1
|
Kaushik N, Jaiswal A, Bhartiya P, Choi EH, Kaushik NK. TFCP2 as a therapeutic nexus: unveiling molecular signatures in cancer. Cancer Metastasis Rev 2024; 43:959-975. [PMID: 38451384 DOI: 10.1007/s10555-024-10175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Pradeep Bhartiya
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
5
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
6
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
7
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyeon Cheol Jin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - June Ho Shin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae Kyu Yi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Jin Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- CGK Biopharma Co. Ltd., Seoul 04763, Korea
| |
Collapse
|
8
|
Epigenetic Regulation of HIV-1 Sense and Antisense Transcription in Response to Latency-Reversing Agents. Noncoding RNA 2023; 9:ncrna9010005. [PMID: 36649034 PMCID: PMC9844351 DOI: 10.3390/ncrna9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Nucleosomes positioned on the HIV-1 5' long terminal repeat (LTR) regulate sense transcription as well as the establishment and maintenance of latency. A negative-sense promoter (NSP) in the 3' LTR expresses antisense transcripts with coding and non-coding activities. Previous studies identified cis-acting elements that modulate NSP activity. Here, we used the two chronically infected T cell lines, ACH-2 and J1.1, to investigate epigenetic regulation of NSP activity. We found that histones H3 and H4 are present on the 3' LTR in both cell lines. Following treatment with histone deacetylase inhibitors (HDACi), the levels of H3K27Ac increased and histone occupancy declined. HDACi treatment also led to increased levels of RNA polymerase II (RNPII) at NSP, and antisense transcription was induced with similar kinetics and to a similar extent as 5' LTR-driven sense transcription. We also detected H3K9me2 and H3K27me3 on NSP, along with the enzymes responsible for these epigenetic marks, namely G9a and EZH2, respectively. Treatment with their respective inhibitors had little or no effect on RNPII occupancy at the two LTRs, but it induced both sense and antisense transcription. Moreover, the increased expression of antisense transcripts in response to treatment with a panel of eleven latency-reversing agents closely paralleled and was often greater than the effect on sense transcripts. Thus, HIV-1 sense and antisense RNA expression are both regulated via acetylation and methylation of lysine 9 and 27 on histone H3. Since HIV-1 antisense transcripts act as non-coding RNAs promoting epigenetic silencing of the 5' LTR, our results suggest that the limited efficacy of latency-reversing agents in the context of 'shock and kill' cure strategies may be due to concurrent induction of antisense transcripts thwarting their effect on sense transcription.
Collapse
|
9
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Epigenetic Mechanisms of HIV-1 Persistence. Vaccines (Basel) 2021; 9:vaccines9050514. [PMID: 34067608 PMCID: PMC8156729 DOI: 10.3390/vaccines9050514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.
Collapse
|
11
|
Lee Yu K, Jung YM, Park SH, Lee SD, You JC. Human transcription factor YY1 could upregulate the HIV-1 gene expression. BMB Rep 2021. [PMID: 31818358 PMCID: PMC7262509 DOI: 10.5483/bmbrep.2020.53.5.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gene expression in HIV-1 is regulated by the promoters in 5’ long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.
Collapse
Affiliation(s)
- Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, Seoul 63071, Korea
| | - Yu Mi Jung
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, Seoul 63071, Korea
| | - Seong Hyun Park
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, Seoul 63071, Korea
| | - Seong Deok Lee
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, Seoul 63071, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, The Catholic University of Korea, Seoul 63071, Korea
| |
Collapse
|
12
|
Transcription factors CP2 and YY1 as prognostic markers in head and neck squamous cell carcinoma: analysis of The Cancer Genome Atlas and a second independent cohort. J Cancer Res Clin Oncol 2020; 147:755-765. [PMID: 33315124 PMCID: PMC7872999 DOI: 10.1007/s00432-020-03482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/22/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The transcription factors YY1 and CP2 have been associated with tumor promotion and suppression in various cancers. Recently, simultaneous expression of both markers was correlated with negative prognosis in cancer. The aim of this study was to explore the expression of YY1 and CP2 in head and neck squamous cell carcinoma (HNSCC) patients and their association with survival. METHODS First, we analyzed mRNA expression and copy number variations (CNVs) of YY1 and CP2 using "The Cancer Genome Atlas" (TCGA) with 510 HNSCC patients. Secondly, protein expression was investigated via immunohistochemistry in 102 patients, who were treated in the Vienna General Hospital, utilizing a tissue microarray. RESULTS The median follow-up was 2.9 years (1.8-4.6) for the TCGA cohort and 10.3 years (6.5-12.8) for the inhouse tissue micro-array (TMA) cohort. The median overall survival of the TCGA cohort was decreased for patients with a high YY1 mRNA expression (4.0 vs. 5.7 years, p = 0.030, corr. p = 0.180) and high YY1-CNV (3.53 vs. 5.4 years, p = 0.0355, corr. p = 0.213). Furthermore, patients with a combined high expression of YY1 and CP2 mRNA showed a worse survival (3.5 vs. 5.4 years, p = 0.003, corr. p = 0.018). The mortality rate of patients with co-expression of YY1 and CP2 mRNA was twice as high compared to patients with low expression of one or both (HR 1.99, 95% CI 1.11-3.58, p = 0.021). Protein expression of nuclear YY1 and CP2 showed no association with disease outcome in our inhouse cohort. CONCLUSION Our data indicate that simultaneous expression of YY1 and CP2 mRNA is associated with shorter overall survival. Thus, combined high mRNA expression might be a suitable prognostic marker for risk stratification in HNSCC patients. However, since we could not validate this finding at genomic or protein level, we hypothesize that unknown underlying mechanisms which regulate mRNA transcription of YY1 and CP2 are the actual culprits leading to a worse survival.
Collapse
|
13
|
Mota TM, McCann CD, Danesh A, Huang SH, Magat DB, Ren Y, Leyre L, Bui TD, Rohwetter TM, Kovacs CM, Benko E, MacLaren L, Wimpelberg A, Cannon CM, Hardy WD, Safrit JT, Jones RB. Integrated Assessment of Viral Transcription, Antigen Presentation, and CD8 + T Cell Function Reveals Multiple Limitations of Class I-Selective Histone Deacetylase Inhibitors during HIV-1 Latency Reversal. J Virol 2020; 94:e01845-19. [PMID: 32051267 PMCID: PMC7163115 DOI: 10.1128/jvi.01845-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical trials investigating histone deacetylase inhibitors (HDACi) to reverse HIV-1 latency aim to expose reservoirs in antiretroviral (ARV)-treated individuals to clearance by immune effectors, yet have not driven measurable reductions in the frequencies of infected cells. We therefore investigated the effects of the class I-selective HDACi nanatinostat and romidepsin on various blocks to latency reversal and elimination, including viral splicing, antigen presentation, and CD8+ T cell function. In ex vivo CD4+ T cells from ARV-suppressed individuals, both HDACi significantly induced viral transcription, but not splicing nor supernatant HIV-1 RNA. In an HIV-1 latency model using autologous CD8+ T cell clones as biosensors of antigen presentation, neither HDACi-treated CD4+ T cell condition induced clone degranulation. Both HDACi also impaired the function of primary CD8+ T cells in viral inhibition assays, with nanatinostat causing less impairment. These findings suggest that spliced or cell-free HIV-1 RNAs are more indicative of antigen expression than unspliced HIV-RNAs and may help to explain the limited abilities of HDACi to generate CD8+ T cell targets in vivoIMPORTANCE Antiretroviral (ARV) drug regimens suppress HIV-1 replication but are unable to cure infection. This leaves people living with HIV-1 burdened by a lifelong commitment to expensive daily medication. Furthermore, it has become clear that ARV therapy does not fully restore health, leaving individuals at elevated risk for cardiovascular disease, certain types of cancers, and neurocognitive disorders, as well as leaving them exposed to stigma. Efforts are therefore under way to develop therapies capable of curing infection. A key focus of these efforts has been on a class of drugs called histone deacetylase inhibitors (HDACi), which have the potential of exposing hidden reservoirs of HIV-1 to elimination by the immune system. Unfortunately, clinical trial results with HDACi have thus far been disappointing. In the current study, we integrate a number of experimental approaches to build a model that provides insights into the limited activity of HDACi in clinical trials and offers direction for future approaches.
Collapse
Affiliation(s)
- Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Szu-Han Huang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dean B Magat
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Louise Leyre
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Tracy D Bui
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thomas M Rohwetter
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | | | - Lynsay MacLaren
- Research Department, Whitman-Walker Health, Washington, DC, USA
| | | | | | - W David Hardy
- Division of Infectious Disease, Johns Hopkins University School of Medicine, Washington, DC, USA
| | | | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
14
|
Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019; 8:pathogens8030137. [PMID: 31487807 PMCID: PMC6789648 DOI: 10.3390/pathogens8030137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.
Collapse
|
15
|
Ke R, Conway JM, Margolis DM, Perelson AS. Determinants of the efficacy of HIV latency-reversing agents and implications for drug and treatment design. JCI Insight 2018; 3:123052. [PMID: 30333308 DOI: 10.1172/jci.insight.123052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
HIV eradication studies have focused on developing latency-reversing agents (LRAs). However, it is not understood how the rate of latent reservoir reduction is affected by different steps in the process of latency reversal. Furthermore, as current LRAs are host-directed, LRA treatment is likely to be intermittent to avoid host toxicities. Few careful studies of the serial effects of pulsatile LRA treatment have yet been done. This lack of clarity makes it difficult to evaluate the efficacy of candidate LRAs or predict long-term treatment outcomes. We constructed a mathematical model that describes the dynamics of latently infected cells under LRA treatment. Model analysis showed that, in addition to increasing the immune recognition and clearance of infected cells, the duration of HIV antigen expression (i.e., the period of vulnerability) plays an important role in determining the efficacy of LRAs, especially if effective clearance is achieved. Patients may benefit from pulsatile LRA exposures compared with continuous LRA exposures if the period of vulnerability is long and the clearance rate is high, both in the presence and absence of an LRA. Overall, the model framework serves as a useful tool to evaluate the efficacy and the rational design of LRAs and combination strategies.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.,Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, USA
| | - David M Margolis
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine, Microbiology and Immunology, UNC Chapel Hill School of Medicine, and.,Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
16
|
Roebuck KA, Saifuddin M. Regulation of HIV-1 transcription. Gene Expr 2018; 8:67-84. [PMID: 10551796 PMCID: PMC6157391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Immunology/Microbiology, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
17
|
Kuai Q, Lu X, Qiao Z, Wang R, Wang Y, Ye S, He M, Wang Y, Zhang T, Wu H, Ren S, Yu Q. Histone deacetylase inhibitor chidamide promotes reactivation of latent human immunodeficiency virus by introducing histone acetylation. J Med Virol 2018; 90:1478-1485. [PMID: 29704439 DOI: 10.1002/jmv.25207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/18/2018] [Indexed: 01/30/2023]
Abstract
Highly active antiretroviral therapy can reduce the human immunodeficiency virus (HIV) viral load in the plasma to undetectable levels. However, because of the presence of latent HIV reservoirs, it is difficult to completely eradicate HIV in infected patients. Our objective was to assess the potency of chidamide, a novel histone deacetylase inhibitor recently approved for cancer treatment by the China Food and Drug Administration, to reactivate latent HIV-1 via histone acetylation. Viral reactivities of chidamide were accessed in 2 latent HIV pseudotype virus cell reporter systems (J-Lat Tat-green fluorescent protein clone A72 and TZM-bl), a latently infected full-length HIV virus cell system (U1/HIV), and resting CD4+ T cells from 9 HIV-infected patients under highly active antiretroviral therapy with undetectable viral load. Chidamide was able to increase HIV expression in each cell line, as evidenced by green fluorescent protein, luciferase activity, and p24, as well as to reactivate latent HIV-1 in primary CD4+ T cells of HIV-infected patients. Histone acetylation adjacent to the HIV promoter in A72 cells was determined by chromatin immunoprecipitation. Chidamide was able to increase histone H3 and H4 acetylation at the HIV promoter. In brief, chidamide induced the reactivation of latent HIV in pseudotype virus reporter cells, latently infected cells, and primary CD4+ T cells, making this compound an attractive option for future clinical trials.
Collapse
Affiliation(s)
- Qiyuan Kuai
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xiaofan Lu
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Zhixin Qiao
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yanbing Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Sanxian Ye
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Tong Zhang
- STD/HIV Research Laboratory, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center of Infectious Disease, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Suping Ren
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Qun Yu
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
18
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
19
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Gravatt LAH, Leibrand CR, Patel S, McRae M. New Drugs in the Pipeline for the Treatment of HIV: a Review. Curr Infect Dis Rep 2017; 19:42. [DOI: 10.1007/s11908-017-0601-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Datta PK, Kaminski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K. HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 2017; 14:431-441. [PMID: 27009094 DOI: 10.2174/1570162x14666160324125536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/04/2015] [Accepted: 01/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells. Cells of the myeloid lineage, which are the first line of defense against pathogens and participate in HIV dissemination into sanctuary organs, also serve as cellular reservoirs of HIV-1. In latently infected resting CD4+ T cells, the integrated copies of proviral DNA remain in a dormant state, yet possess the ability to produce replication competent virus after cellular activation. Studies have demonstrated that modification of chromatin structure plays a role in establishing persistence, in part suggesting that latency is, controlled epigenetically. CONCLUSION Current efforts to eradicate HIV-1 from this cell population focus primarily on a "shock and kill" approach through cellular reactivation to trigger elimination of virus producing cells by cytolysis or host immune responses. However, studies revealed several limitations to this approach that require more investigation to assess its clinical application. Recent advances in gene editing technology prompted use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells. This technology, which requires a detailed understanding of the viral genetics and robust delivery, may serve as a powerful strategy to eliminate the latent reservoir in the host leading to a sterile cure of AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA.
| |
Collapse
|
22
|
Turner AMW, Margolis DM. Chromatin Regulation and the Histone Code in HIV Latency
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:229-243. [PMID: 28656010 PMCID: PMC5482300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,To whom all correspondence should be addressed: David Margolis, University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, CB#7042, 120 Mason Farm Road, Chapel Hill, NC, 27599-7435, Tel: (919) 966-6388, .
| |
Collapse
|
23
|
The Multifaceted Contributions of Chromatin to HIV-1 Integration, Transcription, and Latency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:197-252. [PMID: 28069134 DOI: 10.1016/bs.ircmb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The capacity of the human immunodeficiency virus (HIV-1) to establish latent infections constitutes a major barrier to the development of a cure for HIV-1. In latent infection, replication competent HIV-1 provirus is integrated within the host genome but remains silent, masking the infected cells from the activity of the host immune response. Despite the progress in elucidating the molecular players that regulate HIV-1 gene expression, the mechanisms driving the establishment and maintenance of latency are still not fully understood. Transcription from the HIV-1 genome occurs in the context of chromatin and is subjected to the same regulatory mechanisms that drive cellular gene expression. Much like in eukaryotic genes, the nucleosomal landscape of the HIV-1 promoter and its position within genomic chromatin are determinants of its transcriptional activity. Understanding the multilayered chromatin-mediated mechanisms that underpin HIV-1 integration and expression is of utmost importance for the development of therapeutic strategies aimed at reducing the pool of latently infected cells. In this review, we discuss the impact of chromatin structure on viral integration, transcriptional regulation and latency, and the host factors that influence HIV-1 replication by regulating chromatin organization. Finally, we describe therapeutic strategies under development to target the chromatin-HIV-1 interplay.
Collapse
|
24
|
Kim JS, Chae JH, Cheon YP, Kim CG. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis. Acta Histochem 2016; 118:685-692. [PMID: 27612612 DOI: 10.1016/j.acthis.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Maintaining stemness and permitting differentiation mediated by combinations of transcription factors (TFs) are key aspects of mammalian spermatogenesis. It has been established that yin yang 1 (YY1), a target factor of mammalian polycomb repressive complex 2 (PRC2) and a regulator of stemness, is involved in the stable maintenance of prophase stage spermatocytes. Recently, we have demonstrated that the TF CP2c partners with YY1 in some cells to antagonistically regulate the other protein's function. To date, the functional roles of YY1 and CP2c in spermatogonial stem cells and their derived germ cells remain unclear. Here, we investigated the expression of YY1 and CP2c in mouse gonocytes and germ cells using tissue immunohistochemical and immunofluorescence analyses. At E14.5, both YY1 and CP2c were stained in gonocytes and Sertoli cells in testicular cords, showing different proportion and density of immunoreactivity. However, in adult testes, YY1 was localized in the nuclei of spermatogonial stem cells and spermatocytes, but not in spermatozoa. It was also detected in spermatogonia and spermatids in a stage-specific manner during spermatogenic cycle. CP2c could be detected mostly in the cytoplasm of spermatocytes but not at all in spermatogonial stem cells, indicating mutually exclusive expression of CP2c and YY1. Interestingly, however, CP2c was stained in the cytoplasm and nucleus of spermatogonia at elongation and release stages, and co-localized with YY1 in the nucleus at grouping, maturation, and releasing stages. Neither YY1 nor CP2c was expressed in spermatozoa. Our data indicate that YY1 strongly localizes in the spermatogonial stem cells and co-localizes heterogeneously with CP2c to permit spermatogenesis, and also suggest that YY1 is essential for stemness of spermatogonial stem cells (SCs) whereas CP2c is critical for the commitment of spermatogonia and during the progression of spermatogonia to spermatids. This evaluation expands our understanding of the molecular mechanism of spermatogonia formation as well as spermatogenesis in general.
Collapse
|
25
|
Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science 2016; 353:aaf6517. [PMID: 27463679 DOI: 10.1126/science.aaf6517] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society.
Collapse
Affiliation(s)
- David M Margolis
- University of North Carolina HIV Cure Center, Department of Medicine, and Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - J Victor Garcia
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, PA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, and Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
26
|
Modeling the Effects of Vorinostat In Vivo Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells. PLoS Pathog 2015; 11:e1005237. [PMID: 26496627 PMCID: PMC4619772 DOI: 10.1371/journal.ppat.1005237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Furthermore, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo. Combination antiretroviral therapy (cART) for HIV infection must be taken for life due to the existence of long lived latently infected cells. Recent efforts have focused on developing latency reversing agents to eliminate latently infected cells by activating HIV production. In this work, we assess the impact of a latency reversing agent, vorinostat, by fitting dynamic models to data from a clinical trial. Results show that vorinostat treatment induces HIV transcription transiently and that the sustained induction of HIV transcription may depend on the temporal impact of vorinostat on host gene expression. Our results also suggest that vorinostat treatment is not sufficient to induce killing of latently infected cells in a majority of HIV-infected individuals on cART.
Collapse
|
27
|
Bernhard W, Barreto K, Raithatha S, Sadowski I. An upstream YY1 binding site on the HIV-1 LTR contributes to latent infection. PLoS One 2013; 8:e77052. [PMID: 24116200 PMCID: PMC3792934 DOI: 10.1371/journal.pone.0077052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023] Open
Abstract
During HIV-1 infection a population of latently infected cells is established. This population is the major obstacle preventing total eradication of the virus from AIDS patients. HIV-1 latency is thought to arise by various mechanisms including repressive chromatin modifications. Transcription factors such as YY1 have been shown to facilitate repressive chromatin modifications by the recruitment of histone deacetylases. In this study, we identified a novel binding site for YY1 on the HIV-1 LTR, 120 nucleotides upstream of the transcription start site. We show that YY1 can bind to this site in vitro and in vivo and that binding to the LTR is dissociated upon T cell activation. Overexpression of YY1 causes an increase in the proportion of cells that produce latent infections. These observations, in combination with previous results, demonstrate that YY1 plays a prominent role in controlling the establishment and maintenance of latent HIV-1 provirus in unstimulated cells.
Collapse
Affiliation(s)
- Wendy Bernhard
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kris Barreto
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sheetal Raithatha
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
28
|
Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N, Ocwieja KE, Berry CC, Looney D, Shan L, Agosto LM, Pace MJ, Siliciano RF, O'Doherty U, Guatelli J, Planelles V, Bushman FD. HIV latency and integration site placement in five cell-based models. Retrovirology 2013; 10:90. [PMID: 23953889 PMCID: PMC3765678 DOI: 10.1186/1742-4690-10-90] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 02/06/2023] Open
Abstract
Background HIV infection can be treated effectively with antiretroviral agents, but the persistence of a latent reservoir of integrated proviruses prevents eradication of HIV from infected individuals. The chromosomal environment of integrated proviruses has been proposed to influence HIV latency, but the determinants of transcriptional repression have not been fully clarified, and it is unclear whether the same molecular mechanisms drive latency in different cell culture models. Results Here we compare data from five different in vitro models of latency based on primary human T cells or a T cell line. Cells were infected in vitro and separated into fractions containing proviruses that were either expressed or silent/inducible, and integration site populations sequenced from each. We compared the locations of 6,252 expressed proviruses to those of 6,184 silent/inducible proviruses with respect to 140 forms of genomic annotation, many analyzed over chromosomal intervals of multiple lengths. A regularized logistic regression model linking proviral expression status to genomic features revealed no predictors of latency that performed better than chance, though several genomic features were significantly associated with proviral expression in individual models. Proviruses in the same chromosomal region did tend to share the same expressed or silent/inducible status if they were from the same cell culture model, but not if they were from different models. Conclusions The silent/inducible phenotype appears to be associated with chromosomal position, but the molecular basis is not fully clarified and may differ among in vitro models of latency.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 2013; 21:277-85. [PMID: 23517573 DOI: 10.1016/j.tim.2013.02.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Abstract
Latent HIV persists in CD4(+) T cells in infected patients under antiretroviral therapy (ART). Latency is associated with transcriptional silencing of the integrated provirus and driven, at least in part, by histone deacetylases (HDACs), a family of chromatin-associated proteins that regulate histone acetylation and the accessibility of DNA to transcription factors. Remarkably, inhibition of HDACs is sufficient to reactivate a fraction of latent HIV in a variety of experimental systems. This basic observation led to the shock and kill idea that forcing the transcriptional activation of HIV might lead to virus expression, to virus- or host-induced cell death of the reactivated cells, and to the eradication of the pool of latently infected cells. Such intervention might possibly lead to a cure for HIV-infected patients. Here, we review the basic biology of HDACs and their inhibitors, the role of HDACs in HIV latency, and recent efforts to use HDAC inhibitors to reactivate latent HIV in vitro and in vivo.
Collapse
Affiliation(s)
- Kotaro Shirakawa
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
30
|
Golebiowski FM, Górecki A, Bonarek P, Rapala-Kozik M, Kozik A, Dziedzicka-Wasylewska M. An investigation of the affinities, specificity and kinetics involved in the interaction between the Yin Yang 1 transcription factor and DNA. FEBS J 2012; 279:3147-58. [PMID: 22776217 DOI: 10.1111/j.1742-4658.2012.08693.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human transcription factor Yin Yang 1 (YY1) is a four zinc-finger protein that regulates a large number of genes with various biological functions in processes such as development, carcinogenesis and B-cell maturation. The natural binding sites of YY1 are relatively unconserved and have a short core sequence (CCAT). We were interested in determining how YY1 recognizes its binding sites and achieves the necessary sequence selectivity in the cell. Using fluorescence anisotropy, we determined the equilibrium dissociation constants for selected naturally occurring YY1 binding sites that have various levels of similarity to the consensus sequence. We found that recombinant YY1 interacts with its specific binding sites with relatively low affinities from the high nanomolar to the low micromolar range. Using a fluorescence anisotropy competition assay, we determined the affinity of YY1 for non-specific DNA to be between 30 and 40 μm, which results in low specificity ratios of between 3 and 220. Additionally, surface plasmon resonance measurements showed rapid association and dissociation rates, suggesting that the binding strength is regulated through changes in both k(a) and k(d). In conclusion, we propose that, in the cell, YY1 may achieve higher specificity by associating with co-regulators or as a part of multi-subunit complexes.
Collapse
Affiliation(s)
- Filip M Golebiowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Mechanisms of HIV Transcriptional Regulation and Their Contribution to Latency. Mol Biol Int 2012; 2012:614120. [PMID: 22701796 PMCID: PMC3371693 DOI: 10.1155/2012/614120] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/09/2012] [Indexed: 12/26/2022] Open
Abstract
Long-lived latent HIV-infected cells lead to the rebound of virus replication following antiretroviral treatment interruption and present a major barrier to eliminating HIV infection. These latent reservoirs, which include quiescent memory T cells and tissue-resident macrophages, represent a subset of cells with decreased or inactive proviral transcription. HIV proviral transcription is regulated at multiple levels including transcription initiation, polymerase recruitment, transcription elongation, and chromatin organization. How these biochemical processes are coordinated and their potential role in repressing HIV transcription along with establishing and maintaining latency are reviewed.
Collapse
|
32
|
Santhekadur PK, Rajasekaran D, Siddiq A, Gredler R, Chen D, Schaus SE, Hansen U, Fisher PB, Sarkar D. The transcription factor LSF: a novel oncogene for hepatocellular carcinoma. Am J Cancer Res 2012; 2:269-285. [PMID: 22679558 PMCID: PMC3365805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/05/2012] [Indexed: 06/01/2023] Open
Abstract
The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer's disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a novel therapeutic avenue for HCC, an invariably fatal disease.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Dong Chen
- Department of Pathology,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Scott E Schaus
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University (CMLDBU)Boston, MA 02215, USA
| | - Ulla Hansen
- Department of Biology, Boston UniversityBoston, MA 02215, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Massey Cancer Center,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- Department of Pathology,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
- VCU Massey Cancer Center,Virginia Commonwealth University, School of MedicineRichmond, VA 23298, USA
| |
Collapse
|
33
|
Tripathy MK, Abbas W, Herbein G. Epigenetic regulation of HIV-1 transcription. Epigenomics 2012; 3:487-502. [PMID: 22126207 DOI: 10.2217/epi.11.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
After entry into the target cell and reverse transcription, HIV-1 genes are integrated into the host genome. It is now well established that the viral promoter activity is directly governed by its chromatin environment. Nuc-1, a nucleosome located immediately downstream of the HIV-1 transcriptional initiation site directly impedes long-terminal repeat (LTR) activity. Epigenetic modifications and disruption of Nuc-1 are a prerequisite to the activation of LTR-driven transcription and viral expression. The compaction of chromatin and its permissiveness for transcription are directly dependent on the post-translational modifications of histones such as acetylation, methylation, phosphorylation and ubiquitination. Understanding the molecular mechanisms underlying HIV-1 transcriptional silencing and activation is thus a major challenge in the fight against AIDS and will certainly lead to new therapeutic tools.
Collapse
Affiliation(s)
- Manoj Kumar Tripathy
- Department of Virology, University of Franche-Comté, EA4266, IFR133 INSERM, CHU Besançon, Besançon, France
| | | | | |
Collapse
|
34
|
Abstract
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.
Collapse
|
35
|
Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP. Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 2010; 84:5958-74. [PMID: 20357084 PMCID: PMC2876650 DOI: 10.1128/jvi.00161-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/24/2010] [Indexed: 12/11/2022] Open
Abstract
The eradication of HIV-1 will likely require novel clinical approaches to purge the reservoir of latently infected cells from a patient. We hypothesize that this therapy should target a wide range of latent integration sites, act effectively against viral variants that have acquired mutations in their promoter regions, and function across multiple HIV-1 subtypes. By using primary CD4(+) and Jurkat cell-based in vitro HIV-1 latency models, we observe that single-agent latency reactivation therapy is ineffective against most HIV-1 subtypes. However, we demonstrate that the combination of two clinically promising drugs-namely, prostratin and suberoylanilide hydroxamic acid (SAHA)-overcomes the limitations of single-agent approaches and can act synergistically for many HIV-1 subtypes, including A, B, C, D, and F. Finally, by identifying the proviral integration position of latent Jurkat cell clones, we demonstrate that this drug combination does not significantly enhance the expression of endogenous genes nearest to the proviral integration site, indicating that its effects may be selective.
Collapse
Affiliation(s)
- John C. Burnett
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Kwang-il Lim
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Arash Calafi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John J. Rossi
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Adam P. Arkin
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, Department of Bioengineering, University of California, Berkeley, California 94720, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
36
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
37
|
Abstract
Astrocyte elevated gene-1 (AEG-1) is overexpressed in >90% of human hepatocellular carcinoma (HCC) patients and plays a significant role in mediating aggressive progression of HCC. AEG-1 is known to augment invasion, metastasis, and angiogenesis, and we now demonstrate that AEG-1 directly contributes to another important hallmark of aggressive cancers, that is, resistance to chemotherapeutic drugs, such as 5-fluorouracil (5-FU). AEG-1 augments expression of the transcription factor LSF that regulates the expression of thymidylate synthase (TS), a target of 5-FU. In addition, AEG-1 enhances the expression of dihydropyrimidine dehydrogenase (DPYD) that catalyzes the initial and rate-limiting step in the catabolism of 5-FU. siRNA-mediated inhibition of AEG-1, LSF, or DPYD significantly increased the sensitivity of HCC cells to 5-FU in vitro and a lentivirus delivering AEG-1 siRNA in combination with 5-FU markedly inhibited growth of HCC cells xenotransplanted in athymic nude mice when compared to either agent alone. The present studies highlight 2 previously unidentified genes, AEG-1 and LSF, contributing to chemoresistance. Inhibition of AEG-1 might be exploited as a therapeutic strategy along with 5-FU-based combinatorial chemotherapy for HCC, a highly fatal cancer with currently very limited therapeutic options.
Collapse
|
38
|
Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 2009; 25:207-12. [PMID: 19239360 DOI: 10.1089/aid.2008.0191] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylases (HDACs) act on histones within the nucleosome-bound promoter of human immunodeficiency virus type 1 (HIV-1) to maintain proviral latency. HDAC inhibition leads to promoter expression and the escape of HIV from latency. We evaluated the ability of the potent inhibitor recently licensed for use in oncology, suberoylanilide hydroxamic acid (SAHA; Vorinostat), selective for Class I HDACs, to induce HIV promoter expression in cell lines and virus production from the resting CD4(+) T cells of antiretroviral-treated, aviremic HIV-infected patients. In J89, a Jurkat T cell line infected with a single HIV genome encoding the enhanced green fluorescence protein (EGFP) within the HIV genome, SAHA induced changes at nucleosome 1 of the HIV promoter in chromatin immunoprecipitation (ChIP) assays in concert with EGFP expression. In the resting CD4(+) T cells of antiretroviral-treated, aviremic HIV-infected patients clinically achievable exposures to SAHA induced virus outgrowth ex vivo. These results suggest that potent, selective HDAC inhibitors may allow improved targeting of persistent proviral HIV infection, and define parameters for in vivo studies using SAHA.
Collapse
Affiliation(s)
- Nancie M. Archin
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Amy Espeseth
- Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Daniel Parker
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Manzoor Cheema
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Daria Hazuda
- Merck Research Laboratories, West Point, Pennsylvania 19486
| | - David M. Margolis
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
39
|
|
40
|
Burnett JC, Miller-Jensen K, Shah PS, Arkin AP, Schaffer DV. Control of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog 2009; 5:e1000260. [PMID: 19132086 PMCID: PMC2607019 DOI: 10.1371/journal.ppat.1000260] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 12/09/2008] [Indexed: 12/21/2022] Open
Abstract
The HIV promoter within the viral long terminal repeat (LTR) orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat), this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright) and inactive (Off) expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-κB elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-κB elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-κB sites exhibit distinct properties, with κB site I serving a stronger activating role than κB site II. Moreover, Sp1 site III plays a particularly important role in the recruitment of both p300 and RelA to the promoter. Finally, analysis of 362 clonal cell populations infected with the viral variants revealed that mutations in any of the Sp1 sites yield a 6-fold higher frequency of clonal bifurcation compared to that of the wild-type promoter. Thus, each Sp1 and NF-κB site differentially contributes to the regulation of viral gene expression, and Sp1 sites functionally “dampen” transcriptional noise and thereby modulate the frequency and maintenance of this model of viral latency. These results may have biomedical implications for the treatment of HIV latency. After HIV genome integration into the host chromosome, the viral promoter coordinates a complex set of inputs to control the establishment of viral latency, the onset of viral gene expression, and the ensuing gene expression levels. Among these inputs are chromatin structure at the site of integration, host transcription factors, and the virally encoded transcriptional regulator Tat. Importantly, transcriptional noise from host and viral transcriptional regulators may play a critical role in the decision between replication versus latency, because stochastic fluctuations in gene expression are amplified by a Tat-mediated positive transcriptional feedback loop. To evaluate the individual contributions of key transcription factor binding elements in gene expression dynamics, we employ model HIV viruses with mutations introduced into numerous promoter elements. Extensive analysis of gene expression dynamics and transcription factor recruitment to the viral promoter reveals that each site differentially contributes to viral gene expression and to the establishment of a low expression state that may contribute to viral latency. This systems-level approach elucidates the synergistic contributions of host and viral factors to the dynamics, magnitudes, and stochastic effects in viral gene expression, as well as provides insights into mechanisms that contribute to proviral latency.
Collapse
Affiliation(s)
- John C Burnett
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | | | | | | | | |
Collapse
|
41
|
Marini A, Harper JM, Romerio F. An in vitro system to model the establishment and reactivation of HIV-1 latency. THE JOURNAL OF IMMUNOLOGY 2008; 181:7713-20. [PMID: 19017960 DOI: 10.4049/jimmunol.181.11.7713] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 establishes latency primarily by infecting activated CD4(+) T cells that later return to quiescence as memory cells. Latency allows HIV-1 to evade immune responses and to persist during antiretroviral therapy, which represents an important problem in clinical practice. The lack of a valid cellular model to study HIV-1 latency has hindered advances in the understanding of its biology. In this study, we attempted to model HIV-1 latency using human primary CD4(+) T cells infected in vitro with HIV-1 after activation with Ag-loaded dendritic cells and then brought back to quiescence through a resting phase in the presence of IL-7. During the resting phase, expression of cellular activation markers disappeared and cell proliferation and viral replication ceased, but resumed following restimulation of rested cells with Ag or mAbs directed to CD3/CD28. In addition, higher cell death rates were observed in HIV-1-infected than uninfected cultures during secondary but not primary stimulation. Thus, this system may allow us to study the biology of HIV-1 latency, as well as the mechanisms of CD4(+) T cell death following HIV-1 reactivation.
Collapse
Affiliation(s)
- Alessandra Marini
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
42
|
YY1 and FoxD3 regulate antiretroviral zinc finger protein OTK18 promoter activation induced by HIV-1 infection. J Neuroimmune Pharmacol 2008; 4:103-15. [PMID: 19034670 DOI: 10.1007/s11481-008-9139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
OTK18 is a C2H2 type zinc finger protein involved in the regulation of HIV-1 replication in human mononuclear phagocytes. Previously, we reported OTK18 expression in brain perivascular macrophages but not in microglia in HIV encephalitis brain. We have cloned the OTK18 promoter region proximal to the transcriptional start site and determined the region responsible (-884/+1) for the basal transcriptional activity in a microglia cell line. Sequential deletion mutation analyses reveal three important response elements: Yingyang-1 (YY1; -805/-777), an HIV-1 response element for promoter activation; FoxD3 (-743/-725), a negative regulatory element; and Ets response element (-725/-707), a basal transcriptional activity response element. HIV-1 infection-induced upregulation of YY1 and c-Ets-1 protein, binding to the promoter region as determined by immunoblotting and chromatin immunoprecipitation and polymerase chain reaction (PCR) assays, and induction of YY1 was also observed in virus-infected monocyte-derived macrophages. Silencing of FoxD3 and YY1 in the cell line by small interfering RNA duplexes specific to these molecules significantly up- and downregulated basal OTK18 promoter activity in FoxD3 and YY1 response element-dependent manners, respectively. On the other hand, infection of primary cultured human microglia significantly reduced YY1 expression and induced FoxD3 as determined by immunoblotting and reverse transcription real-time PCR. These data suggest that HIV-1 induces OTK18 expression through a YY1-mediated manner in human macrophages, although its gene expression is suppressed by FoxD3 upregulation and YY1 downregulation in human microglia. This mechanism may explain the perivascular macrophage-specific expression of OTK18 in HIV encephalitis brains.
Collapse
|
43
|
Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS 2008; 22:1131-5. [PMID: 18525258 DOI: 10.1097/qad.0b013e3282fd6df4] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Valproic acid and intensified antiretroviral therapy may deplete resting CD4+ T-cell HIV infection. We tested the ability of valproic acid to deplete resting CD4+ T-cell infection in patients receiving standard antiretroviral therapy. METHODS Resting CD4+ T-cell infection was measured in 11 stably aviremic volunteers twice prior to, and twice after Depakote ER 1000 mg was added to standard antiretroviral therapy. Resting CD4+ T-cell infection frequency was measured by outgrowth assay. Low-level viremia was quantitated by single copy plasma HIV RNA assay. RESULTS A decrease in resting CD4+ T-cell infection was observed in only four of the 11 patients. Levels of immune activation and HIV-specific T-cell response were low and stable. Valproic acid levels ranged from 26 to 96 microg/ml when measured near trough. Single copy assay was performed in nine patients. In three patients with depletion of resting CD4+ T-cell infection following valproic acid, single copy assay ranged from less than 1-5 copies/ml. Continuous low-level viremia was observed in three patients with stable resting CD4+ T-cell infection (24-87, 8-87, and 1-7 copies/ml respectively) in whom multiple samples were analyzed. CONCLUSION The prospective addition of valproic acid to stable antiretroviral therapy reduced the frequency of resting CD4+ T-cell infection in a minority of volunteers. In patients in whom resting CD4+ T-cell infection depletion was observed, viremia was rarely detectable by single copy assay.
Collapse
|
44
|
Abstract
The course of HIV infection is arrested by antiretroviral therapy (ART). However, life-long ART is undesirable. To eradicate infection, strategies are needed to deplete the rare population of proviral genomes that persist and reemerge if ART is interrupted. Proviral HIV persists due to the simultaneous deficiency of factors required to allow proviral expression and virion production, and a predominance of factors that obstruct proviral expression. Combining ART with global inducers of T-cell activation has so far failed to eradicate HIV infection. One approach to the selective removal of obstacles to proviral expression, inhibition of the chromatin remodeling enzyme histone deacetylase, has entered clinical testing. Additional approaches may be needed. Ultimately, therapies that eliminate rare cells that persistently express HIV and interrupt low levels of viremia that persist in some patients may be required to render depletion of proviral HIV infection clinically relevant, and lead to the clearance of HIV infection.
Collapse
Affiliation(s)
- David M Margolis
- Department of Medicine, 3302 Michael Hooker Research Building, CB#7435, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435, USA.
| |
Collapse
|
45
|
Stevens M, De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 2006; 26:595-625. [PMID: 16838299 PMCID: PMC7168390 DOI: 10.1002/med.20081] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|
46
|
Klichko V, Archin N, Kaur R, Lehrman G, Margolis D. Hexamethylbisacetamide remodels the human immunodeficiency virus type 1 (HIV-1) promoter and induces Tat-independent HIV-1 expression but blunts cell activation. J Virol 2006; 80:4570-9. [PMID: 16611917 PMCID: PMC1472000 DOI: 10.1128/jvi.80.9.4570-4579.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hexamethylbisacetamide (HMBA) induces human immunodeficiency virus type 1 (HIV-1) gene expression in latently infected T-cell and monocytoid cell lines. We find that HMBA activation of viral expression is Tat independent but, like Tat, increases the efficiency of elongation of the HIV-1 promoter (long terminal repeat [LTR]) transcripts. Further, exposure to HMBA induces chromatin remodeling at nucleosome 1 (Nuc-1) near the start site of LTR transcription but does so without increasing histone acetylation or altering histone methylation near Nuc-1. Of note, despite enhanced proviral expression, HMBA suppressed HIV infection ex vivo in primary blood mononuclear cell (PBMC) cultures. Treatment with HMBA did not alter expression of the HIV coreceptors, CCR5 and CXCR4, in PBMCs but down-regulated CD4. Finally, HMBA interferes with cell proliferation and activation; it suppressed expression of Ki67 and CD25 and in PBMCs exposed to mitogen. As HMBA has been tested in oncology trials, its unusual properties make it a useful reagent for future studies of HIV promoter regulation and a novel prototype molecule for therapeutics that abort the latent proviral state of chronic HIV infection.
Collapse
MESH Headings
- Acetamides/pharmacology
- Biomarkers
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chromatin Assembly and Disassembly/drug effects
- Endodeoxyribonucleases/metabolism
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- Gene Products, tat/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/physiology
- Histones/genetics
- Humans
- Ki-67 Antigen/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Interleukin-2/metabolism
- Receptors, Virus/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Vladimir Klichko
- North Texas Veterans Health Care Systems, Dallas, Texas 75216, USA
| | | | | | | | | |
Collapse
|
47
|
Blastyák A, Mishra RK, Karch F, Gyurkovics H. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 2006; 26:1434-44. [PMID: 16449654 PMCID: PMC1367177 DOI: 10.1128/mcb.26.4.1434-1444.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/06/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022] Open
Abstract
Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.
Collapse
Affiliation(s)
- András Blastyák
- Hungarian Academy of Sciences, Biological Research Center, Institute of Genetics, Temesvari krt. 62, P.O.B. 521, H-6701 Szeged, Hungary.
| | | | | | | |
Collapse
|
48
|
Sato F, Yasumoto KI, Kimura K, Numayama-Tsuruta K, Sogawa K. Heterodimerization with LBP-1b is necessary for nuclear localization of LBP-1a and LBP-1c. Genes Cells 2005; 10:861-70. [PMID: 16115195 DOI: 10.1111/j.1365-2443.2005.00884.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The LBP-1 family consists of four proteins, which act as transcription factors in the formation of dimers with a member of this family. LBP-1a and LBP-1b are splicing variants from one gene, and LBP-1c and LBP-1d also arise from the alternative splicing of another gene. Investigation of subcellular localization of LBP-1 proteins fused to YFP revealed that the LBP-1b was localized in the nucleus, whereas LBP-1a and LBP-1c were exclusively localized in the cytosol. The peptide of 36 amino acids encoded by exon 6, a specific exon used only for LBP-1b, possessed the function of a nuclear localization signal (NLS). Nuclear localization of LBP-1a and LBP-1c occurred when LBP-1b was co-expressed, suggesting that heterodimerization of LBP-1a and LBP-1c with LBP-1b is important for their nuclear transport. Transiently expressed LBP-1 proteins in COS-7 cells formed speckles in the nucleus. Most speckles overlapped with the PML body. The activity of LBP-1a for accumulation in the PML body was mapped in the N-terminal region.
Collapse
Affiliation(s)
- Fuyuhiko Sato
- Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
49
|
Kang HC, Chae JH, Lee YH, Park MA, Shin JH, Kim SH, Ye SK, Cho YS, Fiering S, Kim CG. Erythroid cell-specific alpha-globin gene regulation by the CP2 transcription factor family. Mol Cell Biol 2005; 25:6005-20. [PMID: 15988015 PMCID: PMC1168829 DOI: 10.1128/mcb.25.14.6005-6020.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of alpha-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the alpha-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced alpha-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific alpha-globin gene expression by complexing with CP2c and PIAS1.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Haengdang 17, Sungdong-gu, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, Coffin JM, Bosch RJ, Margolis DM. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 2005; 366:549-55. [PMID: 16099290 PMCID: PMC1894952 DOI: 10.1016/s0140-6736(05)67098-5] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Persistent infection in resting CD4+ T cells prevents eradication of HIV-1. Since the chromatin remodeling enzyme histone deacetylase 1 (HDAC1) maintains latency of integrated HIV, we tested the ability of the HDAC inhibitor valproic acid to deplete persistent, latent infection in resting CD4+ T cells. PROCEDURES We did a proof-of-concept study in four volunteers infected with HIV and on highly-active antiretroviral therapy (HAART). After intensifying the effect of HAART with subcutaneous enfuvirtide 90 mug twice daily for 4-6 weeks to prevent the spread of HIV, we added oral valproic acid 500-750 mg twice daily to their treatment regimen for 3 months. We quantified latent infection of resting CD4+ T cells before and after augmented treatment by limiting-dilution culture of resting CD4+ T cells after ex-vivo activation. FINDINGS The frequency of resting cell infection was stable before addition of enfuvirtide and valproic acid, but declined thereafter. This decline was significant in three of four patients (mean reduction 75%, range 68% to >84%). Patients had slight reactions to enfuvirtide at the injection site, but otherwise tolerated treatment well. INTERPRETATION Combination therapy with an HDAC inhibitor and intensified HAART safely accelerates clearance of HIV from resting CD4+ T cells in vivo, suggesting a new and practical approach to eliminate HIV infection in this persistent reservoir. This finding, though not definitive, suggests that new approaches will allow the cure of HIV in the future.
Collapse
Affiliation(s)
- Ginger Lehrman
- University of Texas Southwestern Medical Center at Dallas, Department of Medicine, Division of Infectious Diseases, 5323 Harry Hines Boulevard, Dallas, TX 753901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|