1
|
Petti LM, Koleske BN, DiMaio D. Activation of the PDGF β Receptor by a Persistent Artificial Signal Peptide. J Mol Biol 2021; 433:167223. [PMID: 34474086 DOI: 10.1016/j.jmb.2021.167223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Most eukaryotic transmembrane and secreted proteins contain N-terminal signal peptides that mediate insertion of the nascent translation products into the membrane of the endoplasmic reticulum. After membrane insertion, signal peptides typically are cleaved from the mature protein and degraded. Here, we tested whether a small hydrophobic protein selected for growth promoting activity in mammalian cells retained transforming activity while also acting as a signal peptide. We replaced the signal peptide of the PDGF β receptor (PDGFβR) with a previously described 29-residue artificial transmembrane protein named 9C3 that can activate the PDGFβR in trans. We showed that a modified version of 9C3 at the N-terminus of the PDGFβR can function as a signal peptide, as assessed by its ability to support high level expression, glycosylation, and cell surface localization of the PDGFβR. The 9C3 signal peptide retains its ability to interact with the transmembrane domain of the PDGFβR and cause receptor activation and cell proliferation. Cleavage of the 9C3 signal peptide from the mature receptor is not required for these activities. However, signal peptide cleavage does occur in some molecules, and the cleaved signal peptide can persist in cells and activate a co-expressed PDGFβR in trans. Our finding that a hydrophobic sequence can display signal peptide and transforming activity suggest that some naturally occurring signal peptides may also display additional biological activities by interacting with the transmembrane domains of target proteins.
Collapse
Affiliation(s)
- Lisa M Petti
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
| | - Benjamin N Koleske
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA; Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA; Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024, USA; Department of Therapeutic Radiology, Yale School of Medicine, PO Box 208040, New Haven, CT 06520-8040, USA; Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
2
|
Willemsen A, Félez-Sánchez M, Bravo IG. Genome Plasticity in Papillomaviruses and De Novo Emergence of E5 Oncogenes. Genome Biol Evol 2019; 11:1602-1617. [PMID: 31076746 PMCID: PMC6557308 DOI: 10.1093/gbe/evz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical presentations of papillomavirus (PV) infections come in many different flavors. While most PVs are part of a healthy skin microbiota and are not associated to physical lesions, other PVs cause benign lesions, and only a handful of PVs are associated to malignant transformations linked to the specific activities of the E5, E6, and E7 oncogenes. The functions and origin of E5 remain to be elucidated. These E5 open reading frames (ORFs) are present in the genomes of a few polyphyletic PV lineages, located between the early and the late viral gene cassettes. We have computationally assessed whether these E5 ORFs have a common origin and whether they display the properties of a genuine gene. Our results suggest that during the evolution of Papillomaviridae, at least four events lead to the presence of a long noncoding DNA stretch between the E2 and the L2 genes. In three of these events, the novel regions evolved coding capacity, becoming the extant E5 ORFs. We then focused on the evolution of the E5 genes in AlphaPVs infecting primates. The sharp match between the type of E5 protein encoded in AlphaPVs and the infection phenotype (cutaneous warts, genital warts, or anogenital cancers) supports the role of E5 in the differential oncogenic potential of these PVs. In our analyses, the best-supported scenario is that the five types of extant E5 proteins within the AlphaPV genomes may not have a common ancestor. However, the chemical similarities between E5s regarding amino acid composition prevent us from confidently rejecting the model of a common origin. Our evolutionary interpretation is that an originally noncoding region entered the genome of the ancestral AlphaPVs. This genetic novelty allowed to explore novel transcription potential, triggering an adaptive radiation that yielded three main viral lineages encoding for different E5 proteins, displaying distinct infection phenotypes. Overall, our results provide an evolutionary scenario for the de novo emergence of viral genes and illustrate the impact of such genotypic novelty in the phenotypic diversity of the viral infections.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ignacio G Bravo
- Laboratory MIVEGEC (UMR CNRS IRD Uni Montpellier), Centre National de la Recherche Scientique (CNRS), Montpellier, France
| |
Collapse
|
3
|
Two transmembrane dimers of the bovine papillomavirus E5 oncoprotein clamp the PDGF β receptor in an active dimeric conformation. Proc Natl Acad Sci U S A 2017; 114:E7262-E7271. [PMID: 28808001 DOI: 10.1073/pnas.1705622114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dimeric 44-residue E5 protein of bovine papillomavirus is the smallest known naturally occurring oncoprotein. This transmembrane protein binds to the transmembrane domain (TMD) of the platelet-derived growth factor β receptor (PDGFβR), causing dimerization and activation of the receptor. Here, we use Rosetta membrane modeling and all-atom molecular dynamics simulations in a membrane environment to develop a chemically detailed model of the E5 protein/PDGFβR complex. In this model, an active dimer of the PDGFβR TMD is sandwiched between two dimers of the E5 protein. Biochemical experiments showed that the major PDGFβR TMD complex in mouse cells contains two E5 dimers and that binding the PDGFβR TMD to the E5 protein is necessary and sufficient to recruit both E5 dimers into the complex. These results demonstrate how E5 binding induces receptor dimerization and define a molecular mechanism of receptor activation based on specific interactions between TMDs.
Collapse
|
4
|
Abstract
We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context.
Collapse
|
5
|
Abstract
Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because many of these proteins are less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|
6
|
Compensatory mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor β receptor reveal a complex direct transmembrane interaction. J Virol 2013; 87:10936-45. [PMID: 23926343 DOI: 10.1128/jvi.01475-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 44-amino-acid E5 protein of bovine papillomavirus is a dimeric transmembrane protein that exists in a stable complex with the platelet-derived growth factor (PDGF) β receptor, causing receptor activation and cell transformation. The transmembrane domain of the PDGF β receptor is required for complex formation, but it is not known if the two proteins contact one another directly. Here, we studied a PDGF β receptor mutant containing a leucine-to-isoleucine substitution in its transmembrane domain, which prevents complex formation with the wild-type E5 protein in mouse BaF3 cells and inhibits receptor activation by the E5 protein. We selected E5 mutants containing either a small deletion or multiple substitution mutations that restored binding to the mutant PDGF β receptor, resulting in receptor activation and growth factor independence. These E5 mutants displayed lower activity with PDGF β receptor mutants containing other transmembrane substitutions in the vicinity of the original mutation, and one of them cooperated with a receptor mutant containing a distal mutation in the juxtamembrane domain. These results provide strong genetic evidence that the transmembrane domains of the E5 protein and the PDGF β receptor contact one another directly. They also demonstrate that different mutations in the E5 protein allow it to tolerate the same mutation in the PDGF β receptor transmembrane domain and that a mutation in the E5 protein can allow it to tolerate different mutations in the PDGF β receptor. Thus, the rules governing direct interactions between transmembrane helices are complex and not restricted to local interactions.
Collapse
|
7
|
Petti LM, Talbert-Slagle K, Hochstrasser ML, DiMaio D. A single amino acid substitution converts a transmembrane protein activator of the platelet-derived growth factor β receptor into an inhibitor. J Biol Chem 2013; 288:27273-27286. [PMID: 23908351 DOI: 10.1074/jbc.m113.470054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptors for PDGF play an important role in cell proliferation and migration and have been implicated in certain cancers. The 44-amino acid E5 protein of bovine papillomavirus binds to and activates the PDGFβ receptor (PDGFβR), resulting in oncogenic transformation of cultured fibroblasts. Previously, we isolated an artificial 36-amino acid transmembrane protein, pTM36-4, which transforms cells because of its ability to activate the PDGFβR despite limited sequence similarity to E5. Here, we demonstrated complex formation between the PDGFβR and three pTM36-4 mutants: T21E, T21Q, and T21N. T21Q retained wild type transforming activity and activated the PDGFβR in a ligand-independent manner as a consequence of binding to the transmembrane domain of the PDGFβR, but T21E and T21N were severely defective. In fact, T21N substantially inhibited E5-induced PDGFβR activation and transformation in both mouse and human fibroblasts. T21N did not prevent E5 from binding to the receptor, and genetic evidence suggested that T21N and E5 bind to nonidentical sites in the transmembrane domain of the receptor. T21N also inhibited transformation and PDGFβR activation induced by v-Sis, a viral homologue of PDGF-BB, as well as PDGF-induced mitogenesis and signaling by preventing phosphorylation of the PDGFβR at particular tyrosine residues. These results demonstrated that T21N acts as a novel inhibitor of the PDGFβR and validated a new strategy for designing highly specific short transmembrane protein inhibitors of growth factor receptors and possibly other transmembrane proteins.
Collapse
Affiliation(s)
- Lisa M Petti
- Department of Genetics, Department of Molecular Biophysics and Biochemistry, Department of Therapeutic Radiology, and the Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | - Daniel DiMaio
- Department of Genetics, Department of Molecular Biophysics and Biochemistry, Department of Therapeutic Radiology, and the Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510.
| |
Collapse
|
8
|
DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445:99-114. [PMID: 23731971 DOI: 10.1016/j.virol.2013.05.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 protein is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, USA; Department of Therapeutic Radiology, Yale School of Medicine, USA; Department of Molecular Biophysics & Biochemistry, Yale University, USA; Yale Cancer Center, USA.
| | | |
Collapse
|
9
|
Muhle-Goll C, Hoffmann S, Afonin S, Grage SL, Polyansky AA, Windisch D, Zeitler M, Bürck J, Ulrich AS. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment. J Biol Chem 2012; 287:26178-86. [PMID: 22619173 DOI: 10.1074/jbc.m111.325555] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet-derived growth factor receptor β is a member of the cell surface receptor tyrosine kinase family and dimerizes upon activation. We determined the structure of the transmembrane segment in dodecylphosphocholine micelles by liquid-state NMR and found that it forms a stable left-handed helical dimer. Solid-state NMR and oriented circular dichroism were used to measure the tilt angle of the helical segments in macroscopically aligned model membranes with different acyl chain lengths. Both methods showed that decreasing bilayer thickness (DEPC-POPC-DMPC) led to an increase in the helix tilt angle from 10° to 30° with respect to the bilayer normal. At the same time, reconstitution of the comparatively long hydrophobic segment became less effective, eventually resulting in complete protein aggregation in the short-chain lipid DLPC. Unrestrained molecular dynamics simulations of the dimer were carried out in explicit lipid bilayers (DEPC, POPC, DMPC, sphingomyelin), confirming the observed dependence of the helix tilt angle on bilayer thickness. Notably, molecular dynamics revealed that the left-handed dimer gets tilted en bloc, whereas conformational transitions to alternative (e.g. right-handed dimeric) states were not supported. The experimental data along with the simulation results demonstrate a pronounced interplay between the platelet-directed growth factor receptor β transmembrane segment and the bilayer thickness. The effect of hydrophobic mismatch might play a key role in the redistribution and activation of the receptor within different lipid microdomains of the plasma membrane in vivo.
Collapse
Affiliation(s)
- Claudia Muhle-Goll
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 2011; 10:140. [PMID: 22078316 PMCID: PMC3248866 DOI: 10.1186/1476-4598-10-140] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent.
Collapse
Affiliation(s)
- Aldo Venuti
- Department of Pathology and Animal Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Toffalini F, Hellberg C, Demoulin JB. Critical role of the platelet-derived growth factor receptor (PDGFR) beta transmembrane domain in the TEL-PDGFRbeta cytosolic oncoprotein. J Biol Chem 2010; 285:12268-78. [PMID: 20164181 PMCID: PMC2852966 DOI: 10.1074/jbc.m109.076638] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/09/2010] [Indexed: 01/31/2023] Open
Abstract
The fusion of TEL with platelet-derived growth factor receptor (PDGFR) beta (TPbeta) is found in a subset of patients with atypical myeloid neoplasms associated with eosinophilia and is the archetype of a larger group of hybrid receptors that are produced by rearrangements of PDGFR genes. TPbeta is activated by oligomerization mediated by the pointed domain of TEL/ETV6, leading to constitutive activation of the PDGFRbeta kinase domain. The receptor transmembrane (TM) domain is retained in TPbeta and in most of the described PDGFRbeta hybrids. Deletion of the TM domain (DeltaTM-TPbeta) strongly impaired the ability of TPbeta to sustain growth factor-independent cell proliferation. We confirmed that TPbeta resides in the cytosol, indicating that the PDGFRbeta TM domain does not act as a transmembrane domain in the context of the hybrid receptor but has a completely different function. The DeltaTM-TPbeta protein was expressed at a lower level because of increased degradation. It could form oligomers, was phosphorylated at a slightly higher level, co-immunoprecipitated with the p85 adaptor protein, but showed a much reduced capacity to activate STAT5 and ERK1/2 in Ba/F3 cells, compared with TPbeta. In an in vitro kinase assay, DeltaTM-TPbeta was more active than TPbeta and less sensitive to imatinib, a PDGFR inhibitor. In conclusion, we show that the TM domain is required for TPbeta-mediated signaling and proliferation, suggesting that the activation of the PDGFRbeta kinase domain is not enough for cell transformation.
Collapse
Affiliation(s)
- Federica Toffalini
- From the Université Catholique de Louvain, de Duve Institute, BE-1200 Brussels, Belgium and
| | - Carina Hellberg
- the Ludwig Institute for Cancer Research, S-751 24 Uppsala, Sweden
| | - Jean-Baptiste Demoulin
- From the Université Catholique de Louvain, de Duve Institute, BE-1200 Brussels, Belgium and
| |
Collapse
|
12
|
Abstract
In recent years there has been an abundance of research into the potential of helical peptides to influence cell function. These peptides have been used to achieve a variety of different outcomes from cell repair to cell death, depending upon the peptide sequence and the nature of its interactions with cell membranes and membrane proteins. In this critical review, we summarise several mechanisms by which helical peptides, acting as either transporters, inhibitors, agonists or antibiotics, can have significant effects on cell membranes and can radically affect the internal mechanisms of the cell. The various approaches to peptide design are discussed, including the role of naturally-occurring proteins in the design of these helical peptides and current breakthroughs in the use of non-natural (and therefore more stable) peptide scaffolds. Most importantly, the current successful applications of these peptides, and their potential uses in the field of medicine, are reviewed (131 references).
Collapse
Affiliation(s)
- Andrew J Beevers
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
13
|
Strong oligomerization behavior of PDGFβ receptor transmembrane domain and its regulation by the juxtamembrane regions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:605-15. [DOI: 10.1016/j.bbamem.2009.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/09/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022]
|
14
|
Talbert-Slagle K, DiMaio D. The bovine papillomavirus E5 protein and the PDGF beta receptor: it takes two to tango. Virology 2008; 384:345-51. [PMID: 18990418 DOI: 10.1016/j.virol.2008.09.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
The extremely hydrophobic, 44-amino acid bovine papillomavirus (BPV) E5 protein is the smallest known oncoprotein, which orchestrates cell transformation by causing ligand-independent activation of a cellular receptor tyrosine kinase, the platelet-derived growth factor beta receptor (PDGFbetaR). The E5 protein forms a dimer in transformed cells and is essentially an isolated membrane-spanning segment that binds directly to the transmembrane domain of the PDGFbetaR, inducing receptor dimerization, autophosphorylation, and sustained mitogenic signaling. There are few sequence constraints for activity as long as the overall hydrophobicity of the E5 protein and its ability to dimerize are preserved. Nevertheless, the E5 protein is highly specific for the PDGFbetaR and does not activate other cellular proteins. Genetic screens of thousands of small, artificial hydrophobic proteins with randomized transmembrane domains inserted into an E5 scaffold identified proteins with diverse transmembrane sequences that activate the PDGFbetaR, including some activators as small as 32-amino acids. Analysis of these novel proteins has provided new insight into the requirements for PDGFbetaR activation and specific transmembrane recognition in general. These results suggest that small, transmembrane proteins can be constructed and selected that specifically bind to other cellular or viral transmembrane target proteins. By using this approach, we have isolated a 44-amino acid artificial transmembrane protein that appears to activate the human erythropoietin receptor. Studies of the tiny, hydrophobic BPV E5 protein have not only revealed a novel mechanism of viral oncogenesis, but have also suggested that it may be possible to develop artificial small proteins that specifically modulate much larger target proteins by acting within cellular or viral membranes.
Collapse
Affiliation(s)
- Kristina Talbert-Slagle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
15
|
Oates J, Hicks M, Dafforn TR, DiMaio D, Dixon AM. In vitro dimerization of the bovine papillomavirus E5 protein transmembrane domain. Biochemistry 2008; 47:8985-92. [PMID: 18672907 DOI: 10.1021/bi8006252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The E5 protein from bovine papillomavirus is a type II membrane protein and the product of the smallest known oncogene. E5 causes cell transformation by binding and activating the platelet-derived growth factor beta receptor (PDGFbetaR). In order to productively interact with the receptor, it is thought that E5 binds as a dimer. However, wild-type E5 and various mutants have also been shown to form trimers, tetramers, and even higher order oligomers. The residues in E5 that drive and stabilize a dimeric state are also still in question. At present, two different models for the E5 dimer exist in the literature, one symmetric and one asymmetric. There is universal agreement, however, that the transmembrane (TM) domain plays a vital role in stabilizing the functional oligomer; indeed, mutation of various TM domain residues can abolish E5 function. In order to better resolve the role of the E5 TM domain in function, we have undertaken the first quantitative in vitro characterization of the E5 TM domain in detergent micelles and liposomes. Circular and linear dichroism analyses verify that the TM domain adopts a stable alpha-helical structure and is able to partition efficiently across lipid bilayers. SDS-PAGE and analytical ultracentrifugation demonstrate for the first time that the TM domain of E5 forms a strong dimer with a standard state free energy of dissociation of 5.0 kcal mol (-1). We have used our new results to interpret existing models of E5 dimer formation and provide a direct link between TM helix interactions and E5 function.
Collapse
Affiliation(s)
- Joanne Oates
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Petti LM, Ricciardi EC, Page HJ, Porter KA. Transforming signals resulting from sustained activation of the PDGFbeta receptor in mortal human fibroblasts. J Cell Sci 2008; 121:1172-82. [PMID: 18349076 DOI: 10.1242/jcs.018713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor beta receptor (PDGFbetaR) plays an important role in proliferation and motility of fibroblasts. We have been investigating the effects of sustained PDGFbetaR activation in mortal human diploid fibroblasts (HDFs), which are typically difficult to transform. We have previously shown that the bovine papillomavirus E5 protein, through its ability to crosslink and constitutively activate the PDGFbetaR, induces morphological transformation, enhanced growth and loss of contact inhibition (focus formation) in HDFs. Here, we characterized two E5 mutants as being severely defective for focus formation but still competent for enhanced growth, suggesting that proliferation is insufficient for loss of contact inhibition. These E5 mutants were then used in a comparative study to distinguish the PDGFbetaR signaling intermediates required for the enhanced growth phenotype from those required for focus formation. Our data suggested that a PI 3-kinase (PI3K)-AKT-cyclin D3 pathway, a Grb2-Gab1-SHP2 complex and JNK played a role in the enhanced growth phenotype. However, a SHP2-p66Shc-p190BRhoGAP complex and ROCK were implicated exclusively in focus formation. We speculate that a SHP2-p66Shc-p190BRhoGAP signaling complex recruited to the activated PDGFbetaR promotes a distinct Rho-dependent process required for focus formation but not growth of HDFs.
Collapse
Affiliation(s)
- Lisa M Petti
- Center for Immunology and Microbial Disease, Albany Medical College, MC-151, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
18
|
Marchetti B, Ashrafi GH, Dornan ES, Araibi EH, Ellis SA, Campo MS. The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus. Oncogene 2006; 25:2254-63. [PMID: 16288210 DOI: 10.1038/sj.onc.1209245] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BPV-4 E5 inhibits transcription of the bovine MHC class I heavy chain (HC) gene, increases degradation of HC and downregulates surface expression of MHC class I by retaining the complex in the Golgi apparatus (GA). Here we report that transcription inhibition can be alleviated by interferon treatment and the degradation of HC can be reversed by treatment with inhibitors of proteasomes and lysosomes. However, the inhibition of transport of MHC class I to the cell surface is irreversible. We show that E5 is capable of physically interacting with HC. Together with the inhibition of the vacuolar ATPase (due to the interaction between E5 and 16k subunit c), the interaction between E5 and HC is likely to be responsible for retention of MHC class I in the GA. C-terminus deletion mutants of E5 are incapable of either downregulating surface MHC class I or interacting with HC, establishing that the C-terminus domain of E5 is important in the inhibition of MHC class I.
Collapse
Affiliation(s)
- B Marchetti
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
19
|
Borzacchiello G, Russo V, Gentile F, Roperto F, Venuti A, Nitsch L, Campo MS, Roperto S. Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary bladder tumours. Oncogene 2006; 25:1251-60. [PMID: 16205631 DOI: 10.1038/sj.onc.1209152] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies regarding the functions of the bovine papillomavirus (BPV) E5 oncoprotein in vivo are lacking and no E5-mediated mechanism underlying epithelial carcinogenesis is known. We have shown that BPV-2 DNA is present in the majority of naturally occurring urinary bladder tumours of cattle and that E5 is expressed in the cancer cells. Here we show that the interaction between the platelet-derived growth factor (PDGF) beta receptor and BPV E5, described in vitro in cultured cells, takes place in vivo in bovine urinary bladder cancers. In these cancers, E5 and PDGF beta receptor colocalize, as shown by confocal microscopy, and physically interact, as shown by coimmunoprecipitation. Furthermore, the PDGF beta receptor associated with E5 is highly phosphorylated, suggesting the functional activation of the receptor upon E5 interaction. Our results demonstrate, for the first time, that E5-PDGF beta receptor interaction occurs during the natural history of bovine urinary bladder tumours, suggesting an important role for E5 in carcinogenesis. Finally, the system provides a suitable animal model of papillomavirus-associated cancer to test therapeutic vaccination against E5. Successful bladder tumour regression would provide a valuable model for therapeutic vaccination against papillomavirus-associated tumours.
Collapse
Affiliation(s)
- G Borzacchiello
- Department of Pathology and Animal health, Faculty of Veterinary Medicine, Naples University 'Federico II', Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. Automated Quantitative Analysis (AQUA) of In Situ Protein Expression, Antibody Concentration, and Prognosis. ACTA ACUST UNITED AC 2005; 97:1808-15. [PMID: 16368942 DOI: 10.1093/jnci/dji427] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Disparate results in the immunohistochemistry literature regarding the relationship between biomarker expression and patient outcome decrease the credibility of tissue biomarker studies. We investigated whether some of these disparities result from subjective optimization of antibody concentration. METHODS We used the automated quantitative analysis (AQUA) system and various concentrations of antibodies against HER2 (1 : 500 to 1 : 8000 dilutions), p53 (1 : 50 to 1 : 800 dilutions), and estrogen receptor (ER; 1 : 100 and 1 : 1000 dilutions) to assess expression of HER2 and p53 in a tissue microarray containing specimens from 250 breast cancer patients with long-term survival data available. HER2 expression in the tissue microarray was also assessed by conventional immunohistochemistry. Relative risk (RR) of disease-specific mortality was assessed for every cutpoint with the X-tile program. Cumulative disease-specific survival was assessed by the Kaplan-Meier method. All statistical tests were two-sided. RESULTS For HER2 and p53 and an optimal cutpoint, when a high antibody concentration (i.e., 1 : 500 dilution) was used with the AQUA system, low expression was associated with poorer survival than high expression; however, when a low antibody concentration (i.e., 1 : 8000 dilution) was used, high expression was associated with poorer survival. For example, for a 1 : 8000 dilution of HER2 antibody and high expression defined as the top 15% of HER2 expression, high HER2 expression was associated with increased disease-specific mortality (RR = 1.98, 95% confidence interval [CI] = 1.21 to 3.23; P = .007), compared with low expression. However, for a 1 : 500 dilution of HER2 antibody and high expression defined as the top 85% of HER2 expression, high HER2 expression was associated with decreased disease-specific mortality (RR = 0.47, 95% CI = 0.29 to 0.76; P = .002), compared with low HER2 expression. CONCLUSIONS Biomarker antibody concentration appears to dramatically affect the apparent relationship between biomarker expression and outcome.
Collapse
Affiliation(s)
- Anthony McCabe
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | |
Collapse
|
21
|
Freeman-Cook LL, Dimaio D. Modulation of cell function by small transmembrane proteins modeled on the bovine papillomavirus E5 protein. Oncogene 2005; 24:7756-62. [PMID: 16299535 DOI: 10.1038/sj.onc.1209039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Viruses have been subjected to intense study because of their medical importance and because they can provide fundamental insights into normal and pathological cellular processes. Indeed, much of our knowledge about basic cellular biology and biochemistry was acquired through the study of viruses, and some of medicine's greatest triumphs and challenges involve viruses. Since viruses have evolved to exploit important cell processes, they can provide tools and approaches to manipulate cell function. The small transmembrane E5 protein of bovine papillomavirus type 1 transforms cells by a unique mechanism involving ligand-independent activation of the platelet-derived growth factor beta receptor. Experiments summarized in this review suggest that it may be possible to use the E5 protein as a model to design an entirely new class of small, modular transmembrane proteins with novel biological activities.
Collapse
Affiliation(s)
- Lisa L Freeman-Cook
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
22
|
Lai CC, Edwards APB, DiMaio D. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor. J Virol 2005; 79:1924-9. [PMID: 15650217 PMCID: PMC544141 DOI: 10.1128/jvi.79.3.1924-1929.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.
Collapse
Affiliation(s)
- Char-Chang Lai
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
23
|
Freeman-Cook LL, Edwards APB, Dixon AM, Yates KE, Ely L, Engelman DM, Dimaio D. Specific locations of hydrophilic amino acids in constructed transmembrane ligands of the platelet-derived growth factor beta receptor. J Mol Biol 2005; 345:907-21. [PMID: 15588835 DOI: 10.1016/j.jmb.2004.10.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 10/22/2004] [Accepted: 10/24/2004] [Indexed: 11/24/2022]
Abstract
The 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids. A low level of hydrophilic amino acids was encoded at each of the randomized positions, including position 17, which is an essential glutamine in the wild-type E5 protein. Library proteins that induced transformation in mouse C127 cells stably bound and activated the PDGF beta receptor. Strikingly, 35% of the transforming clones had a hydrophilic amino acid at position 17, highlighting the importance of this position in activation of the PDGF beta receptor. Hydrophilic amino acids in other transforming proteins were found adjacent to position 17 or at position 14 or 21, which are in the E5 homodimer interface. Approximately 22% of the transforming proteins lacked hydrophilic amino acids. The hydrophilic amino acids in the transforming clones appear to be important for driving homodimerization, binding to the PDGF beta receptor, or both. Interestingly, several of the library proteins bound and activated PDGF beta receptor transmembrane mutants that were not activated by the wild-type E5 protein. These experiments identified transmembrane proteins that activate the PDGF beta receptor and revealed the importance of hydrophilic amino acids at specific positions in the transmembrane sequence. Our identification of transformation-competent transmembrane proteins with altered specificity suggests that this approach may allow the creation and identification of transmembrane proteins that modulate the activity of a variety of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Lisa L Freeman-Cook
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Freeman-Cook LL, Dixon AM, Frank JB, Xia Y, Ely L, Gerstein M, Engelman DM, DiMaio D. Selection and characterization of small random transmembrane proteins that bind and activate the platelet-derived growth factor beta receptor. J Mol Biol 2004; 338:907-20. [PMID: 15111056 DOI: 10.1016/j.jmb.2004.03.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/13/2004] [Accepted: 03/13/2004] [Indexed: 11/15/2022]
Abstract
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.
Collapse
Affiliation(s)
- Lisa L Freeman-Cook
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Curran AR, Engelman DM. Sequence motifs, polar interactions and conformational changes in helical membrane proteins. Curr Opin Struct Biol 2003; 13:412-7. [PMID: 12948770 DOI: 10.1016/s0959-440x(03)00102-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The alpha helices of transmembrane proteins interact to form higher order structures. These interactions are frequently mediated by packing motifs (such as GxxxG) and polar residues. Recent structural data have revealed that small sidechains are able to both stabilize helical membrane proteins and allow conformational changes in the structure. The strong interactions involving polar sidechains often contribute to protein misfolding or malfunction.
Collapse
Affiliation(s)
- A Rachael Curran
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
26
|
Abstract
Aberrant receptor tyrosine kinase signaling plays an important role in the molecular pathogenesis of brain tumors. We have been studying a previously identified human glioblastoma-derived PDGFR-alpha mutant that has an in-frame deletion in the extracellular domain, causing loss of exons 8 and 9 (PDGFR-alpha(delta8,9)). In the primary tumor, this deletion mutant receptor was shown to be amplified and overexpressed. The purpose of this study was to determine the expression, activity, localization, and transformation properties of this deletion mutant. In the absence of serum, or PDGF-AA, PDGFR-alpha(delta8,9) was phosphorylated on tyrosine residues, indicating ligand-independent autoactivation. Localization by staining and cell surface biotinylation studies revealed expression of the deletion mutant predominantly in the cytoplasm, with very little present on the cell surface. To determine if PDGFR-alpha(delta8,9) was oncogenic, we transfected wild-type and mutant receptors into Rat1 cells and performed analyses of cell growth, in vitro transformation, and subcutaneous growth in the nude mouse. PDGFR-alpha(delta8,9)-expressing cells displayed enhanced cell growth and survival in low serum, and formed foci in monolayer cultures. PDGFR-alpha(delta8,9)-expressing Rat1 cells were also tumorigenic when injected subcutaneously into nude mice. Expression of PDGFR-alpha(delta8,9) was also associated with increased c-Jun phosphorylation in the absence of PDGF ligand, demonstrating also that the mutant receptor is associated with altered intracellular signaling. These data demonstrate that PDGFR-alpha(delta8,9) is transforming, and it is the first demonstration of a naturally occurring tumor-derived mutant PDGFR-alpha with oncogenic properties.
Collapse
Affiliation(s)
- I D Clarke
- Arthur and Sonia Labatt Brain Tumor Research Laboratory, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Nappi VM, Schaefer JA, Petti LM. Molecular examination of the transmembrane requirements of the platelet-derived growth factor beta receptor for a productive interaction with the bovine papillomavirus E5 oncoprotein. J Biol Chem 2002; 277:47149-59. [PMID: 12351659 DOI: 10.1074/jbc.m209582200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small transmembrane E5 protein of bovine papillomavirus (BPV) transforms cells by forming a stable complex with and activating the platelet-derived growth factor beta receptor (PDGFbetaR). The E5/PDGFbetaR interaction is thought to involve specific physical contacts between the transmembrane domains of the two proteins. Lys(499) at the extracellular juxtamembrane position and Thr(513) within the transmembrane domain of the PDGFbetaR are required for the interaction and are predicted to contact analogously positioned residues in the E5 protein. Here, mutagenic analysis of the transmembrane region of the PDGFbetaR was performed to further characterize the nature of the E5/PDGFbetaR interaction. We show that the receptor transmembrane domain, with minimal extracellular and intracellular sequence, is sufficient for the interaction. In addition, we provide evidence that the polar nature of Thr(513) as well as its positioning along the transmembrane alpha-helix is important for the interaction. We also identify the receptor transmembrane amino acids Ile(506) and Leu(520) as additional requirements for the interaction. Because Lys(499), Thr(513), Ile(506), and Leu(520) all align along the same face of the predicted PDGFbetaR transmembrane alpha-helix, our data support the model that the PDGFbetaR contacts the E5 protein via multiple amino acids along a single alpha-helical interface.
Collapse
|
28
|
Irusta PM, Luo Y, Bakht O, Lai CC, Smith SO, DiMaio D. Definition of an inhibitory juxtamembrane WW-like domain in the platelet-derived growth factor beta receptor. J Biol Chem 2002; 277:38627-34. [PMID: 12181311 DOI: 10.1074/jbc.m204890200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of tumors contain activating mutations in the cytoplasmic juxtamembrane domain of the type III family of receptor-tyrosine kinases, and some constructed mutations in this domain induce ligand-independent receptor activation. To explore the role of this domain in regulation of receptor activity, we subjected the juxtamembrane domain of the murine platelet-derived growth factor (PDGF) beta receptor to alanine-scanning mutagenesis. The mutant receptors were expressed in Ba/F3 cells and tested for constitutive tyrosine phosphorylation, association with phosphatidylinositol 3'-kinase, and their ability to induce cell survival and proliferation in the absence of interleukin-3. The mutant receptors accumulated to similar levels and appeared to undergo a normal PDGF-induced increase in tyrosine phosphorylation. Alanine substitutions at numerous positions located throughout the juxtamembrane domain caused constitutive receptor activation, as did an alanine insertion in the membrane-proximal segment of the juxtamembrane domain and a six-amino acid deletion in the center of the domain. It is possible to model the PDGF receptor juxtamembrane domain as a short alpha-helix followed by a three-stranded beta-sheet very similar to the known structures of WW domains. Strikingly, the activating mutations clustered in the central portions of the first and second beta strands and along one face of the beta-sheet, whereas the loops connecting the strands were largely devoid of mutationally sensitive positions. These findings provide strong support for the model that the activating mutations in the juxtamembrane region stimulate receptor activity by disrupting an inhibitory WW-like domain.
Collapse
Affiliation(s)
- Pablo M Irusta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nappi VM, Petti LM. Multiple transmembrane amino acid requirements suggest a highly specific interaction between the bovine papillomavirus E5 oncoprotein and the platelet-derived growth factor beta receptor. J Virol 2002; 76:7976-86. [PMID: 12134002 PMCID: PMC155141 DOI: 10.1128/jvi.76.16.7976-7986.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bovine papillomavirus E5 protein activates the cellular platelet-derived growth factor beta receptor (PDGFbetaR) tyrosine kinase in a ligand-independent manner. Evidence suggests that the small transmembrane E5 protein homodimerizes and physically interacts with the transmembrane domain of the PDGFbetaR, thereby inducing constitutive dimerization and activation of this receptor. Amino acids in the receptor previously found to be required for the PDGFbetaR-E5 interaction are a transmembrane Thr513 and a juxtamembrane Lys499. Here, we sought to determine if these are the only two receptor amino acids required for an interaction with the E5 protein. Substitution of large portions of the PDGFbetaR transmembrane domain indicated that additional amino acids in both the amino and carboxyl halves of the receptor transmembrane domain are required for a productive interaction with the E5 protein. Indeed, individual amino acid substitutions in the receptor transmembrane domain identified roles for the extracellular proximal transmembrane residues in the interaction. These data suggest that multiple amino acids within the transmembrane domain of the PDGFbetaR are required for a stable interaction with the E5 protein. These may be involved in direct protein-protein contacts or may support the proper transmembrane alpha-helical conformation for optimal positioning of the primary amino acid requirements.
Collapse
Affiliation(s)
- Valerie M Nappi
- Center for Immunology and Microbial Disease, Albany Medical College, New York 12208, USA
| | | |
Collapse
|
30
|
The E5 protein of papillomaviruses. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)08020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Abstract
The papillomavirus E5 proteins are short, hydrophobic transforming proteins. The transmembrane E5 protein encoded by bovine papillomavirus transforms cells by activating the platelet-derived growth factor beta receptor tyrosine kinase in a ligand-independent fashion. The bovine papillomavirus E5 protein forms a stable complex with the receptor, thereby inducing receptor dimerization and activation, trans-phosphorylation, and recruitment of cellular signaling proteins to the receptor. The E5 proteins of the human papillomaviruses also appear to affect the activity of growth factor receptors and their signaling pathways. The interaction of papillomavirus E5 proteins with a subunit of the vacuolar ATPase may also contribute to transformation. Further analysis of these unique mechanisms of viral transformation will yield new insight into the regulation of growth factor receptor activity and cellular signal transduction pathways.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | |
Collapse
|
32
|
Mattoon D, Gupta K, Doyon J, Loll PJ, DiMaio D. Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 2001; 20:3824-34. [PMID: 11439346 DOI: 10.1038/sj.onc.1204523] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2001] [Revised: 04/05/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
We have developed a genetic method to determine the active orientation of dimeric transmembrane protein helices. The bovine papillomavirus E5 protein, a 44-amino acid homodimeric protein that appears to traverse membranes as a left-handed coiled-coil, transforms fibroblasts by binding and activating the platelet-derived growth factor (PDGF) beta receptor. A heterologous dimerization domain was used to force E5 monomers to adopt all seven possible symmetric coiled-coil registries relative to one another within the dimer. Focus formation assays demonstrated that dimerization of the E5 protein is required for transformation and identified a single preferred orientation of the monomers. The essential glutamine residue at position 17 resided in the dimer interface in this active orientation. The active chimera formed complexes with the PDGF beta receptor and induced receptor tyrosine phosphorylation. We also identified E5-like structures that underwent non-productive interactions with the receptor.
Collapse
Affiliation(s)
- D Mattoon
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut CT 06510, USA
| | | | | | | | | |
Collapse
|
33
|
DiMaio D, Lai CC, Mattoon D. The platelet-derived growth factor beta receptor as a target of the bovine papillomavirus E5 protein. Cytokine Growth Factor Rev 2000; 11:283-93. [PMID: 10959076 DOI: 10.1016/s1359-6101(00)00012-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The 44-amino acid E5 protein of bovine papillomavirus is a homo-dimeric, transmembrane protein that transforms cells by activating the platelet-derived growth factor ss receptor in a ligand-independent fashion. The E5 protein induces receptor activation by forming a stable complex with the receptor, thereby inducing receptor dimerization, trans-phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor, and recruitment of cellular SH2 domain-containing proteins into a signal transduction complex. Direct interactions between specific transmembrane and juxtamembrane amino acids in the E5 protein and the PDGF ss receptor appear to drive complex formation and dimerization of the receptor. Further analysis of this unique mechanism of viral transformation promises to yield new insight into the regulation of growth factor receptor activity and cellular signal transduction pathways.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
34
|
Lai CC, Henningson C, DiMaio D. Bovine papillomavirus E5 protein induces the formation of signal transduction complexes containing dimeric activated platelet-derived growth factor beta receptor and associated signaling proteins. J Biol Chem 2000; 275:9832-40. [PMID: 10734138 DOI: 10.1074/jbc.275.13.9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine papillomavirus E5 protein binds to the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in constitutive activation of the receptor and cell growth transformation. By subjecting extracts from E5-transformed or PDGF-treated cells to velocity sedimentation in sucrose gradients, activated PDGF beta receptor complexes were separated from monomeric, inactive receptor. Rapidly sedimenting activated complexes contained oligomeric (apparently dimeric), tyrosine-phosphorylated PDGF beta receptor, the E5 protein, and associated cellular signaling proteins including the p85 subunit of phosphoinositol 3'-kinase, phospholipase Cgamma, and Ras-GTPase activating protein. These signaling proteins made the major contribution to the increased sedimentation rate of the activated receptor complexes. Pairwise analysis of components of these complexes indicated that multiple signaling proteins and the E5 protein were simultaneously present in the activated complexes. Our results also showed that the E5 protein and PDGF activated only a small fraction of the total PDGF beta receptor, that not all receptor molecules associated with the E5 protein were tyrosine-phosphorylated, and that signaling proteins could bind to hemiphosphorylated receptor dimers. On the basis of these results, we propose a model for the assembly of multiprotein, activated PDGF beta receptor complexes in response to the E5 protein.
Collapse
Affiliation(s)
- C C Lai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
35
|
Kaykas A, Sugden B. The amino-terminus and membrane-spanning domains of LMP-1 inhibit cell proliferation. Oncogene 2000; 19:1400-10. [PMID: 10723131 DOI: 10.1038/sj.onc.1203365] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The LMP-1 oncoprotein of EBV is required to maintain proliferation of infected B-cells and shares several features with CD40, TNF-R1, and related receptors. Members of this family can bind TRAF and TRADD molecules and activate NF-kappaB and AP-1, as can LMP-1. While CD40 and TNF-R1 are dependent on binding their ligands for their signaling, LMP-1 apparently is not. We have found that LMP-1 can act as a governor of cell proliferation and thereby limit its own activities. Its inhibition of proliferation is not mediated by apoptosis but results in cytostasis in four cell lines tested. The structural moiety of LMP-1 that distinguishes it from CD40 and TNF-R1, its amino-terminus and multiple membrane spanning segments, alone can mediate its cytostatic activity.
Collapse
Affiliation(s)
- A Kaykas
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, WI 53706, USA
| | | |
Collapse
|
36
|
DiMaio D, Lai CC, Klein O. Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. Annu Rev Microbiol 2000; 52:397-421. [PMID: 9891803 DOI: 10.1146/annurev.micro.52.1.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes a mechanism of viral transformation involving activation of cellular signaling pathways. We focus on four viral oncoproteins: the E5 protein of bovine papillomavirus, which activates the platelet-derived growth factor beta receptor; gp55 of spleen focus forming virus, which activates the erythropoietin receptor; polyoma virus middle T antigen, which resembles an activated receptor tyrosine kinase; and LMP-1 of Epstein-Barr virus, which mimics an activated tumor necrosis factor receptor. These examples indicate that diverse viruses induce cell transformation by activating cellular signal transduction pathways. Study of this mechanism of viral transformation will provide new insights into viral tumorigenesis and cellular signal transduction.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
37
|
Estrera VT, Luo W, Phan D, Earley K, Hixson DC, Lin SH. The cytoplasmic domain of C-CAM1 tumor suppressor is necessary and sufficient for suppressing the tumorigenicity of prostate cancer cells. Biochem Biophys Res Commun 1999; 263:797-803. [PMID: 10512760 DOI: 10.1006/bbrc.1999.1443] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that C-CAM1 cell adhesion molecule can suppress the growth of prostate cancer cells in vivo. In this study, we determined the minimal domain of C-CAM1 that is required for its tumor-suppressive activity. DU145 prostate cancer cells were infected with recombinant adenoviruses containing various C-CAM1 mutant genes, and the effects of the mutant C-CAM1 proteins on the growth of DU145 cells were assessed in a nude-mice xenograft model. Deletion of C-CAM1's cytoplasmic domain, which is not required for its adhesion activity, abolished the growth-suppressive activity, whereas deletion of the adhesion domain did not. This observation suggests that C-CAM1's extracellular domain may be not essential for its tumor suppressive activity. Indeed, we found that expression of the C-CAM1 cytoplasmic domain alone led to growth suppression of DU145 cells. These results suggest that the cytoplasmic domain of C-CAM1 is necessary and sufficient for its growth-suppressive function.
Collapse
Affiliation(s)
- V T Estrera
- Department of Molecular Pathology, University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Constantinescu SN, Liu X, Beyer W, Fallon A, Shekar S, Henis YI, Smith SO, Lodish HF. Activation of the erythropoietin receptor by the gp55-P viral envelope protein is determined by a single amino acid in its transmembrane domain. EMBO J 1999; 18:3334-47. [PMID: 10369674 PMCID: PMC1171414 DOI: 10.1093/emboj/18.12.3334] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The spleen focus forming virus (SFFV) gp55-P envelope glycoprotein specifically binds to and activates murine erythropoietin receptors (EpoRs) coexpressed in the same cell, triggering proliferation of erythroid progenitors and inducing erythroleukemia. Here we demonstrate specific interactions between the single transmembrane domains of the two proteins that are essential for receptor activation. The human EpoR is not activated by gp55-P but by mutation of a single amino acid, L238, in its transmembrane sequence to its murine counterpart serine, resulting in its ability to be activated. The converse mutation in the murine EpoR (S238L) abolishes activation by gp55-P. Computational searches of interactions between the membrane-spanning segments of murine EpoR and gp55-P provide a possible explanation: the face of the EpoR transmembrane domain containing S238 is predicted to interact specifically with gp55-P but not gp55-A, a variant which is much less effective in activating the murine EpoR. Mutational studies on gp55-P M390, which is predicted to interact with S238, provide additional support for this model. Mutation of M390 to isoleucine, the corresponding residue in gp55-A, abolishes activation, but the gp55-P M390L mutation is fully functional. gp55-P is thought to activate signaling by the EpoR by inducing receptor oligomerization through interactions involving specific transmembrane residues.
Collapse
Affiliation(s)
- S N Constantinescu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Human papillomaviruses (HPVs) are strictly host-specific and also show a distinct tropism to squamous epithelial cells. Upon HPV infection, only a portion of the virus reaching the nucleus seems to undergo replication, suggesting that HPV replication remains confined to a small number of cells. HPVs critically depend on the cellular machinery for the replication of their genome. Viral replication is restricted to differentiated keratinocytes that are normally growth arrested. Hence, HPVs have developed strategies to subvert cellular growth regulatory pathways and are able to uncouple cellular proliferation and differentiation. Endogenous growth factors and cellular oncogenes modify HPV E (early) and L (late) gene expression and influence on the pathogenesis of HPV infections. HPV oncoproteins (E5, E6, E7) are important proteins not only in cell transformation but also in the regulation of the mitotic cycle of the cell, thus allowing the continuous proliferation of the host cells. Cyclins are important regulators of cell cycle transitions through their ability to bind cyclin-dependent kinases (cdks). Cdks have no kinase activity unless they are associated with a cyclin. Several classes of cyclins exist which are thought to coordinate the timing of different events necessary for cell cycle progression. Each cdk catalytic subunit can associate with different cyclins, and the associated cyclin determines which proteins are phosphorylated by the cdk-cyclin complex. The effects of HPVs on the cell cycle are mediated through the inhibition of antioncogens (mostly p53 and retinoblastoma) and through interference with the cyclins and cdks, resulting in target cell proliferation, their delayed differentiation, and as a side-effect, in malignant transformation.
Collapse
Affiliation(s)
- S M Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, University of Turku, Finland.
| | | |
Collapse
|
40
|
Adduci AJ, Schlegel R. The transmembrane domain of the E5 oncoprotein contains functionally discrete helical faces. J Biol Chem 1999; 274:10249-58. [PMID: 10187811 DOI: 10.1074/jbc.274.15.10249] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E5 protein of bovine papillomavirus is a 44-amino acid, Golgi-resident, type II transmembrane protein that efficiently transforms immortalized mouse fibroblasts. The transmembrane (TM) domain of E5 is not only critical for biological activity, it also regulates interactions with cellular targets including the platelet derived growth factor receptor (PDGF-R) and the 16-kDa subunit of the vacuolar proton ATPase (V-ATPase). In order to define the specific TM amino acids essential for E5 biological and biochemical activity, we performed scanning alanine mutagenesis on 25 of the 30 potential TM residues and genetically mapped discrete alpha-helical domains which separately regulated the ability of E5 to bind PDGF-R, activate PDGF-R, and to form oligomers. Alanine substitutions at positions 17, 21, and 24 (which lie on the same helical face) greatly inhibited E5 association with the PDGF-R, suggesting that this region comprises the receptor binding site. PDGF-R activation also mapped to a specific but broader domain in E5; mutant proteins with alanines on one helical face (positions 8, 9, 11, 16, 19, 22, and 23) continued to induce PDGF-R tyrosine phosphorylation, whereas mutant proteins with alanines on the opposite helical face (positions 7, 10, 13, 17, 18, 21, 24, and 25) did not, indicating that the latter helical face was critical for mediating receptor transphosphorylation. Interestingly, these "activation-defective" mutants segregated into two classes: 1) those that were unable to form dimers but that could still form higher order oligomers and transform cells, and 2) those that were defective for PDGF-R binding and were transformation-incompetent. These findings suggest that the ability of E5 to dimerize and to bind PDGF-R is important for receptor activation. However, since several transformation-competent E5 mutants were defective for binding and/or activating PDGF-R, it is apparent that E5 must have additional activities to mediate cell transformation. Finally, alanine substitutions also defined two separate helical faces critical for E5/E5 interactions (homodimer formation). Thus, our data identify distinct E5 helical faces that regulate homologous and heterologous intramembrane interactions and define two new classes of biologically active TM mutants.
Collapse
Affiliation(s)
- A J Adduci
- Department of Pathology, Georgetown University School of Medicine, Washington, District of Columbia 20007, USA
| | | |
Collapse
|
41
|
Gurezka R, Laage R, Brosig B, Langosch D. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 1999; 274:9265-70. [PMID: 10092601 DOI: 10.1074/jbc.274.14.9265] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific interactions between alpha-helical transmembrane segments are important for folding and/or oligomerization of membrane proteins. Previously, we have shown that most transmembrane helix-helix interfaces of a set of crystallized membrane proteins are structurally equivalent to soluble leucine zipper interaction domains. To establish a simplified model of these membrane-spanning leucine zippers, we studied the homophilic interactions of artificial transmembrane segments using different experimental approaches. Importantly, an oligoleucine, but not an oligoalanine, se- quence efficiently self-assembled in membranes as well as in detergent solution. Self-assembly was maintained when a leucine zipper type of heptad motif consisting of leucine residues was grafted onto an alanine host sequence. Analysis of point mutants or of a random sequence confirmed that the heptad motif of leucines mediates self-recognition of our artificial transmembrane segments. Further, a data base search identified degenerate versions of this leucine motif within transmembrane segments of a variety of functionally different proteins. For several of these natural transmembrane segments, self-interaction was experimentally verified. These results support various lines of previously reported evidence where these transmembrane segments were implicated in the oligomeric assembly of the corresponding proteins.
Collapse
Affiliation(s)
- R Gurezka
- Universität Heidelberg, Neurobiology Department, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Klein O, Kegler-Ebo D, Su J, Smith S, DiMaio D. The bovine papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor beta receptor and transformation of C127 cells. J Virol 1999; 73:3264-72. [PMID: 10074180 PMCID: PMC104090 DOI: 10.1128/jvi.73.4.3264-3272.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF beta receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634-4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF beta receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF beta receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF beta receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF beta receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF beta receptor.
Collapse
Affiliation(s)
- O Klein
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
43
|
Lai CC, Henningson C, DiMaio D. Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor beta receptor. Proc Natl Acad Sci U S A 1998; 95:15241-6. [PMID: 9860953 PMCID: PMC28027 DOI: 10.1073/pnas.95.26.15241] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Indexed: 01/09/2023] Open
Abstract
The bovine papillomavirus E5 protein is a 44-aa transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor and induces constitutive tyrosine phosphorylation and activation of the receptor, resulting in cell transformation. The E5 protein does not resemble PDGF, but rather activates the receptor in a ligand-independent fashion, thus providing a unique system to examine activation of receptor tyrosine kinases. Here, we used a variety of approaches to explore the mechanism of receptor activation by the E5 protein. Chemical cross-linking experiments revealed that the E5 protein activated only a small fraction of the endogenous PDGF beta receptor in transformed fibroblasts and suggested that this fraction was constitutively dimerized. Coimmunoprecipitation experiments using extracts of cells engineered to coexpress full-length and truncated PDGF beta receptors confirmed that the E5 protein induced oligomerization of the receptor. Furthermore, in cells expressing the E5 protein, a kinase-active receptor was able to trans-phosphorylate a kinase-negative mutant receptor but was unable to catalyze intramolecular autophosphorylation. These results indicated that the E5 protein induced PDGF beta receptor activation by forming a stable complex with the receptor, resulting in receptor dimerization and trans-phosphorylation.
Collapse
Affiliation(s)
- C C Lai
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
44
|
Irusta PM, DiMaio D. A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation. EMBO J 1998; 17:6912-23. [PMID: 9843497 PMCID: PMC1171039 DOI: 10.1093/emboj/17.23.6912] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Platelet-derived growth factor beta receptor (PDGFbetaR) is a transmembrane receptor tyrosine kinase involved in a variety of cellular functions. We have generated a constitutively activated murine PDGFbetaR containing a valine to alanine substitution at residue 536, located in the cytoplasmic juxtamembrane domain. When this mutant receptor (PR-V536A) was expressed in Ba/F3 cells, it allowed the cells to survive and proliferate in the absence of IL-3 or PDGF, and tyrosine phosphorylation of PR-V536A was increased markedly compared with that of the wild-type PDGFbetaR in the absence of ligand and similar to that observed in ligand-activated PDGFbetaR. PR-V536A displayed increased tyrosine kinase activity in vitro toward an exogenous substrate, and the tyrosine kinase activity of the receptor was required for the constitutive activation of the mutant. This valine to alanine substitution also activated a PDGFbetaR mutant unable to bind PDGF. Alanine substitutions at positions homologous to V536 of the murine PDGFbetaR also activated other members of the PDGF receptor subfamily. The amino acid sequence of this region revealed a strong similarity to WW domains present in other signal transduction proteins. Furthermore, GST fusion proteins containing the juxtamembrane region of the PDGFR specifically associated with peptides containing the WW domain consensus recognition sequence PPXY. The results suggest that the cytoplasmic juxtamembrane domain plays a role in the regulation of receptor activity and function, perhaps by participating in protein-protein interactions.
Collapse
Affiliation(s)
- P M Irusta
- Department of Genetics, Yale University School of Medicine, P.O. Box 208005, New Haven, CT 06510, USA
| | | |
Collapse
|
45
|
|
46
|
Klein O, Polack GW, Surti T, Kegler-Ebo D, Smith SO, DiMaio D. Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J Virol 1998; 72:8921-32. [PMID: 9765437 PMCID: PMC110309 DOI: 10.1128/jvi.72.11.8921-8932.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1998] [Accepted: 08/12/1998] [Indexed: 11/20/2022] Open
Abstract
The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF beta receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF beta receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF beta receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF beta receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF beta receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF beta receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF beta receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we suggest a structural basis for the role of the residue at position 17 in E5 dimerization and in complex formation between the E5 protein and the PDGF beta receptor.
Collapse
Affiliation(s)
- O Klein
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
47
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|