. In parallel, gM is found in various intracellular locations at different moments, ranging from nuclear membranes, perinuclear virions, the TGN, cell surface, and mature extracellular virions. In transfected cells, however, it is found only on the TGN and cell surface, hinting that its localization is modulated by other viral proteins. The present study identifies HSV-1 gN as a binding partner for gM, in agreement with their analogs in other herpesviruses, but most excitingly shows that gN modulates gM's impact on HSV-1-induced membrane fusion. These findings open up new research avenues on the viral fusion machinery.
Collapse
|
10
|
Kawabata A, Serada S, Naka T, Mori Y. Human herpesvirus 6 gM/gN complex interacts with v-SNARE in infected cells. J Gen Virol 2014; 95:2769-2777. [PMID: 25209806 DOI: 10.1099/vir.0.069336-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) glycoprotein M (gM) is an envelope glycoprotein that associates with glycoprotein N (gN), forming the gM/gN protein complex, in a similar manner to the other herpesviruses. Liquid chromatography-MS/MS analysis showed that the HHV-6 gM/gN complex interacts with the v-SNARE protein, vesicle-associated membrane protein 3 (VAMP3). VAMP3 colocalized with the gM/gN complex at the trans-Golgi network and other compartments, possibly the late endosome in HHV-6-infected cells, and its expression gradually increased during the late phase of virus infection. Finally, VAMP3 was incorporated into mature virions and may be transported with the gM/gN complex.
Collapse
Affiliation(s)
- Akiko Kawabata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
11
|
Jarosinski KW, Osterrieder N. Marek's disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission. J Virol 2012; 86:7896-906. [PMID: 22593168 PMCID: PMC3421677 DOI: 10.1128/jvi.00908-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 02/03/2023] Open
Abstract
Marek's disease (MD) is a devastating oncogenic viral disease of chickens caused by Gallid herpesvirus 2, or MD virus (MDV). MDV glycoprotein C (gC) is encoded by the alphaherpesvirus UL44 homolog and is essential for the horizontal transmission of MDV (K. W. Jarosinski and N. Osterrieder, J. Virol. 84:7911-7916, 2010). Alphaherpesvirus gC proteins are type 1 membrane proteins and are generally anchored in cellular membranes and the virion envelope by a short transmembrane domain. However, the majority of MDV gC is secreted in vitro, although secondary-structure analyses predict a carboxy-terminal transmembrane domain. In this report, two alternative mRNA splice variants were identified by reverse transcription (RT)-PCR analyses, and the encoded proteins were predicted to specify premature stop codons that would lead to gC proteins that lack the transmembrane domain. Based on the size of the intron removed for each UL44 (gC) transcript, they were termed gC104 and gC145. Recombinant MDV viruses were generated in which only full-length viral gC (vgCfull), gC104 (vgC104), or gC145 (vgC145) was expressed. Predictably, gCfull was expressed predominantly as a membrane-associated protein, while both gC104 and gC145 were secreted, suggesting that the dominant gC variants expressed in vitro are the spliced variants. In experimentally infected chickens, the expression of each of the gC variants individually did not alter replication or disease induction. However, horizontal transmission was reduced compared to that of wild-type or revertant viruses when the expression of only a single gC was allowed, indicating that all three forms of gC are required for the efficient transmission of MDV in chickens.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
12
|
Kawabata A, Jasirwan C, Yamanishi K, Mori Y. Human herpesvirus 6 glycoprotein M is essential for virus growth and requires glycoprotein N for its maturation. Virology 2012; 429:21-8. [PMID: 22537811 DOI: 10.1016/j.virol.2012.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022]
Abstract
Human herpesvirus 6 (HHV-6) is a T-lymphotropic virus belonging to the betaherpesvirus family. Several HHV-6-encoded glycoproteins are required for cell entry and virion maturation. Glycoprotein M (gM) is conserved among all herpesviruses, and therefore thought to have important functions; however, the HHV-6 g has not been characterized. Here, we examined the expression of HHV-6 g, and examined its function in viral replication, using a mutant and revertant gM. HHV-6 g was expressed on virions as a glycoprotein modified with complex N-linked oligosaccharides. As in other herpesviruses, HHV-6 g formed a complex with glycoprotein N (gN), and was transported from the endoplasmic reticulum to the trans-Golgi network only when part of this complex. Finally, a gM mutant virus in which the gM start codon was destroyed was not reconstituted, although its revertant was, indicating that HHV-6 g is essential for virus production, unlike the gM of alphaherpesviruses.
Collapse
Affiliation(s)
- Akiko Kawabata
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | | | | | | |
Collapse
|
13
|
Ren Y, Bell S, Zenner HL, Lau SYK, Crump CM. Glycoprotein M is important for the efficient incorporation of glycoprotein H–L into herpes simplex virus type 1 particles. J Gen Virol 2012; 93:319-329. [DOI: 10.1099/vir.0.035444-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 glycoprotein M (gM) is a type III membrane protein conserved throughout the family Herpesviridae. However, despite this conservation, gM is classed as a non-essential protein in most alphaherpesviruses. Previous data have suggested that gM is involved in secondary envelopment, although how gM functions in this process is unknown. Using transfection-based assays, we have previously shown that gM is able to mediate the internalization and subcellular targeting of other viral envelope proteins, suggesting a possible role for gM in localizing herpesvirus envelope proteins to sites of secondary envelopment. To investigate the role of gM in infected cells, we have now analysed viral envelope protein localization and virion incorporation in cells infected with a gM-deletion virus or its revertant. In the absence of gM expression, we observed a substantial inhibition of glycoprotein H–L (gH–L) internalization from the surface of infected cells. Although deletion of gM does not affect expression of gH and gL, virions assembled in the absence of gM demonstrated significantly reduced levels of gH–L, correlating with defects of the gM-negative virus in entry and cell-to-cell spread. These data suggest an important role of gM in mediating the specific internalization and efficient targeting of gH–L to sites of secondary envelopment in infected cells.
Collapse
Affiliation(s)
- Yudan Ren
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Susanne Bell
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Helen L. Zenner
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - S.-Y. Kathy Lau
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M. Crump
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
14
|
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Collapse
|
15
|
Abstract
Glycoprotein M (gM) is conserved among herpesviruses. Important features are its 6-8 transmembrane domains without a large extracellular domain, localization to the virion envelope, complex formation with another envelope glycoprotein, glycoprotein N (gN), and role in virion assembly and egress. In varicella-zoster virus (VZV), the gM homolog is encoded by ORF50. VZV gM is predicted to be an eight-transmembrane envelope glycoprotein with a complex N-linked oligosaccharide. It mainly localizes to the trans-Golgi network, where final virion envelopment occurs. Studies in which VZV gM or its partner gN were disrupted suggest that the gM/gN complex plays an important role in cell-to-cell spread. Here, we summarize the biological features of VZV gM, including our recent findings on its characterization and function.
Collapse
Affiliation(s)
- Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.
| | | |
Collapse
|
16
|
Tóth JS, Tombácz D, Takács IF, Boldogkoi Z. The effects of viral load on pseudorabies virus gene expression. BMC Microbiol 2010; 10:311. [PMID: 21134263 PMCID: PMC3016322 DOI: 10.1186/1471-2180-10-311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/06/2010] [Indexed: 05/08/2023] Open
Abstract
Background Herpesvirus genes are classified into distinct kinetic groups on the basis of their expression dynamics during lytic growth of the virus in cultured cells at a high, typically 10 plaque-forming units/cell multiplicity of infection (MOI). It has been shown that both the host response and the success of a pathogen are dependent on the quantity of particles infecting an organism. This work is a continuation of an earlier study [1], in which we characterized the overall expression of PRV genes following low-MOI infection. In the present study, we have addressed the question of whether viral gene expressions are dependent on the multiplicity of infection by comparing gene expressions under low and high-MOI conditions. Results In the present study, using a real-time RT-PCR assay, we address the question of whether the expression properties of the pseudorabies virus (PRV) genes are dependent on the number of virion particles infecting a single cell in a culture. Our analysis revealed a significant dependence of the gene expression on the MOI in most of these genes. Specifically, we found that most of the examined viral genes were expressed at a lower level at a low MOI (0.1) than at a high MOI (10) experiment in the early stage of infection; however, this trend reversed by six hour post-infection in more than half of the genes. Furthermore, in the high-MOI infection, several PRV genes substantially declined within the 4 to 6-h infection period, which was not the case in the low-MOI infection. In the low-MOI infection, the level of antisense transcript (AST), transcribed from the antiparallel DNA strand of the immediate-early 180 (ie180) gene, was comparable to that of ie180 mRNA, while in the high-MOI experiment (despite the 10 times higher copy number of the viral genome in the infected cells) the amount of AST dropped by more than two log values at the early phase of infection. Furthermore, our analysis suggests that adjacent PRV genes are under a common regulation. This is the first report on the effect of the multiplicity of infection on genome-wide gene expression of large DNA viruses, including herpesviruses. Conclusion Our results show a strong dependence of the global expression of PRV genes on the MOI. Furthermore, our data indicate a strong interrelation between the expressions of ie180 mRNA and AST, which determines the expression properties of the herpesvirus genome and possibly the replication strategy (lytic or latent infection) of the virus in certain cell types.
Collapse
Affiliation(s)
- Judit S Tóth
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Hungary
| | | | | | | |
Collapse
|
17
|
Characterization of the varicella-zoster virus ORF50 gene, which encodes glycoprotein M. J Virol 2010; 84:3488-502. [PMID: 20106918 DOI: 10.1128/jvi.01838-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ORF50 gene of the varicella-zoster virus (VZV) encodes glycoprotein M (gM), which is conserved among all herpesviruses and is important for the cell-to-cell spread of VZV. However, few analyses of ORF50 gene expression or its posttranscriptional and translational modifications have been published. Here we found that in VZV-infected cells, ORF50 encoded four transcripts: a full-size transcript, which was translated into the gM, and three alternatively spliced transcripts, which were not translated. Using a splicing-negative mutant virus, we showed that the alternative transcripts were nonessential for viral growth in cell culture. In addition, we found that two amino acid mutations of gM, V42P and G301M, blocked gM's maturation and transport to the trans-Golgi network, which is generally recognized as the viral assembly complex. We also found that the mutations disrupted gM's interaction with glycoprotein N (gN), revealing their interaction through a bond that is otherwise unreported for herpesviruses. Using this gM maturation-negative virus, we found that immature gM and gN were incorporated into intracellularly isolated virus particles and that mature gM was required for efficient viral growth via cell-to-cell spread but not for virion morphogenesis. The virus particles were more abundant at the abnormally enlarged perinuclear cisternae than those of the parental virus, but they were also found at the cell surface and in the culture medium. Additionally, in the gM maturation-negative mutant virus-infected melanoma cells, typical syncytium formation was rarely seen, again indicating that mature gM functions in cell-to-cell spread via enhancement of syncytium formation.
Collapse
|
18
|
Early, active, and specific localization of herpes simplex virus type 1 gM to nuclear membranes. J Virol 2009; 83:12984-97. [PMID: 19812164 DOI: 10.1128/jvi.01180-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thirteen different glycoproteins are incorporated into mature herpes simplex virus type 1 (HSV-1) virions. Five of them play important roles during entry, while others intervene during egress of the virus. Although HSV-1 gM is not essential in cell culture, its deletion reduces viral yields and promotes syncytium formation. Furthermore, gM is conserved among herpesviruses, is essential for several of them, and can redirect the gD and gH/gL viral glycoproteins from the cell surface to the trans-Golgi network, where gM presumably modulates final capsid envelopment. Late in infection, gM reaches the nuclear envelope and decorates perinuclear virions. This process seemingly requires U(L)31 and U(L)34 and occurs when several markers of the trans-Golgi network have relocalized to the nucleus. However, the precise mechanism of gM nuclear targeting is unclear. We now report that gM is quickly and specifically targeted to nuclear membranes in a virus-dependent manner. This occurs prior to the HSV-1-induced reorganization of the trans-Golgi network and before gM enters the secretory pathway. The presence of a high-mannose glycosylation pattern on gM further corroborated these findings. While gM was targeted to the inner nuclear membrane early in infection, its partners gD, gH, gN, VP22, U(L)31, and U(L)34 did not colocalize with gM. These data suggest that nuclear gM fulfills an early nuclear function that is independent of its known interaction partners and its function in viral egress.
Collapse
|
19
|
May JS, Smith CM, Gill MB, Stevenson PG. An essential role for the proximal but not the distal cytoplasmic tail of glycoprotein M in murid herpesvirus 4 infection. PLoS One 2008; 3:e2131. [PMID: 18461133 PMCID: PMC2329910 DOI: 10.1371/journal.pone.0002131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytoplasmic tail to MuHV-4 lytic replication by making recombinant viruses with varying C-terminal deletions. Removing an acidic cluster and a distal YXXΦ motif altered the capsid distribution somewhat in infected cells but had little effect on virus replication, either in vitro or in vivo. In contrast, removing a proximal YXXΦ motif as well completely prevented productive replication. gM was still expressed, but unlike its longer forms showed only limited colocalization with co-transfected gN, and in the context of whole virus appeared to support gN expression less well. We conclude that some elements of the gM cytoplasmic tail are dispensible for MuHV-4 replication, but the tail as a whole is not.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
20
|
Varicella-zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. J Virol 2007; 82:795-804. [PMID: 17977964 DOI: 10.1128/jvi.01722-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth.
Collapse
|
21
|
Klopfleisch R, Klupp BG, Fuchs W, Kopp M, Teifke JP, Mettenleiter TC. Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice. J Virol 2007; 80:5571-6. [PMID: 16699038 PMCID: PMC1472135 DOI: 10.1128/jvi.02589-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurotropism is a distinctive feature of members of the Alphaherpesvirinae. However, its molecular basis remains enigmatic. In the past, research has been focused mainly on the role of viral envelope proteins in modulating herpesvirus neuroinvasion and neurovirulence (T. C. Mettenleiter, Virus Res. 92:192-206, 2003). To further analyze the molecular requirements for neuroinvasion of the alphaherpesvirus pseudorabies virus (PrV), adult mice were infected intranasally with a set of single- or multiple-deletion mutants lacking the UL3, UL4, UL7, UL11, UL13, UL16, UL17, UL21, UL31, UL34, UL37, UL41, UL43, UL46, UL47, UL48, UL51, US3, US9, glycoprotein E (gE), gM, UL11/US9, UL11/UL16, UL16/UL21, UL11/UL16/UL21, UL11/gE, UL11/gM, UL43/gK, UL43/gM, or UL43/gK/gM genes. Neurovirulence was evaluated by measuring mean survival times compared to that after wild-type virus infection. Furthermore, by immunohistochemical detection of infected neurons, the kinetics of viral spread in the murine central nervous system was investigated.
Collapse
Affiliation(s)
- Robert Klopfleisch
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Mach M, Osinski K, Kropff B, Schloetzer-Schrehardt U, Krzyzaniak M, Britt W. The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. J Virol 2007; 81:5212-24. [PMID: 17229708 PMCID: PMC1900226 DOI: 10.1128/jvi.01463-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.
Collapse
Affiliation(s)
- Michael Mach
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Baines JD, Wills E, Jacob RJ, Pennington J, Roizman B. Glycoprotein M of herpes simplex virus 1 is incorporated into virions during budding at the inner nuclear membrane. J Virol 2006; 81:800-12. [PMID: 17079321 PMCID: PMC1797462 DOI: 10.1128/jvi.01756-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is widely accepted that nucleocapsids of herpesviruses bud through the inner nuclear membrane (INM), but few studies have been undertaken to characterize the composition of these nascent virions. Such knowledge would shed light on the budding reaction at the INM and subsequent steps in the egress pathway. The present study focuses on glycoprotein M (gM), a type III integral membrane protein of herpes simplex virus 1 (HSV-1) that likely contains eight transmembrane domains. The results indicated that gM localized primarily at the perinuclear region, with especially bright staining near the nuclear membrane (NM). Immunogold electron microscopic analysis indicated that, like gB and gD (M. R. Torrisi et al., J. Virol. 66:554-561, 1992), gM localized within both leaflets of the NM, the envelopes of nascent virions that accumulate in the perinuclear space, and the envelopes of cytoplasmic and mature extracellular virus particles. Indirect immunofluorescence studies revealed that gM colocalized almost completely with a marker of the Golgi apparatus and partially with a marker of the trans-Golgi network (TGN), whether or not these markers were displaced to the perinuclear region during infection. gM was also located in punctate extensions and invaginations of the NM induced by the absence of a viral kinase encoded by HSV-1 U(S)3 and within virions located in these extensions. Our findings therefore support the proposition that gM, like gB and gD, becomes incorporated into the virion envelope upon budding through the INM. The localization of viral glycoproteins and Golgi and TGN markers to a perinuclear region may represent a mechanism to facilitate the production of infectious nascent virions, thereby increasing the amount of infectivity released upon cellular lysis.
Collapse
Affiliation(s)
- Joel D Baines
- C5169 Veterinary Education Center, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
24
|
Fuchs W, Mettenleiter TC. The nonessential UL49.5 gene of infectious laryngotracheitis virus encodes an O-glycosylated protein which forms a complex with the non-glycosylated UL10 gene product. Virus Res 2005; 112:108-14. [PMID: 16022905 DOI: 10.1016/j.virusres.2005.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/07/2005] [Indexed: 12/25/2022]
Abstract
The UL10 and UL49.5 genes of avian infectious laryngotracheitis virus (ILTV) encode putative envelope proteins which are conserved in Alpha, Beta, and Gammaherpesvirinae. Many of the corresponding gene products have been shown to be glycosylated and to form heterodimeric protein complexes with each other. Unlike the homologous gM proteins of other herpesviruses, the UL10 protein of ILTV is not detectably glycosylated [Fuchs, W., Mettenleiter, T.C., 1999. DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein. J. Gen. Virol. 80, 2173-2182]. Using a monospecific antiserum, we now identified the UL49.5 gene product of ILTV as an O-glycosylated membrane protein (gN). Correct processing of gN was shown to depend on the presence of the UL10 protein. Both gN and UL10 could be co-immunoprecipitated from ILTV-infected cell lysates with antisera against either of the proteins, indicating stable protein-protein interactions. For functional analysis parts of the UL10 and UL49.5 open reading frames were deleted from the ILTV genome, and replaced by a beta-galactosidase expression cassette. The resulting virus mutants were isolated and propagated in non-complementing chicken cells, which demonstrated that the UL10 and UL49.5 genes are not essential for in vitro replication of ILTV.
Collapse
Affiliation(s)
- Walter Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, 17493 Greifswald - Insel Riems, Germany.
| | | |
Collapse
|
25
|
Tischer BK, Schumacher D, Chabanne-Vautherot D, Zelnik V, Vautherot JF, Osterrieder N. High-level expression of Marek's disease virus glycoprotein C is detrimental to virus growth in vitro. J Virol 2005; 79:5889-99. [PMID: 15857974 PMCID: PMC1091721 DOI: 10.1128/jvi.79.10.5889-5899.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression levels of Marek's disease virus (MDV) glycoprotein C (gC) are significantly reduced after serial virus passage in cell culture. Reduced gC expression coincides with enhanced MDV growth in vitro and attenuation. To analyze this phenomenon in detail, a full-length infectious MDV clone was modified by Red-based and shuttle mutagenesis in Escherichia coli. Besides a gC-negative deletion mutant harboring a kanamycin resistance gene, a markerless mutant with the U(L)44 gene deleted was constructed. On the basis of this deletion mutant, the original or a modified U(L)44 gene with a mutated start codon (AUG-->ACG) was reinserted into the authentic locus. Similarly, mutants expressing authentic gC or the start codon mutation under the control of a strong constitutive promoter were generated. In vitro studies demonstrated that gC deletion mutants induced twofold-larger plaques than the parental virus did, whereas constitutive overexpression of the glycoprotein resulted in a more than twofold reduction in plaque size. In addition, plaque sizes of the gC deletion mutant were reduced when virus was grown using supernatants from cells infected with parental virus, but supernatants obtained from cells infected with the gC deletion mutant had no measurable effect on plaque size. The results indicated that (i) expression of MDV gC, albeit at low levels in a highly passaged virus, had a significant negative impact on the cell-to-cell spread capabilities of the virus, which was alleviated in its absence and exacerbated by its overexpression, and that (ii) this activity was mediated by the secreted form of MDV gC.
Collapse
Affiliation(s)
- B Karsten Tischer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
26
|
May JS, Colaco S, Stevenson PG. Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 2005; 79:3459-67. [PMID: 15731240 PMCID: PMC1075704 DOI: 10.1128/jvi.79.6.3459-3467.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All herpesviruses encode a homolog of glycoprotein M (gM), which appears to function in virion morphogenesis. Despite its conservation, gM is inessential for the lytic replication of alphaherpesviruses. In order to address the importance of gM in gammaherpesviruses, we disrupted it in the murine gammaherpesvirus 68 (MHV-68). The mutant virus completely failed to propagate in normally permissive fibroblasts. The defective genome was rescued by either homologous recombination to restore the wild-type gM in situ or the insertion of an ectopic, intergenic expression cassette encoding gM into the viral genome. Thus, gM was essential for the lytic replication of MHV-68.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | |
Collapse
|
27
|
Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM. Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 2004; 85:3517-3527. [PMID: 15557225 DOI: 10.1099/vir.0.80361-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herpesvirus glycoprotein M (gM) is a multiple-spanning integral membrane protein found within the envelope of mature herpesviruses and is conserved throughout the Herpesviridae. gM is defined as a non-essential glycoprotein in alphaherpesviruses and has been proposed as playing a role in controlling final envelopment in a late secretory-pathway compartment such as the trans-Golgi network (TGN). Additionally, gM proteins have been shown to inhibit cell-cell fusion in transfection-based assays by an as yet unclear mechanism. Here, the effect of pseudorabies virus (PRV) gM and the herpes simplex virus type 1 (HSV-1) gM/UL49A complex on the fusion events caused by the HSV-1 glycoproteins gB, gD, gH and gL was investigated. Fusion of cells expressing HSV-1 gB, gD, gH and gL was efficiently inhibited by both PRV gM and HSV-1 gM/UL49A. Furthermore, expression of PRV gM or HSV-1 gM/UL49A, which are themselves localized to the TGN, caused both gD and gH/L to be relocalized from the plasma membrane to a juxtanuclear compartment, suggesting that fusion inhibition is caused by the removal of 'fusion' proteins from the cell surface. The ability of gM to cause the relocalization of plasma membrane proteins was not restricted to HSV-1 glycoproteins, as other viral and non-viral proteins were also affected. These data suggest that herpesvirus gM (gM/N) can alter the membrane trafficking itineraries of a broad range of proteins and this may have multiple functions.
Collapse
Affiliation(s)
- Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Birgitte Bruun
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Susanne Bell
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Lisa E Pomeranz
- Princeton University, 301 Schultz Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tony Minson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Helena M Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
28
|
Moorman NJ, Lin CY, Speck SH. Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 2004; 78:10282-90. [PMID: 15367594 PMCID: PMC516406 DOI: 10.1128/jvi.78.19.10282-10290.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current methods for determining the role of a given gene product in the gammaherpesvirus 68 (gammaHV68) life cycle require generation of a specific mutation by either homologous recombination in mammalian cells or bacterial artificial chromosome-mediated mutagenesis in Escherichia coli. The mutant virus is then compared to wild-type virus, and the role of the gene in the viral life cycle is deduced from its phenotype. This process is both time-consuming and labor intensive. Here we present the use of random, transposon-mediated signature-tagged mutagenesis for the identification of candidate viral genes involved in virus replication. Pools of viral mutants, each containing a random insertion of a transposon, were generated with a transposon donor library in which each transposon contains a unique sequence identifier. These pools were transfected into mammalian cells, and the ability of each mutant to replicate was assessed by comparing the presence of virus in the output pool to that present in the input pool of viral genomes. With this approach we could rapidly screen up to 96 individual mutants simultaneously. The location of the transposon insertion was determined by sequencing individual clones with a common primer specific for the transposon end. Here we present the characterization of 53 distinct viral mutants that correspond to insertions in 29 open reading frames within the gammaHV68 genome. To confirm the results of the signature-tagged mutagenesis screen, we quantitated the ability of each mutant to replicate compared to wild-type gammaHV68. From these analyses we identified 16 gammaHV68 open reading frames that, when disrupted by transposon insertions, score as essential for virus replication, and six other open reading frames whose disruption led to significant attenuation of virus replication. In addition, transposon insertion in five other gammaHV68 open reading frames did not affect virus replication. Notably, all but one of the candidate essential replication genes identified in this screen have been shown to be essential for the replication of at least one other herpesvirus.
Collapse
Affiliation(s)
- Nathaniel J Moorman
- Center for Emerging Infectious Diseases, Division of Microbiology & Immunology, Yerkes National Primate Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
29
|
Fuchs W, Klupp BG, Granzow H, Hengartner C, Brack A, Mundt A, Enquist LW, Mettenleiter TC. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49. J Virol 2002; 76:8208-17. [PMID: 12134026 PMCID: PMC155127 DOI: 10.1128/jvi.76.16.8208-8217.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chang YY, Wong ML, Lin HW, Chang TJ. Cloning and regulation of the promoter of pseudorabies virus (TNL strain) glycoprotein E gene. Virus Genes 2002; 24:235-41. [PMID: 12086144 DOI: 10.1023/a:1015376431948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequence upstream to the glycoprotein E (gE) gene of pseudorabies virus (PrV, TNL strain) was cloned from the genomic virus DNA by polymerase chain reaction (PCR) and its DNA sequences were determined. The DNA segment, which was supposed to contain the gE promoter, was subcloned into a chloramphenicol acetyltransferase (CAT) reporter gene and the resulting plasmid was named pgEp-B-CAT. To examine the promoter function of this upstream sequence of gE gene, we transfected pgEp-B-CAT DNA into L-M cells and the promoter activity was analyzed by CAT assay. Results showed that our DNA fragment could exhibit promoter activity. Furthermore, we transfected L-M cells with pgEp-B-CAT for 48 h, then superinfected cells with pseudorabies virus, and performed CAT assay. It was found that PrV superinfection could slightly enhance the activity of gE promoter, suggesting that factors produced during viral infection could stimulate the promoter. To explore the possible mechanism of regulation at transcriptional level, the pgEp-B-CAT plasmid were cotransfected with eukaryotic vectors expressing viral regulatory proteins IE or EP0, and results indicated that the gE promoter was activated by IE protein whereas it was inhibited by EP0 protein. Moreover, the effect of exogenous IE or EP0 on the protein level of gE in PrV-infected cells was examined; conclusion similar to that of CAT assay were obtained.
Collapse
Affiliation(s)
- Yuan-Yen Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
31
|
Nozawa N, Daikoku T, Yamauchi Y, Takakuwa H, Goshima F, Yoshikawa T, Nishiyama Y. Identification and characterization of the UL7 gene product of herpes simplex virus type 2. Virus Genes 2002; 24:257-66. [PMID: 12086147 DOI: 10.1023/a:1015332716927] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have raised a rabbit polyclonal antiserum against a recombinant 6x His-tagged herpes simplex virus type 2 (HSV-2) UL7 fusion protein expressed in Escherichia coli. The antiserum specifically reacted with a 33 kDa protein in HSV-1 and HSV-2-infected cell lysates, and was used to characterize the UL7 gene product of HSV-2. The UL7 protein was produced in the late phase of infection, and its synthesis was highly inhibited, but not abolished by the addition of acyclovir (ACV). The UL7 protein associated with extracellular virions and also with all types of capsids, including A, B, and C capsids, though the association seemed to be weak. Indirect immunofluorescence studies revealed that at 9 h postinfection, UL7 specific fluorescence was detected in part or all of the nucleus, and the specific fluorescence colocalized with the scaffold protein ICP35. However, at later times postinfection, the UL7 protein was mainly detected as a mass in a juxtanuclear cytoplasmic region. In addition, transmission immunoelectron microscopy (TIEM) confirmed the association of the UL7 protein with intracellular capsids and virions in HSV-2-infected cells. The HSV-2 UL7 protein contained a domain highly conserved in all herpesviruses, part of which exhibited a homology with domains in the fission yeast Schizosaccharomyces pombe DNA topoisomerase III. We discuss the possibility that the UL7 protein may play a supplementary role in the viral DNA cleavage/packaging process.
Collapse
Affiliation(s)
- Naoki Nozawa
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Tischer BK, Schumacher D, Messerle M, Wagner M, Osterrieder N. The products of the UL10 (gM) and the UL49.5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol 2002; 83:997-1003. [PMID: 11961253 DOI: 10.1099/0022-1317-83-5-997] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of the products of the UL10 and the UL49.5 homologous genes of Marek's disease virus serotype 1 (MDV-1) in virus replication was investigated. Deletion of either open reading frame in an infectious bacterial artificial chromosome clone (BAC20) of MDV-1 resulted in progeny viruses that were unable to spread from cell to cell. After transfection of UL10- or UL49.5-negative BAC20 DNA into chicken or quail cells, only single infected cells were observed by indirect immunofluorescence analysis. In contrast, plaque formation was restored when mutant BAC DNAs were co-transfected with the corresponding expression plasmid encoding either the UL10-encoded gM or the UL49.5 gene product. These data demonstrate that gM and its putative complex partner, the UL49.5 homologous protein, are essential for MDV-1 growth in cultured cells. Thus, MDV-1 represents the first example of a member of the family Herpesviridae for which the highly conserved membrane proteins are indispensable for cell-to-cell spread.
Collapse
Affiliation(s)
- B Karsten Tischer
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany1
| | - Daniel Schumacher
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany1
| | - Martin Messerle
- Max von Pettenkofer-Institut, Genzentrum, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany2
| | - Markus Wagner
- Max von Pettenkofer-Institut, Genzentrum, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany2
| | - Nikolaus Osterrieder
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5a, D-17498 Insel Riems, Germany1
| |
Collapse
|
33
|
Rudolph J, Seyboldt C, Granzow H, Osterrieder N. The gene 10 (UL49.5) product of equine herpesvirus 1 is necessary and sufficient for functional processing of glycoprotein M. J Virol 2002; 76:2952-63. [PMID: 11861861 PMCID: PMC135984 DOI: 10.1128/jvi.76.6.2952-2963.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional cooperation of equine herpesvirus 1 (EHV-1) glycoprotein M (gM) and the gene 10 (UL49.5) product was analyzed. Transient-transfection experiments using gM and UL49.5 expression plasmids as well as RK13 cell lines constitutively expressing UL49.5 (RK49.5) or gM (RKgM) demonstrated that the endo-beta-N-acetylglucosaminidase H (endo H)-resistant mature form of gM was detectable only after coexpression of the two proteins. Deletion of the EHV-1 UL49.5-homologous gene 10 in strain KyA resulted in a small-plaque phenotype and up to 190-fold-reduced virus titers. The growth defects of the mutant KyA Delta 49.5 virus, which were very similar to those of a gM-negative KyA virus, could be completely compensated for by growth of the mutant virus on RK49.5 cells or by repairing the deletion of gene 10 in the revertant virus KyA Delta 49.5R. Analysis of cells infected with the UL49.5-negative EHV-1 demonstrated that gM was not transported to the trans-Golgi network in the absence of the UL49.5 product. In contrast, gM was efficiently transported and processed to the endo H-resistant mature form in KyA Delta 49.5-infected RK49.5 cells. Furthermore, radioimmunoprecipitation experiments demonstrated that gM maturation was observed only if a 10,000-M(r) protein was coprecipitated with gM in KyA- or KyA Delta 49.5R-infected cells or virions. This protein was absent in cells infected with Ky Delta 49.5 or KyA Delta gM, suggesting that it was the EHV-1 UL49.5 product. Taken together, our results demonstrate that the expression of the EHV-1 UL49.5 product is necessary and sufficient for gM processing and that it is required for efficient virus replication.
Collapse
Affiliation(s)
- Jens Rudolph
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
34
|
Van de Walle GR, Favoreel HW, Nauwynck HJ, Van Oostveldt P, Pensaert MB. Involvement of cellular cytoskeleton components in antibody-induced internalization of viral glycoproteins in pseudorabies virus-infected monocytes. Virology 2001; 288:129-38. [PMID: 11543665 DOI: 10.1006/viro.2001.1064] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Addition of pseudorabies virus (PrV)-specific polyclonal immunoglobulins to PrV-infected monocytes induces internalization of plasma membrane-anchored viral glycoproteins and this may interfere with antibody-dependent cell lysis. We investigated the role of actin, microtubules, clathrin, and dynein, the major cellular components involved in physiological endocytosis during this virological internalization. Porcine monocytes were infected in vitro for 13 h and afterward treated with different concentrations of colchicine, cytochalasin D, latrunculin B, and amantadine-HCl, which inhibit polymerization of microtubules, actin/clathrin, actin, and clathrin, respectively. This resulted in a significant reduction of internalization compared to the nontreated control, indicating that these components are involved in the process. A double labeling was performed during the internalization process and a clear colocalization of actin, microtubules, clathrin, and dynein with the viral glycoproteins was observed at different stages during the internalization process. We conclude that these cellular components are used by PrV to generate the antibody-induced internalization of viral glycoproteins.
Collapse
Affiliation(s)
- G R Van de Walle
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, B-9000, Belgium
| | | | | | | | | |
Collapse
|
35
|
Nixdorf R, Klupp BG, Mettenleiter TC. Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J Gen Virol 2001; 82:215-226. [PMID: 11125174 DOI: 10.1099/0022-1317-82-1-215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic domains of several herpesviral glycoproteins encompass potential intracellular sorting signals. To analyse the function of the cytoplasmic domains of different pseudorabies virus (PrV) glycoproteins, hybrid proteins were constructed consisting of the extracellular and transmembrane domains of envelope glycoprotein D (gD) fused to the cytoplasmic tails of gB, gE or gM (designated gDB, gDE and gDM), all of which contain putative endocytosis motifs. gD is a type I membrane protein required for binding to and entry into target cells. Localization of hybrid proteins compared to full-length gB, gE and gM as well as carboxy-terminally truncated variants of gD was studied by confocal laser scanning microscopy. The function of gD hybrids was assayed by trans-complementation of a gD-negative PrV mutant. The carboxy-terminal domains of gB and gM directed a predominantly intracellular localization of gDB and gDM, while full-length gD and a tail-less gD mutant (gDc) were preferentially expressed on the cell surface. In contrast gDE, and a gDB lacking the putative gB endocytosis signal (gDB Delta 29), were predominantly located in the plasma membrane. Despite the different intracellular localization, all tested proteins were able to complement infectivity of a PrV gD(-) mutant. Cells which stably express full-length gD and plasma-membrane-associated gD hybrids exhibit a significant resistance to PrV infection, while cells expressing predominantly intracellularly located forms do not. This suggests that the assumed sequestration of receptors by gD, which is supposed to be responsible for the interference phenomenon, occurs at the cell surface.
Collapse
Affiliation(s)
- Ralf Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
36
|
Seyboldt C, Granzow H, Osterrieder N. Equine herpesvirus 1 (EHV-1) glycoprotein M: effect of deletions of transmembrane domains. Virology 2000; 278:477-89. [PMID: 11118370 DOI: 10.1006/viro.2000.0664] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine herpesvirus 1 (EHV-1) recombinants that carry either a deletion of glycoprotein M (gM) or express mutant forms of gM were constructed. The recombinants were derived from strain Kentucky A (KyA), which also lacks genes encoding gE and gI. Plaques on RK13 cells induced by the gM-negative KyA were reduced in size by 80%, but plaque sizes were restored to wild-type levels on gM-expressing cells. Electron microscopic studies revealed a massive defect in virus release after the deletion of gM in the gE- and gI-negative KyA, which was caused by a block in secondary envelopment of virions at Golgi vesicles. Recombinant KyA expressing mutant gM with deletions of predicted transmembrane domains was generated and characterized. It was shown that mutant gM was expressed and formed dimeric and oligomeric structures. However, subcellular localization of mutant gM proteins differed from that of wild-type gM. Mutant glycoproteins were not transported to the Golgi network and consequently were not incorporated into the envelope of extracellular virions. Also, a small plaque phenotype of mutant viruses that was indistinguishable from that of the gM-negative KyA was observed. Plaque sizes of mutant viruses were restored to wild-type levels by plating onto RK13 cells constitutively expressing full-length EHV-1 gM, indicating that mutant proteins did not exert a transdominant negative effect on wild-type gM.
Collapse
Affiliation(s)
- C Seyboldt
- Institutes of Molecular Biology, Insel Riems, D-17498, Germany
| | | | | |
Collapse
|
37
|
Mach M, Kropff B, Dal Monte P, Britt W. Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol 2000; 74:11881-92. [PMID: 11090188 PMCID: PMC112471 DOI: 10.1128/jvi.74.24.11881-11892.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoproteins of human cytomegalovirus (HCMV) virions are incompletely characterized. We have analyzed complex formation between glycoprotein M (gM or gpUL100) and a second glycoprotein. gM-homologous proteins are conserved throughout the herpesvirus family and represent type III membrane proteins containing multiple hydrophobic sequences. In extracellular HCMV particles, gM was found to be complexed through disulfide bonds to a second protein with an apparent molecular mass of 50 to 60 kDa. The 50- to 60-kDa protein was found to be derived from reading frame UL73 of HCMV strain AD169. UL73-homologous genes are also conserved within herpesviruses. When transiently expressed by itself, the UL73 gene product consisted of a protein of 18 kDa. However, in the presence of gM, the UL73 gene product was posttranslationally modified to the 50- to 60-kDa species. Thus, gM and the UL73 gene product, which represents the gN homolog of herpesviruses, form a disulfide-linked complex in HCMV virions. Transient expression of gM and gN followed by fluorescence imaging with monoclonal antibodies against either protein demonstrated that complex formation was required for transport of the proteins from the endoplasmic reticulum to the Golgi and trans-Golgi compartments. Finally, we tested the gM-gN complex for reactivity with sera from HCMV-seropositive donors. Whereas most sera failed to react with either gM or gN when expressed alone, 62% of sera were positive for the gM-gN complex. Because a murine monoclonal antibody reactive with gN in the gM-gN complex efficiently neutralizes infectious virus, the gM-gN complex may represent a major antigenic target of antiviral antibody responses.
Collapse
Affiliation(s)
- M Mach
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
38
|
Lake CM, Hutt-Fletcher LM. Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol 2000; 74:11162-72. [PMID: 11070013 PMCID: PMC113204 DOI: 10.1128/jvi.74.23.11162-11172.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) glycoproteins N and M (gN and gM) are encoded by the BLRF1 and BBRF3 genes. To examine the function of the EBV gN-gM complex, recombinant virus was constructed in which the BLRF1 gene was interrupted with a neomycin resistance cassette. Recombinant virus lacked not only gN but also detectable gM. A significant proportion of the recombinant virus capsids remained associated with condensed chromatin in the nucleus of virus-producing cells, and cytoplasmic vesicles containing enveloped virus were scarce. Virus egress was impaired, and sedimentation analysis revealed that the majority of the virus that was released lacked a complete envelope. The small amount of virus that could bind to cells was also impaired in infectivity at a step following fusion. These data are consistent with the hypothesis that the predicted 78-amino-acid cytoplasmic tail of gM, which is highly charged and rich in prolines, interacts with the virion tegument. It is proposed that this interaction is important both for association of capsids with cell membrane to assemble and release enveloped particles and for dissociation of the capsid from the membrane of the newly infected cell on its way to the cell nucleus. The phenotype of EBV lacking the gN-gM complex is more striking than that of most alphaherpesviruses lacking the same complex but resembles in many respects the phenotype of pseudorabies virus lacking glycoproteins gM, gE, and gI. Since EBV does not encode homologs for gE and gI, this suggests that functions that may have some redundancy in alphaherpesviruses have been concentrated in fewer proteins in EBV.
Collapse
Affiliation(s)
- C M Lake
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
39
|
Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 2000; 74:7720-9. [PMID: 10933677 PMCID: PMC112300 DOI: 10.1128/jvi.74.17.7720-7729.2000] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Here, we have subjected the HCMV BAC to random transposon (Tn) mutagenesis using a Tn1721-derived insertion sequence and have provided the conditions for excision of the BAC cassette. We report on a fast and efficient screening procedure for a Tn insertion library. Bacterial clones containing randomly mutated full-length HCMV genomes were transferred into 96-well microtiter plates. A PCR screening method based on two Tn primers and one primer specific for the desired genomic position of the Tn insertion was established. Within three consecutive rounds of PCR a Tn insertion of interest can be assigned to a specific bacterial clone. We applied this method to retrieve mutants of HCMV envelope glycoprotein genes. To determine the infectivities of the mutant HCMV genomes, the DNA of the identified BACs was transfected into permissive fibroblasts. In contrast to BACs with mutations in the genes coding for gB, gH, gL, and gM, which did not yield infectious virus, BACs with disruptions of open reading frame UL4 (gp48) or UL74 (gO) were viable, although gO-deficient viruses showed a severe growth deficit. Thus, gO (UL74), a component of the glycoprotein complex III, is dispensable for viral growth. We conclude that our approach of PCR screening for Tn insertions will greatly facilitate the functional analysis of herpesvirus genomes.
Collapse
Affiliation(s)
- U Hobom
- Lehrstuhl für Virologie, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Dietz P, Klupp BG, Fuchs W, Köllner B, Weiland E, Mettenleiter TC. Pseudorabies virus glycoprotein K requires the UL20 gene product for processing. J Virol 2000; 74:5083-90. [PMID: 10799582 PMCID: PMC110860 DOI: 10.1128/jvi.74.11.5083-5090.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein K (gK) of pseudorabies virus (PrV) has recently been identified as a virion component which is dispensable for viral entry but required for direct cell-to-cell spread. Electron microscopic data suggested a possible function of gK in virus egress by preventing immediate fusion of released virus particles with the plasma membrane (B. G. Klupp, J. Baumeister, P. Dietz, H. Granzow, and T. C. Mettenleiter, J. Virol. 72:1949-1958, 1998). For more detailed analysis, a PrV mutant with a deletion of the UL53 (gK) open reading frame (ORF) from codons 48 to 275 was constructed, and the protein was analyzed with two monoclonal antibodies directed against PrV gK. The salient findings of this report are as follows. (i) From the PrV UL53 ORF, a functional gK is translated only from the first in-frame methionine. From the second in-frame methionine, a nonfunctional product is expressed which is not incorporated into virions. (ii) When constitutively expressed in a stable cell line without other viral proteins, gK is only incompletely processed. After superinfection with gK-deletion mutants, proper processing is restored and mature gK is incorporated into virions. (iii) The UL20 gene product is specifically required for processing of gK. gK is not correctly processed in a UL20 deletion mutant of PrV, and superinfection of gK-expressing cells with PrV-UL20(-) does not restore processing. However, all other known structural viral glycoproteins appear to be processed normally in PrV-UL20(-)-infected cells. (iv) Coexpression of gK and UL20 restored gK processing at least partially. Thus, our data show that the UL20 gene product is required for proper processing of PrV gK.
Collapse
Affiliation(s)
- P Dietz
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Brack AR, Klupp BG, Granzow H, Tirabassi R, Enquist LW, Mettenleiter TC. Role of the cytoplasmic tail of pseudorabies virus glycoprotein E in virion formation. J Virol 2000; 74:4004-16. [PMID: 10756012 PMCID: PMC111914 DOI: 10.1128/jvi.74.9.4004-4016.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycoproteins M (gM), E (gE), and I (gI) of pseudorabies virus (PrV) are required for efficient formation of mature virions. The simultaneous absence of gM and the gE/gI complex results in severe deficiencies in virion morphogenesis and cell-to-cell spread, leading to drastically decreased virus titers and a small-plaque phenotype (A. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Serial passaging in noncomplementing cells of a virus mutant unable to express gM, gE, and gI resulted in a reversion of the small-plaque phenotype and restoration of infectious virus formation to the level of a gM(-) mutant. Genetic analyses showed that reversion of the phenotype was accompanied by a genomic rearrangement which led to the fusion of a portion of the gE gene encoding the cytoplasmic domain to the 3' end of the glycoprotein D gene, resulting in expression of a chimeric gD-gE protein. Since this indicated that the intracytoplasmic domain of gE was responsible for the observed phenotypic alterations, the UL10 (gM) gene was deleted in a PrV mutant, PrV-107, which specifically lacked the cytoplasmic tail of gE. Regarding one-step growth, plaque size, and virion formation as observed under the electron microscope, the mutant lacking gM and the gE cytoplasmic tail proved to be very similar to the gE/I/M triple mutant. Thus, our data indicate that it is the cytoplasmic tail of gE which is responsible for the observed phenotypic effects in conjunction with deletion of gM. We hypothesize that the cytoplasmic domain of gE specifically interacts with components of the capsid and/or tegument, leading to efficient secondary envelopment of intracytoplasmic capsids.
Collapse
Affiliation(s)
- A R Brack
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Masse MJ, Jöns A, Dijkstra JM, Mettenleiter TC, Flamand A. Glycoproteins gM and gN of pseudorabies virus are dispensable for viral penetration and propagation in the nervous systems of adult mice. J Virol 1999; 73:10503-7. [PMID: 10559368 PMCID: PMC113105 DOI: 10.1128/jvi.73.12.10503-10507.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycoproteins gM and gN are conserved throughout the herpesviruses but are dispensable for viral replication in cell cultures. To assay for a function of these proteins in infection of an animal, deletion mutants of pseudorabies virus lacking gM or gN and corresponding revertants were analyzed for the ability to penetrate and propagate in the nervous systems of adult mice after intranasal inoculation. We demonstrate that neither of the two glycoproteins is required for infection of the nervous systems of mice by pseudorabies virus.
Collapse
Affiliation(s)
- M J Masse
- Laboratoire de Génétique des Virus, CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Fuchs W, Mettenleiter TC. DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein. J Gen Virol 1999; 80 ( Pt 8):2173-2182. [PMID: 10466817 DOI: 10.1099/0022-1317-80-8-2173] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 24 kbp KpnI restriction fragment A from the unique long genome region of infectious laryngotracheitis virus (ILTV, gallid herpesvirus-1) has been sequenced. The analysed region contains 14 open reading frames sharing homology with conserved alphaherpesvirus genes. Arrangement of the UL6 to UL20 homologues of ILTV is almost identical to that found in the herpes simplex virus type 1 genome. As in other herpesviruses the UL15 gene consists of two exons and is expressed from a spliced mRNA. However, the UL16 gene, which is usually localized within the intron sequence of UL15, is not conserved at this position of the ILTV genome. Another unique feature is the absence of any putative N-glycosylation motifs within the deduced ILTV UL10 gene product, which is the homologue of the conserved herpesvirus glycoprotein M. After preparation of a monospecific antiserum, two distinct UL10 proteins with apparent molecular masses of 36 and 31 kDa were identified in ILTV-infected cells as well as in purified virions. None of these UL10 gene products is modified by N- or O-linked glycosylation. Isolation of a green fluorescent protein-expressing UL10 deletion mutant of ILTV revealed that this gene is not required for virus replication in cell culture.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany1
| |
Collapse
|
44
|
Brack AR, Dijkstra JM, Granzow H, Klupp BG, Mettenleiter TC. Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. J Virol 1999; 73:5364-72. [PMID: 10364283 PMCID: PMC112592 DOI: 10.1128/jvi.73.7.5364-5372.1999] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1999] [Accepted: 03/29/1999] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein M (gM), the product of the UL10 gene of pseudorabies virus (PrV), is one of the few nonessential glycoproteins conserved throughout the Herpesviridae. In contrast to wild-type PrV strains, the UL10 gene product of the attenuated PrV vaccine strain Bartha (PrV-Ba) is not modified by N-glycans due to a mutation in the DNA sequence encoding the consensus N-glycosylation motif. To assay function of the UL10 protein in PrV-Ba, a UL10-deletion mutant (PrV-Ba-UL10(-)) was isolated. Surprisingly, in contrast to gM-deleted wild-type PrV, PrV-Ba-UL10(-) was severely impaired in plaque formation, inducing only foci of very few infected RK13, Vero, and PSEK cells and tiny plaques on MDBK cells. Since this effect was significantly more dramatic than in wild-type PrV, additional mutations known to be present in PrV-Ba were analyzed for their contribution to this phenotype. trans-complementation of the mutated PrV-Ba UL21 or gC protein by the wild-type version had no influence on the observed phenotype. In contrast, complementation of the gE/gI deletion rescued the phenotype. The synergistic effect of deletions in gE/gI and gM on plaque size was verified by construction of a gE/I/M triple mutant derived from wild-type PrV which exhibited the same phenotype. The dramatic effect of deletion of gM on plaque size in a gE/I- virus background was mainly attributable to a function of gM, and not of the gM/gN complex, as shown by analysis of a gE/I/N triple mutant. Interestingly, despite the strong effect on plaque size, penetration was not significantly impaired. In noncomplementing cells infected with the gE/I/M triple mutant, electron microscopy showed absence of secondary envelopment in the cytoplasm but occurrence of intracytoplasmic accumulations of nucleocapsids in association with electron dense material, presumably tegument proteins. These structures were not observed after infection of cells expressing either gE/I or gM. We suggest that gE/I and gM are required for late stages in virion morphogenesis prior to final envelopment in the cytoplasm.
Collapse
Affiliation(s)
- A R Brack
- Institutes of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
45
|
Cai JS, Jang HK, Izumiya Y, Tsushima Y, Kato K, Damiani AM, Miyazawa T, Kai C, Takahashi E, Mikami T. Identification and structure of the Marek's disease virus serotype 2 glycoprotein M gene: comparison with glycoprotein M genes of Herpesviridae family. J Vet Med Sci 1999; 61:503-11. [PMID: 10379942 DOI: 10.1292/jvms.61.503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the nucleotide sequence of a portion of BamHI-C fragment of Marek's disease virus serotype 2 (MDV2) strain HPRS24 which was suspected to contain the homologue of the herpes simplex virus type 1 (HSV-1) gene UL10, encoding glycoprotein M (gM). An open reading frame whose translation product exhibited significant similarities to HSV-1 gM protein and respective proteins of other herpesviruses of 37.5% and 45.5% to 31.8%, respectively, was identified. A number of distinct transcriptional consensus sequences were found upstream of the first putative start codon of MDV2 UL10 protein. In transcriptional analysis, the gene was transcribed into an 1.5 kb RNA. The primary translation product comprises 424 amino acids with a predicted molecular weight of 46.9 kDa. The predicted MDV2 UL10 protein contains eight hydrophobic domains with sufficient length and hydrophobicity to span the lipid bilayer conserved in the genomes of all herpesviruses which have been sequenced so far. In the region located between the first and second hydrophobic domains, two potential N-linked glycosylation sites were presented. Interestingly, highly charged residues were abundantly possessed in the carboxy-terminal part of the MDV2 UL10 protein. By comparison of the amino acid sequence of the MDV2 UL10 gene with the homologues from other herpesviruses, the data might contribute for further evidence of the evolution of herpesviruses from a common progenitor and an ancient example of MDV2 belonging to the Alphaherpesvirinae subfamily. In addition, the existence of corresponding genes in human, mammalian, and avian herpesvirus genomes, suggests indirectly an important role for gM in the natural life cycle of the virus.
Collapse
Affiliation(s)
- J S Cai
- Department of Veterinary Microbiology, Graduate School of Agriculture and Agricultural Life Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Pseudorabies virions were purified by sucrose gradient and virion-associated proteins were examined. Cytoskeleton actin was found to be a component of virion preparation. In addition, abundant virion-associated actin was detected even after the virion preparation was treated with trypsin digestion or the viral envelope was removed by Triton X-100. This finding indicated that the location of actin is inside the pseudorabies virion. Furthermore, the possible involvement of actin in the life cycle of pseudorabies virus was studied by using cytochalasin D, an F-actin binding drug, and the result showed that cytochalasin D reduced the number of plaques and the size of the plaque of pseudorabies virus.
Collapse
Affiliation(s)
- M L Wong
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan, ROC
| | | |
Collapse
|
47
|
Lake CM, Molesworth SJ, Hutt-Fletcher LM. The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J Virol 1998; 72:5559-64. [PMID: 9621013 PMCID: PMC110206 DOI: 10.1128/jvi.72.7.5559-5564.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Epstein-Barr virus (EBV) homolog of the conserved herpesvirus glycoprotein gN is predicted to be encoded by the BLRF1 open reading frame (ORF). Antipeptide antibody to a sequence corresponding to residues in the predicted BLRF1 ORF immunoprecipitated a doublet of approximately 8 kDa from cells expressing the BLRF1 ORF as a recombinant protein. In addition, four glycosylated proteins of 113, 84, 48, and 15 kDa could be immunoprecipitated from virus-producing cells by the same antibody. The 15-kDa species was the mature form of gN, which carried alpha2,6-sialic acid residues. The remaining glycoproteins which associated with gN were products of the BBRF3 ORF of EBV, which encodes the EBV gM homolog. The 8-kDa doublet seen in cells expressing recombinant gN comprised precursors of the mature 15-kDa gN. Coexpression of EBV gM with EBV gN was required for authentic processing of the 8-kDa forms to the 15-kDa form.
Collapse
Affiliation(s)
- C M Lake
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
48
|
Abstract
The herpes simplex virus type 1 (HSV-1) UL12 gene encodes an alkaline pH-dependent deoxyribonuclease termed alkaline nuclease. A recombinant UL12 knockout mutant, AN-1, is severely compromised for growth, and analysis of this mutant suggests that UL12 plays a role in processing complex DNA replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, (1996) J. Virol. 70, 2075-2085). This processing step may be required for the generation of capsids that are competent for egress from the nucleus to the cytoplasm. In this report, we address the question of whether the AN-1 growth phenotype is due to the loss of UL12 catalytic activity. We constructed two point mutations in a highly conserved region (motif II) of UL12 and purified wild-type and mutant enzymes from a baculovirus expression system. Both mutant proteins are stable, soluble, and competent for correct nuclear localization, suggesting that they have retained an intact global conformation. Neither mutant protein, however, exhibits exonuclease activity. In order to examine the in vivo effects of these mutations, we determined whether expression of mutant proteins from amplicon plasmids could complement AN-1. While the wild-type plasmid complements the growth of the null mutant, neither UL12 mutant can do so. Loss of exonuclease activity therefore correlates with loss of in vivo function.
Collapse
Affiliation(s)
- J N Goldstein
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
49
|
Wu SX, Zhu XP, Letchworth GJ. Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the U(L)49.5 protein. J Virol 1998; 72:3029-36. [PMID: 9525625 PMCID: PMC109750 DOI: 10.1128/jvi.72.4.3029-3036.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nine glycoproteins (gB, gC, gD, gE, gG, gH, gI, gK, and gL) have been identified in bovine herpesvirus 1 (BHV-1). gM has been identified in many other alpha-, beta-, and gammaherpesviruses, in which it appears to play a role in membrane penetration and cell-to-cell fusion. We sought to express BHV-1 open reading frame U(L)10, which encodes gM, and specifically identify the glycoprotein. We corrected a frameshift error in the published sequence and used the corrected sequence to design coterminal peptides from the C terminus. These were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The fusion protein containing the 63 C-terminal amino acids from the corrected gM sequence engendered antibodies that immunoprecipitated a 30-kDa protein from in vitro translation reactions programmed with the U(L)10 gene. Proteins immunoprecipitated by this antibody from virus-infected cells ran at 36 and 43 kDa in reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 43 and 48 kDa in nonreducing SDS-PAGE. Only the larger of the pair was present in virions. A 7-kDa protein was released from gM by reducing agents. The 7-kDa protein was not recognized in Western blots probed with the anti-gM antibody but reacted specifically with antibodies prepared against BHV-1 U(L)49.5, previously reported to be a 9-kDa protein associated with an unidentified 39-kDa protein (X. Liang, B. Chow, C. Raggo, and L. A. Babiuk, J. Virol. 70:1448-1454, 1996). This is the first report of a small protein covalently bound to any herpesvirus gM. Similar patterns of hydrophobic domains and cysteines in all known gM and U(L)49.5 homologs suggest that these two proteins may be linked by disulfide bonds in all herpesviruses.
Collapse
Affiliation(s)
- S X Wu
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
50
|
Jöns A, Dijkstra JM, Mettenleiter TC. Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol 1998; 72:550-7. [PMID: 9420258 PMCID: PMC109407 DOI: 10.1128/jvi.72.1.550-557.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes homologous to the herpes simplex virus UL49.5 open reading frame are conserved throughout the Herpesviridae. In the alphaherpesvirus pseudorabies virus (PrV), the UL49.5 product is an O-glycosylated structural protein of the viral envelope, glycoprotein N (gN) (A. Jöns, H. Granzow, R. Kuchling, and T. C. Mettenleiter, J. Virol. 70:1237-1241, 1996). For functional characterization of gN, a gN-negative PrV mutant, PrV-gNbeta, and the corresponding rescuant, PrV-gNbetaR, were constructed, gN-negative PrV was able to productively replicate on noncomplementing cells, and one-step growth in cell culture was only slightly reduced compared to that of wild-type PrV. However, penetration was significantly delayed. In indirect immunofluorescence assays with rabbit serum directed against baculovirus-expressed gN, specific staining of wild-type PrV-infected cells occurred only after permeabilization of cells, whereas live cells failed to react with the antiserum. This indicates the lack of surface accessibility of gN in the plasma membrane of a PrV-infected cell. Western blot analyses and radioimmunoprecipitation experiments under reducing and nonreducing conditions led to the discovery of a heteromeric complex composed of gM and gN. The complex was stable in the absence of 2-mercaptoethanol but dissociated after the addition of the reducing agent, indicating that the partners are linked by disulfide bonds. Finally, gN was absent from gM-negative PrV virions, whereas gM was readily detected in virions in the absence of gN. Thus, gM appears to be required for virion localization of gN.
Collapse
Affiliation(s)
- A Jöns
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | |
Collapse
|