1
|
Cao H, Wu J, Luan N, Wang Y, Lin K, Liu C. Evaluation of a bivalent recombinant vaccine candidate targeting norovirus and rotavirus: Antibodies to rotavirus NSP4 exert antidiarrheal effects without virus neutralization. J Med Virol 2022; 94:3847-3856. [PMID: 35474320 DOI: 10.1002/jmv.27809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
We previously found that when tandemly expressed with SR69A -VP8*, nonstructural protein 4 (NSP4) of the rotavirus Wa strain exerts a minor effect on elevating the antibody responses targeting the rotavirus antigen VP8* of the 60-valent nanoparticle SR69A -VP8* but could fully protect mice from diarrhea induced by the rotavirus strain Wa. In this study, we chose comparably less immunogenic norovirus 24-valent P particles with homogenous (i.e., VP8* from rotavirus) and heterogeneous (i.e., protruding domain of norovirus) antigens and in more challenging rotavirus SA11 strain-induced diarrhea mouse models to evaluate its main role in recombinant gastroenteritis virus-specific vaccines. The results showed that although as an adjuvant NSP4 exerted limited effects on the elevation of norovirus-specific or VP8*-specific neutralizing antibody production, as an antigen it could confer potent protection, particularly when synergized with VP8*, in rotavirus SA11 strain-induced diarrhea mouse models, possibly blocking the invasion of the intestinal wall by enterotoxin. NSP4 may be unnecessary for other recombinant vaccines as adjuvants, and its display mode should be evaluated specifically to avoid blocking coexpressed antigens in the norovirus P particles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022; 145:106185. [PMID: 35219876 PMCID: PMC8868010 DOI: 10.1016/j.biocel.2022.106185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca2+ flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses. Thus, they are relevant targets in the search for antiviral drugs. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underlies the world-wide pandemic of COVID-19, where an effective therapy is still lacking despite impressive progress in the development of vaccines and vaccination campaigns. Among the 29 proteins of SARS-CoV-2, the E- and ORF3a proteins have been identified as viroporins that contribute to the massive release of inflammatory cytokines observed in COVID-19. Here, we describe structure and function of viroporins and their role in inflammasome activation and cellular processes during the virus replication cycle. Techniques to study viroporin function are presented, with a focus on cellular and electrophysiological assays. Contributions of SARS-CoV-2 viroporins to the viral life cycle are discussed with respect to their structure, channel function, binding partners, and their role in viral infection and virus replication. Viroporin sequences of new variants of concern (α–ο) of SARS-CoV-2 are briefly reviewed as they harbour changes in E and 3a proteins that may affect their function.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
3
|
Melnik LI, Garry RF. Enterotoxigenic Escherichia coli Heat-Stable Toxin and Ebola Virus Delta Peptide: Similarities and Differences. Pathogens 2022; 11:pathogens11020170. [PMID: 35215114 PMCID: PMC8878840 DOI: 10.3390/pathogens11020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) STb toxin exhibits striking structural similarity to Ebola virus (EBOV) delta peptide. Both ETEC and EBOV delta peptide are enterotoxins. Comparison of the structural and functional similarities and differences of these two toxins illuminates features that are important in induction of pathogenesis by a bacterial and viral pathogen.
Collapse
Affiliation(s)
- Lilia I. Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-(504)988-3818
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Non-structural Enterotoxin (NSP4) Gene based Molecular Characterization of Caprine and Ovine Rotavirus A, India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus A (RVA) causes viral gastroenteritis in humans and animals, including calves, piglets, and foals. The current study reports the genetic characterization of the full-length enterotoxin gene, NSP4, from caprine and ovine species. Upon characterizing eight full-length NSP4 genes by sequencing, it was found that the four caprine and three ovine RVAs NSP4 genes are of E2 genotype and the sole ovine RVA isolate was found to be of E1 genotype. In the sequence and phyloanalysis of the NSP4 gene the seven E2 genotypes clustered with bovine, human, and caprine isolates from India and Bangladesh, respectively. The E1 genotype of ovine RVA was closer to human RVA isolate from India. The nucleotide per cent identity analysis revealed that all E2 genotype strains of caprine and ovine species ranged from 88.4% to 90.4% and it was found common to both the reference human RVA isolates DS-1 and AU-1. Whereas, the E1 genotype ovine strain clustered with human RVA isolates with 93.1% nucleotide per cent identity. The RVA strains circulating in caprine and ovine populations may share a common origin which is usually found in artiodactyl species because humans share a common dwelling with animals. Future studies are needed to confirm these findings of their relationship with humans and large animals.
Collapse
|
5
|
Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 2018; 163:1531-1547. [DOI: 10.1007/s00705-018-3753-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
6
|
Abstract
Eukaryotic cells have evolved a myriad of ion channels, transporters, and pumps to maintain and regulate transmembrane ion gradients. As intracellular parasites, viruses also have evolved ion channel proteins, called viroporins, which disrupt normal ionic homeostasis to promote viral replication and pathogenesis. The first viral ion channel (influenza M2 protein) was confirmed only 23 years ago, and since then studies on M2 and many other viroporins have shown they serve critical functions in virus entry, replication, morphogenesis, and immune evasion. As new candidate viroporins and viroporin-mediated functions are being discovered, we review the experimental criteria for viroporin identification and characterization to facilitate consistency within this field of research. Then we review recent studies on how the few Ca(2+)-conducting viroporins exploit host signaling pathways, including store-operated Ca(2+) entry, autophagy, and inflammasome activation. These viroporin-induced aberrant Ca(2+) signals cause pathophysiological changes resulting in diarrhea, vomiting, and proinflammatory diseases, making both the viroporin and host Ca(2+) signaling pathways potential therapeutic targets for antiviral drugs.
Collapse
Affiliation(s)
- Joseph M Hyser
- Alkek Center for Metagenomic and Microbiome Research.,Department of Molecular Virology and Microbiology, and
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, and.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030-3411;
| |
Collapse
|
7
|
Sahmani M, Azari S, Tebianian M, Gheibi N, Pourasgari F. Higher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:50-57. [PMID: 28959326 DOI: 10.15171/ijb.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the enterotoxin domain could result in the introduction of a new subunit vaccine against rotaviruses in both humans and animals. OBJECTIVES The aim of this study is the evaluation of rotavirus A NSP4 expression in E. coli expression system before and after removal of the diarrhea-inducing domain, which is the first step towards further immunological studies of the resulting protein. MATERIALS AND METHODS Splicing by overlap extension (SOEing) PCR was used to remove the diarrhea-inducing sequence from the NSP4 cDNA. Both the full-length (FL-NSP4) and the spliced (S-NSP4) cDNA amplicons were cloned into pET-32c and pGEX-6P-2. Expression levels of the recombinant proteins were evaluated in E. coli BL21 (DE3) by Western blot analysis. In addition, the toxicity of pET plasmids bearing the S-NSP4 and FL-NSP4 fragments was investigated by plasmid stability test. RESULTS For FL-NSP4, protein expression was detected for the strain containing the pGEX:FL-NSP4 plasmid, but not for the strain carrying pET:FL-NSP4. Hourly sampling up to 3 h showed that the protein production decreased by time. In contrast, expression of S-NSP4 was detected for pET:S-NSP4 strain, but not for pGEX:S-NSP4. Plasmid stability test showed that pET:S-NSP4 recombinant plasmid was almost stable, while pET:FL-NSP4 was unstable. CONCLUSIONS This is the first report of production of rotavirus NSP4 lacking the diarrhea-inducing domain (S-NSP4). SNSP4 shows less toxicity in this expression system and potentially could be a promising goal for rotavirus immunological and vaccine studies in the future.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Azari
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
8
|
Guerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental Adaptation of Rotaviruses to Tumor Cell Lines. PLoS One 2016; 11:e0147666. [PMID: 26828934 PMCID: PMC4734670 DOI: 10.1371/journal.pone.0147666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023] Open
Abstract
A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death.
Collapse
Affiliation(s)
- Carlos A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Rafael A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Elver Silva
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Orlando Acosta
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Emiliano Barreto
- Institute of Biotechnology, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| |
Collapse
|
9
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
10
|
Liu Y, Liu J, Pang X, Liu T, Ning Z, Cheng G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015; 20:2272-95. [PMID: 25642837 PMCID: PMC6272511 DOI: 10.3390/molecules20022272] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/24/2022] Open
Abstract
Lectins are a group of proteins with carbohydrate recognition activity. Lectins are categorized into many families based on their different cellular locations as well as their specificities for a variety of carbohydrate structures due to the features of their carbohydrate recognition domain (CRD) modules. Many studies have indicated that the direct recognition of particular oligosaccharides on viral components by lectins is important for interactions between hosts and viruses. Herein, we aim to globally review the roles of this recognition by animal lectins in antiviral immune responses and viral pathogenesis. The different classes of mammalian lectins can either recognize carbohydrates to activate host immunity for viral elimination or can exploit those carbohydrates as susceptibility factors to facilitate viral entry, replication or assembly. Additionally, some arthropod C-type lectins were recently identified as key susceptibility factors that directly interact with multiple viruses and then facilitate infection. Summarization of the pleiotropic roles of direct viral recognition by animal lectins will benefit our understanding of host-virus interactions and could provide insight into the role of lectins in antiviral drug and vaccine development.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaojing Pang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, Tai'an 271000, China.
| | - Zhijie Ning
- Ji'nan Infectious Diseases Hospital, Ji'nan 250021, China.
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Gallaher WR, Garry RF. Modeling of the Ebola virus delta peptide reveals a potential lytic sequence motif. Viruses 2015; 7:285-305. [PMID: 25609303 PMCID: PMC4306839 DOI: 10.3390/v7010285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis.
Collapse
Affiliation(s)
- William R Gallaher
- Mockingbird Nature Research Group, PO Box 568, Pearl River, LA 70452, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
12
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
13
|
Malik YS, Kumar N, Sharma K, Ghosh S, Bányai K, Balasubramanian G, Kobayashi N, Matthijnssens J. Molecular analysis of non structural rotavirus group A enterotoxin gene of bovine origin from India. INFECTION GENETICS AND EVOLUTION 2014; 25:20-7. [DOI: 10.1016/j.meegid.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/15/2022]
|
14
|
Gao Y, Gao Y, Guan W, Huang L, Xu X, Zhang C, Chen X, Wu Y, Zeng G, Zhong N. Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model. J Thorac Dis 2013; 5:472-83. [PMID: 23991305 DOI: 10.3978/j.issn.2072-1439.2013.08.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/15/2013] [Indexed: 11/14/2022]
Abstract
BACKGROUND Conventional chemotherapy and radiation therapy against non-small cell lung cancer (NSCLC) are relatively insensitive and unsatisfactory. Para-toluenesulfonamide (PTS), a unique antitumor drug for local intratumoral injection, shows an efficacy of severely suppressing solid tumor growth with mild side effects in clinical trials. The aim of this study was to investigate the effect of PTS on lung cancer H460 cells in vivo in nude mice and its underlying mechanisms in vitro. METHODS A lung cancer model for in vivo experiment was established in BALB/c nude mice using H460 cells to examine the effect of local injection of PTS on tumor suppression. We also assessed the injury to the normal tissue by subcutaneous injection of PTS. In vitro, PTS was diluted into different doses for study on its antitumor mechanisms. We evaluated the necrotic effect of PTS on H460 cells by PI and Hoechst 33342 staining. Cell viability and membrane permeability were also determined by using CCK-8 and LDH assays respectively. All these tests were conducted in comparison with traditional local injection of anhydrous ethanol. RESULTS PTS was shown to significantly inhibit the growth of H460 tumor xenografts in nude mice by inducing necrosis of the tumor histologically. Its effect on tumor growth was significantly stronger than that of anhydrous ethanol. By contrast, the injured normal tissue by PTS injection was less than that by ethanol. In vitro, PTS still demonstrated excellent necrotizing effect on H460 cells when diluted to a lower concentration. Detailed analysis of PTS on H460 cells indicated that PTS had a better effect on attenuating the cell viability and increasing the cell membrane permeability than ethanol at the same level. CONCLUSIONS PTS exhibits excellent inhibition effect on the growth of lung cancer by necrotizing tumor in vivo and in vitro, reducing tumor cell viability and augmenting the membrane permeability in vitro, with only mild injury to normal tissue. The antitumor effect of PTS on lung cancer in vivo and in vitro is stronger than that of ethanol.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chacko AR, Zwart PH, Read RJ, Dodson EJ, Rao CD, Suguna K. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1541-8. [DOI: 10.1107/s090744491203836x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of the region spanning residues 95–146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 Å. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.
Collapse
|
16
|
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BVV. Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2012; 2:380-8. [PMID: 22789743 DOI: 10.1016/j.coviro.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
The replication of rotavirus is a complex process that is orchestrated by an exquisite interplay between the rotavirus non-structural and structural proteins. Subsequent to particle entry and genome transcription, the non-structural proteins coordinate and regulate viral mRNA translation and the formation of electron-dense viroplasms that serve as exclusive compartments for genome replication, genome encapsidation and capsid assembly. In addition, non-structural proteins are involved in antagonizing the antiviral host response and in subverting important cellular processes to enable successful virus replication. Although far from complete, new structural studies, together with functional studies, provide substantial insight into how the non-structural proteins coordinate rotavirus replication. This brief review highlights our current knowledge of the structure-function relationships of the rotavirus non-structural proteins, as well as fascinating questions that remain to be understood.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
17
|
Chacko AR, Jeyakanthan J, Ueno G, Sekar K, Rao CD, Dodson EJ, Suguna K, Read RJ. A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:57-61. [DOI: 10.1107/s0907444911049705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
|
18
|
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational Differences Unfold a Wide Range of Enterotoxigenic Abilities Exhibited by rNSP4 Peptides from Different Rotavirus Strains. Open Virol J 2011; 5:124-35. [PMID: 22253650 PMCID: PMC3256577 DOI: 10.2174/1874357901105010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
NSP4 has been recognized as the rotavirus-encoded enterotoxin. However, a few studies failed to support its diarrheagenic activity. As recombinant NSP4 (rNSP4) peptides of different lengths were used in the limited number of studies, a comparison of relative diarrheagenic potential of NSP4 from different strains could not be possible. To better understand the diarrheagenic potential of NSP4 from different strains, in this report we have evaluated the enterotoxigenic activity of the deletion mutant ΔN72 that lacks the N-terminal 72 residues and the biologically relevant ΔN112 peptide which when derived from SA11 rotavirus strain were previously shown to be highly diarrheagenic in newborn mice. Detailed comparative analysis of biochemical and biophysical properties and diarrheagenic activity of the recombinant ΔN72 peptides from seventeen different strains under identical conditions revealed wide differences among themselves in their resistance to trypsin cleavage, thioflavin T (ThT) binding, multimerization and conformation without any correlation with their diarrhea inducing abilities. These results support our previously proposed concept for the requirement of a unique conformation for optimal biological functions conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail.
Collapse
|
19
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
20
|
Khaliq S, Jahan S, Hassan S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int 2011; 31:606-17. [PMID: 21457434 DOI: 10.1111/j.1478-3231.2010.02442.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
p7, a 63-residue peptide encoded by hepatitis C virus (HCV), a major pathogen associated with a risk of developing severe liver disease, is involved in ion channel activity in lipid bilayer membranes both in in vitro and cell-based assays. p7 protein consists of two transmembrane α-helices, TM1 and TM2 connected by a loop oriented towards the cytoplasm. HCV relies on p7 function in addition to ion channel formation for efficient assembly, release and production of infectious progeny virions from liver cells. p7 activity is strictly sequence specific as mutation analysis showed the loss of ion channel function. Moreover, p7 ion channel activity can be specifically inhibited by different drugs suggesting the protein as a new target for future antiviral chemotherapy. In the present review, we focused to bring together the recent development to explore the potential role of p7 protein in HCV infection and its inhibition as a therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Functional and Applied Genomics Laboratory, National Center of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan.
| | | | | |
Collapse
|
21
|
Stassen L, Huismans H, Theron J. Membrane permeabilization of the African horse sickness virus VP5 protein is mediated by two N-terminal amphipathic α-helices. Arch Virol 2010; 156:711-5. [DOI: 10.1007/s00705-010-0897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
22
|
Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010; 1. [PMID: 21151776 PMCID: PMC2999940 DOI: 10.1128/mbio.00265-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022] Open
Abstract
Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly. Rotavirus is the leading cause of viral gastroenteritis in children and young animals. Rotavirus infection and expression of nonstructural protein 4 (NSP4) alone dramatically increase cytosolic calcium, which is essential for replication and assembly of infectious virions. This work identifies the intracellular mechanism by which NSP4 disrupts calcium homeostasis by showing that NSP4 is a viroporin, a class of virus-encoded transmembrane pores. Mutational analyses identified residues critical for viroporin activity. Viroporin mutants did not elevate the levels of cytoplasmic calcium in mammalian cells and were maintained in the endoplasmic reticulum rather than forming punctate vesicular structures that are critical for virus replication and morphogenesis. Pharmacological elevation of cytoplasmic calcium levels rescued puncta formation in viroporin mutants, demonstrating that elevation of calcium levels and puncta formation are distinct NSP4 functions. While viroporins typically function in virus entry or release, elevation of calcium levels by NSP4 viroporin activity may serve as a regulatory function to facilitate virus replication and assembly.
Collapse
|
23
|
Gac M, Bigda J, Vahlenkamp TW. Increased mitochondrial superoxide dismutase expression and lowered production of reactive oxygen species during rotavirus infection. Virology 2010; 404:293-303. [PMID: 20538313 DOI: 10.1016/j.virol.2010.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/08/2010] [Accepted: 05/17/2010] [Indexed: 12/13/2022]
Abstract
Rotaviruses are responsible for severe diarrhea in infants and substantial economic losses in animal husbandry worldwide. We investigated the oxidant/antioxidant status in rotavirus-infected human colon adenocarcinoma (Caco-2) cell line. Our results show that within the initial 48 h of infection the expression of the mitochondrial superoxide dismutase (MnSOD) is significantly increased, which correlates with a decrease in reactive oxygen species production, and with a lack of cellular glutathione depletion. During this period the mitochondria display a hyperpolarization of the inner membrane, which leads to an increased mitochondrial membrane potential. No increase in apoptosis was detected in the infected cultures. In contrast to many viral infections which cause redox imbalance in host cells, the described virus-host interaction suggests that rotavirus infection does not lead to an induction of oxidative stress, possibly to prolong cell survival and to allow for accumulation of viral particles before cell destruction and virus release.
Collapse
Affiliation(s)
- Małgorzata Gac
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
24
|
Suzuki T, Orba Y, Okada Y, Sunden Y, Kimura T, Tanaka S, Nagashima K, Hall WW, Sawa H. The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog 2010; 6:e1000801. [PMID: 20300659 PMCID: PMC2837404 DOI: 10.1371/journal.ppat.1000801] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022] Open
Abstract
Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca(2+); (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca(2+) homeostasis leading to membrane dysfunction and enhancement of virus release.
Collapse
Affiliation(s)
- Tadaki Suzuki
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- Global COE Program for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Okada
- Career-Path Promotion Unit for Young Life Scientists, ICDO, Kyoto University, Kyoto, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Hokkaido University School of Veterinary Medicine, Sapporo, Japan
| | - Takashi Kimura
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Shinya Tanaka
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kazuo Nagashima
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - William W. Hall
- Centre for Research in Infectious Diseases, University College Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- Global COE Program for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Rotaviruses cause life-threatening gastroenteritis in children throughout the world. The burden of disease has resulted in the development of two live, attenuated vaccines that are now licensed in many countries. This review summarizes new data on these vaccines, their effectiveness, and remaining challenges including new data on the rotavirus enterotoxin, a potential antiviral target. RECENT FINDINGS Live attenuated rotavirus vaccines are used to protect infants against severe rotavirus-induced gastroenteritis and, RotaTeq, a pentavalent bovine-based vaccine, and, Rotarix, a monovalent human rotavirus, are now currently licensed in many countries. Initial results of the licensed RotaTeq vaccine have been promising in the USA and results of immunogenicity and efficacy in developing countries are expected soon. However, universal vaccine implementation is challenging due to age limitations on administration of these vaccines. Chronic rotavirus infections in immunocompromised children may remain a problem and require the development of new treatments including antiviral drugs. Increasing data on the mechanisms of action of the rotavirus enterotoxin highlight this pleiotropic protein as a good target as well as a unique calcium agonist. SUMMARY Rotavirus is now a commonly occurring vaccine-preventable disease among children in developed countries and hopefully this also will soon be true for developing countries. Future studies will determine whether other methods of prevention, such as nonreplicating vaccines and antiviral drugs, will be needed to treat disease in immunocompromised children.
Collapse
Affiliation(s)
- Joseph M. Hyser
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| |
Collapse
|
26
|
Rajasekaran D, Sastri NP, Marathahalli JR, Indi SS, Pamidimukkala K, Suguna K, Rao CD. The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties. J Gen Virol 2008; 89:1485-1496. [PMID: 18474565 DOI: 10.1099/vir.0.83617-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rotavirus non-structural protein NSP4 functions as the viral enterotoxin and intracellular receptor for the double-layered particles (DLP). The full-length protein cannot be expressed and/or purified to homogeneity from bacterial or insect cells. However, a bacterially expressed and purified mutant lacking the N-terminal 72 aa (DeltaN72) was recently obtained from strains Hg18 and SA11 exhibiting approximately 17-20-, 150-200- and 13166-15800-fold lower DD50 (50% diarrhoea-inducing dose) values in suckling mice compared with that reported for the partially pure, full-length protein, a C-terminal M175I mutant and a synthetic peptide comprising aa 114-135, respectively, suggesting the requirement for a unique conformation for optimal functions of the purified protein. The stretch of approximately 40 aa from the C terminus of the cytoplasmic tail of the endoplasmic reticulum-anchored NSP4 is highly flexible and exhibits high sequence variation compared with the other regions, the significance of which in diarrhoea induction remain unresolved. Here, it was shown that every amino acid substitution or deletion in the flexible C terminus resulted in altered conformation, multimerization, trypsin resistance and thioflavin T (ThT) binding, and affected DLP binding and the diarrhoea-inducing ability of the highly diarrhoeagenic SA11 and Hg18 DeltaN72 in suckling mice. These studies further revealed that high ThT fluorescence correlated with efficient diarrhoea induction, suggesting the importance of an optimal ThT-recognizable conformation in diarrhoea induction by purified NSP4. These results based on biological properties provide a possible conformational basis for understanding the influence of primary sequence variations on diarrhoea induction in newborn mice by purified NSP4s that cannot be explained by extensive sequence analyses.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.,Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Narayan P Sastri
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Shanthinath S Indi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - C Durga Rao
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Silencing of rotavirus NSP4 or VP7 expression reduces alterations in Ca2+ homeostasis induced by infection of cultured cells. J Virol 2008; 82:5815-24. [PMID: 18400845 DOI: 10.1128/jvi.02719-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects.
Collapse
|
28
|
Beau I, Cotte-Laffitte J, Géniteau-Legendre M, Estes MK, Servin AL. An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cell Microbiol 2007; 9:2254-66. [PMID: 17506819 DOI: 10.1111/j.1462-5822.2007.00956.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.
Collapse
Affiliation(s)
- Isabelle Beau
- INSERM, UMR 756, Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
29
|
Deepa R, Durga Rao C, Suguna K. Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 2007; 152:847-59. [PMID: 17265103 DOI: 10.1007/s00705-006-0921-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a multidomainal and multifunctional protein and is recognized as the first virus-encoded enterotoxin. Extensive efforts to crystallize the complete cytoplasmic tail (CT), which exhibits all the known biological functions, have been unsuccessful, and to date, the structure of only a synthetic peptide corresponding to amino acids (aa) 95-137 has been reported. Recent studies indicate that the interspecies-variable domain (ISVD) from aa 135 to 141 as well as the extreme C-terminus are critical determinants of virus virulence and the diarrhea-inducing ability of the protein. Among the five NSP4 genotypes identified, those belonging to genotypes A1, B and C possess either a proline at position 138 or a glycine at 140, while those of A2, D and E lack these residues in the ISVD, suggesting conformational differences in this region among different NSP4s. Here, we examined the crystallization properties of several deletion mutants and report the structure of a recombinant mutant, NSP4:95-146, lacking the N-terminal 94 and C-terminal 29 aa, from SA11 (A1) and I321 (A2) at 1.67 and 2.7 A, respectively. In spite of the high resolution of one of the structures, electron density for the C-terminal 9 residues could not be seen for either of the mutants, and the crystal packing resulted in the creation of a clear empty space for this region. Extension of the unstructured C-terminus beyond aa 146 hindered crystallization under the experimental conditions. The present structure revealed significant differences from that of the synthetic peptide in the conformation of amino acids at the end of the helix as well as the crystal packing owing to the additional space required to accommodate the un structured virulence-determining region. The crystal structure and secondary structure prediction of the NSP4:95-146 mutants from different genotypes suggest that the region C-terminal to aa 137 in all the NSP4 proteins is likely to be unstructured, and this might be of structural and biological functional significance.
Collapse
Affiliation(s)
- R Deepa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
30
|
Bugarcic A, Taylor JA. Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 2006; 80:12343-9. [PMID: 17035333 PMCID: PMC1676281 DOI: 10.1128/jvi.01378-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NSP4, a nonstructural glycoprotein encoded by rotavirus, is involved in the morphogenesis of virus particles in the endoplasmic reticulum of infected cells. NSP4 is also implicated in the pathophysiology of rotavirus-induced diarrhea by acting as an enterotoxin. To mediate enterotoxic effects in vivo, NSP4 must be secreted or released from rotavirus-infected cells in a soluble form; however, previous studies have indicated that NSP4 is a transmembrane glycoprotein localized within endomembrane compartments in infected cells. In this study, we examined the fate of NSP4 synthesized in Caco-2 cells infected with bovine rotavirus. Our studies reveal that NSP4 is actively secreted into the culture medium, preferentially from the infected-cell apical surface. The secretion of NSP4 is dramatically inhibited by brefeldin A and monensin, suggesting that a Golgi-dependent pathway is involved in release of the protein. In agreement with the proposed involvement of the Golgi apparatus during secretion, secreted NSP4 appears to undergo additional posttranslational modification compared to its cell-associated counterpart and is partially resistant to deglycosylation by endoglycosidase H. Our experiments identify a novel, soluble form of NSP4 secreted from virus-infected cells with the potential to carry out the enterotoxigenic role previously attributed to recombinant forms of the protein.
Collapse
Affiliation(s)
- Andrea Bugarcic
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
31
|
Han Z, Licata JM, Paragas J, Harty RN. Permeabilization of the plasma membrane by Ebola virus GP2. Virus Genes 2006; 34:273-81. [PMID: 16927113 DOI: 10.1007/s11262-006-0009-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/07/2006] [Indexed: 10/24/2022]
Abstract
The glycoprotein (GP) of Ebola virus (EBOV) is a multifunctional protein known to play a role in virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. EBOV GP is synthesized as a precursor which is subsequently cleaved to yield two disulfide-linked subunits: GP1 (surface-exposed [SU] subunit) and GP2 (membrane-anchored [TM] subunit). We sought to determine the effect of membrane-anchored GP2 protein expression on the integrity of host cell lipid membranes. Our findings indicated that: (i) expression of GP2 enhanced membrane permeability to hygromycin-B (hyg-B), (ii) the transmembrane (TM) domain of GP2 was essential for enhanced membrane permeability, (iii) amino acids (aa) 667ALF669 within the TM region of GP2 were important for enhanced membrane permeability, and (iv) EBOV infected cells were more permeable to hyg-B than mock infected cells. Together, these data suggest that the TM region of GP2 modifies the permeability of the plasma membrane. These findings may have important implications for GP-induced cell damage and pathogenesis of EBOV infection.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104-6049, USA
| | | | | | | |
Collapse
|
32
|
Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 2006; 80:2842-54. [PMID: 16501093 PMCID: PMC1395425 DOI: 10.1128/jvi.80.6.2842-2854.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.
Collapse
Affiliation(s)
- Rebecca D Parr
- Department of Pathobiology, Texas A&M University 4467, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Jagannath MR, Kesavulu MM, Deepa R, Sastri PN, Kumar SS, Suguna K, Rao CD. N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. J Virol 2006; 80:412-25. [PMID: 16352566 PMCID: PMC1317517 DOI: 10.1128/jvi.80.1.412-425.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 10/04/2005] [Indexed: 01/07/2023] Open
Abstract
Rotavirus NSP4 is a multifunctional endoplasmic reticulum (ER)-resident nonstructural protein with the N terminus anchored in the ER and about 131 amino acids (aa) of the C-terminal tail (CT) oriented in the cytoplasm. Previous studies showed a peptide spanning aa 114 to 135 to induce diarrhea in newborn mouse pups with the 50% diarrheal dose approximately 100-fold higher than that for the full-length protein, suggesting a role for other regions in the protein in potentiating its diarrhea-inducing ability. In this report, employing a large number of methods and deletion and amino acid substitution mutants, we provide evidence for the cooperation between the extreme C terminus and a putative amphipathic alpha-helix located between aa 73 and 85 (AAH73-85) at the N terminus of DeltaN72, a mutant that lacked the N-terminal 72 aa of nonstructural protein 4 (NSP4) from Hg18 and SA11. Cooperation between the two termini appears to generate a unique conformational state, specifically recognized by thioflavin T, that promoted efficient multimerization of the oligomer into high-molecular-mass soluble complexes and dramatically enhanced resistance against trypsin digestion, enterotoxin activity of the diarrhea-inducing region (DIR), and double-layered particle-binding activity of the protein. Mutations in either the C terminus, AAH73-85, or the DIR resulted in severely compromised biological functions, suggesting that the properties of NSP4 are subject to modulation by a single and/or overlapping highly sensitive conformational domain that appears to encompass the entire CT. Our results provide for the first time, in the absence of a three-dimensional structure, a unique conformation-dependent mechanism for understanding the NSP4-mediated pleiotropic properties including virus virulence and morphogenesis.
Collapse
Affiliation(s)
- M R Jagannath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
34
|
Guzman E, McCrae MA. A rapid and accurate assay for assessing the cytotoxicity of viral proteins. J Virol Methods 2005; 127:119-25. [PMID: 15899525 DOI: 10.1016/j.jviromet.2005.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 11/15/2022]
Abstract
A fluorescence-based assay is presented for measuring the cytoxicity of viral proteins added exogenously to cells. The assay is based on the use of two fluorescent dyes, calcein-AM and ethidium homodimer (EtD-1) to specifically stain living and dead cells respectively and employs fluorescence activated cells sorting (FACS) to achieve a rapid and accurate measurement of the cytotoxic capacity of a potential viral toxin. The assay has been developed using the group B homologue (ADRV-NSP4) of the NSP4 enterotoxin encoded by Group A rotaviruses but should be applicable to assaying any viral protein exhibiting cytotoxic activity.
Collapse
Affiliation(s)
- E Guzman
- Department of Biological Sciences, University of Warwick, Gibbet Hill Rd., Coventry CV4 7AL, UK
| | | |
Collapse
|
35
|
Ishino M, Mise K, Takemura H, Ahmed MU, Alam MM, Naik TN, Kobayashi N. Comparison of NSP4 protein between group A and B human rotaviruses: detection of novel diarrhea-causing sequences in group B NSP4. Arch Virol 2005; 151:173-82. [PMID: 16132179 DOI: 10.1007/s00705-005-0616-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/04/2005] [Indexed: 11/27/2022]
Abstract
The human group B rotavirus is a causative agent of severe adult diarrhea. In this study, we analyzed the NSP4 structure of a group B rotavirus strain, CAL-1, and determined whether enterotoxin activity was present in CAL-1 NSP4. CAL-1 NSP4 was comprised of 219 amino acids which was longer than group A and C rotavirus NSP4, and the primary structures of their sequences differed considerably. However, CAL-1 NSP4 had an enterotoxin-like sequence (residues 106-127) that was only 27% identical to the enterotoxin region of NSP4 of KUN (a group A rotavirus strain) at residues 114-135. Interestingly, both of the synthetic peptides, one (residues 99-128) containing the enterotoxin-like sequence and the other (residues 191-219) containing 29 C-terminal amino acids of CAL-1 NSP4, induced diarrhea in 5.5-day-old mice, but not in 17.5-day-old mice, when administered parenterally. Thus, rotavirus "enterotoxin" sequences could be considerably divergent.
Collapse
Affiliation(s)
- M Ishino
- Department of Hygiene, Sapporo Medical University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Madan V, Sanz MA, Carrasco L. Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Virology 2005; 332:307-15. [PMID: 15661162 DOI: 10.1016/j.virol.2004.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
The vast majority of animal viruses enhance membrane permeability at two moments of infection. Herein, we describe that the entry of Sindbis virus (SV) in BHK cells promotes the co-entry of the macromolecule alpha-sarcin into the cytoplasm, thereby blocking translation. At a later stage, this protein toxin cannot enter the cell, while low molecular weight compounds, such as hygromycin B, readily pass through the plasma membrane of Sindbis virus-infected BHK cells. To unveil the participation of the different Sindbis virus structural proteins in late permeabilization, transfection experiments with each late gene by separate have been carried out. Our findings indicate that 6K is the main determinant that enhances membrane permeabilization. The co-expression of both viral glycoproteins employing a Sindbis virus variant that lacks the entire 6K gene partly modifies membrane permeability. Brefeldin A, a macrolide antibiotic that interferes with the proper functioning of the vesicular system, hampers the induction of membrane leakiness without significantly affecting viral protein synthesis. On the other hand, the flavone compound Ro-090179 also diminishes the entry of hygromycin B, while bafilomycin A1 or nocodazole have no effect. These data reveal the requirement of the vesicular system for late viral membrane permeabilization.
Collapse
Affiliation(s)
- Vanessa Madan
- Centro de Biología Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
37
|
Viral Proteins that Enhance Membrane Permeability. VIRAL MEMBRANE PROTEINS: STRUCTURE, FUNCTION, AND DRUG DESIGN 2005. [PMCID: PMC7122156 DOI: 10.1007/0-387-28146-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Boshuizen JA, Rossen JWA, Sitaram CK, Kimenai FFP, Simons-Oosterhuis Y, Laffeber C, Büller HA, Einerhand AWC. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol 2004; 78:10045-53. [PMID: 15331737 PMCID: PMC514988 DOI: 10.1128/jvi.78.18.10045-10053.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is the most important cause of viral gastroenteritis and dehydrating diarrhea in young children. Rotavirus nonstructural protein 4 (NSP4) is an enterotoxin that was identified as an important agent in symptomatic rotavirus infection. To identify cellular proteins that interact with NSP4, a two-hybrid technique with Saccharomyces cerevisiae was used. NSP4 cDNA, derived from the human rotavirus strain Wa, was cloned into the yeast shuttle vector pGBKT7. An intestinal cDNA library derived from Caco-2 cells cloned into the yeast shuttle vector pGAD10 was screened for proteins that interact with NSP4. Protein interactions were confirmed in vivo by coimmunoprecipitation and immunohistochemical colocalization. After two-hybrid library screening, we repeatedly isolated cDNAs encoding the extracellular matrix (ECM) protein laminin-beta3 (amino acids [aa] 274 to 878) and a cDNA encoding the ECM protein fibronectin (aa 1755 to 1884). Using deletion mutants of NSP4, we mapped the region of interaction with the ECM proteins between aa 87 and 145. Deletion analysis of laminin-beta3 indicated that the region comprising aa 726 to 875 of laminin-beta3 interacts with NSP4. Interaction of NSP4 with either laminin-beta3 or fibronectin was confirmed by coimmunoprecipitation. NSP4 was present in infected enterocytes and in the basement membrane (BM) of infected neonatal mice and colocalized with laminin-beta3, indicating a physiological interaction. In conclusion, two-hybrid screening with NSP4 yielded two potential target proteins, laminin-beta3 and fibronectin, interacting with the enterotoxin NSP4. The release of NSP4 from the basal side of infected epithelial cells and the subsequent binding to ECM proteins localized at the BM may signify a new mechanism by which rotavirus disease is established.
Collapse
Affiliation(s)
- J A Boshuizen
- Laboratory of Pediatrics, Pediatric Gastroenterology & Nutrition, Erasmus MC, Rm. Ee1571A, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ciccaglione AR, Marcantonio C, Tritarelli E, Equestre M, Magurano F, Costantino A, Nicoletti L, Rapicetta M. The transmembrane domain of hepatitis C virus E1 glycoprotein induces cell death. Virus Res 2004; 104:1-9. [PMID: 15177886 DOI: 10.1016/j.virusres.2004.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The E1 protein of hepatitis C virus (HCV) shows the ability to induce cell lysis by the alteration of membrane permeability when expressed in Escherichia coli cells. This function seems to be an intrinsic property of a C-terminal hydrophobic region of E1 as permeability changes and cell lysis can be blocked by mutagenesis of specific amino acids in this domain. To establish whether the expression of E1 protein and its C-terminal domain was able to induce cell death also in eukaryotic cell, we cloned HCV sequences expressing the full-length E1 (E383), the C-terminal domain (SVP) and a mutant lacking the C-terminal region (E340) in the pRC/CMV expression vector. HepG2 cell line was co-transfected with empty vector or HCV expression plasmids and a reporter vector that expressed beta-galactosidase (beta-gal) to visualize co-transfected blue cells. At 60 h after transfection, the loss of blue cells, considered as a measure of cell death, was 31.5 and 64.3% for the E1 and SVP clones. On the contrary, the number of blue cells after transfection with E340 plasmid was similar to that observed with the control vector. The analysis by the terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) assay revealed an increased number of apoptotic cells at 48 h after transfection with E1 and SVP clones. Furthermore, cells transfected with SVP revealed a typical internucleosomal DNA fragmentation and the activation of caspase-3-like proteases as the specific inhibitor Ac-DEVD-CHO peptide partially blocked SVP apoptosis. These data indicate that the intracellular expression of HCV E1 protein and its C-terminal domain induces an apoptotic response in human hepatoma cell line.
Collapse
Affiliation(s)
- A R Ciccaglione
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Castilho JG, Botelho MVJ, Lauretti F, Taniwaki N, Linhares REC, Nozawa C. The in vitro cytopathology of a porcine and the simian (SA-11) strains of rotavirus. Mem Inst Oswaldo Cruz 2004; 99:313-7. [PMID: 15273806 DOI: 10.1590/s0074-02762004000300013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rotaviruses have been implicated as the major causal agents of acute diarrhoea in mammals and fowls. Experimental rotavirus infection have been associated to a series of sub-cellular pathologic alterations leading to cell lysis which may represent key functions in the pathogenesis of the diarrhoeic disease. The current work describes the cytopathic changes in cultured MA-104 cells infected by a simian (SA-11) and a porcine (1154) rotavirus strains. Trypan blue exclusion staining showed increased cell permeability after infection by both strains, as demonstrated by cell viability. This effect was confirmed by the leakage of infected cells evaluated by chromium release. Nuclear fragmentation was observed by acridine orange and Wright staining but specific DNA cleavage was not detected. Ultrastructural changes, such as chromatin condensation, cytoplasm vacuolisation, and loss of intercellular contact were shown in infected cells for both strains. In situ terminal deoxynucleotidyl transferase (Tunel) assay did not show positive result. In conclusion, we demonstrated that both strains of rotavirus induced necrosis as the major degenerative effect.
Collapse
|
41
|
Griffin SDC, Harvey R, Clarke DS, Barclay WS, Harris M, Rowlands DJ. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 2004; 85:451-461. [PMID: 14769903 DOI: 10.1099/vir.0.19634-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Collapse
Affiliation(s)
- Stephen D C Griffin
- Astbury Centre of Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Ruth Harvey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Dean S Clarke
- Astbury Centre of Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Wendy S Barclay
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading, Berkshire RG6 6AJ, UK
| | - Mark Harris
- Astbury Centre of Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- Astbury Centre of Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Kim TG, Befus N, Langridge WHR. Co-immunization with an HIV-1 Tat transduction peptide-rotavirus enterotoxin fusion protein stimulates a Th1 mucosal immune response in mice. Vaccine 2004; 22:431-8. [PMID: 14670325 DOI: 10.1016/j.vaccine.2003.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cholera toxin B subunit (CTB) and a 12 aa HIV-1 Tat transduction peptide were genetically linked to a 90 aa peptide from the murine rotavirus non-structural enterotoxin protein (NSP4) for comparison of receptor directed and transduction peptide mediated antigen targeting to the gut associated lymphoid tissues for enhanced protection against rotavirus infection. Oral immunization with Tat-NSP4(90) fusion protein isolated from Escherichia coli generated detectable anti-NSP4(90) IgG titers in mice. CTB-NSP4(90) fusion protein stimulated higher serum IgG titers than CTB fused to a 22 aa immunodominant epitope NSP4(22) indicating the presence of additional immunogenic epitopes in the NSP4(90) peptide. Mice immunized with CTB-NSP4(22) stimulated high IgG2a antibody levels suggesting a dominant Th1 lymphocyte response. However, mice immunized with CTB-NSP4(90) generated similar levels of IgG1 and IgG2a suggesting equal stimulation of Th1 and Th2 responses. Mice co-immunized with CTB-NSP4(90) and Tat-NSP4(90) fusion proteins generated dominant IgG2a levels indicating that the two ligands co-operate to generate an increased Th1 response.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Biochemistry and Microbiology and Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
43
|
Abstract
Pathogenicity and virulence are multifactorial traits, depending on interaction of viruses with susceptible cells and organisms. The ion channels coded by viruses, viroporins, represent only one factor taking part in the cascade of interactions between virus and cell, leading to the entry of virus, replication and to profound changes in membrane permeability. The M2 protein from influenza A virus forms proton-selective, pH-regulated channel involved in regulating vesicular pH, a function important for the correct maturation of HA glycoprotein. The NB glycoprotein of influenza B viruses is an integral membrane protein with an ion channel activity. The CM2 protein of influenza C virus is an integral membrane glycoprotein structurally analogous to influenza A virus M2 and influenza B virus NB proteins. The picornavirus 3A protein is involved in cell lysis and shows homology with other lytic proteins. Vpu is an oligomeric integral membrane protein encoded by HIV-1, which forms ion channels. The togavirus 6K protein shows structural similarities with other viroporins.
Collapse
Affiliation(s)
- F Ciampor
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 842 45 Bratislava, Slovak Republic
| |
Collapse
|
44
|
Kim TG, Langridge WHR. Synthesis of an HIV-1 Tat transduction domain-rotavirus enterotoxin fusion protein in transgenic potato. PLANT CELL REPORTS 2004; 22:382-387. [PMID: 14551730 DOI: 10.1007/s00299-003-0697-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 07/17/2003] [Accepted: 07/18/2003] [Indexed: 05/24/2023]
Abstract
A DNA fragment encoding a 12-amino acid (aa) HIV-1 Tat transduction peptide fused to a 90-aa murine rotavirus NSP4 enterotoxin protein (Tat-NSP4(90)) was transferred to Solanum tuberosum by Agrobacterium tumefaciens-mediated transformation. The fusion gene was detected in the genomic DNA of transformed plant leaf tissues by PCR DNA amplification. The Tat-NSP4(90 )fusion protein was identified in transformed tuber extracts by immunoblot analysis using anti-NSP4(90) and anti-Tat as the primary antibodies. Enzyme-linked immunosorbent assay results showed that the Tat-NSP4(90) fusion protein made up to 0.0015% of the total soluble tuber protein. The synthesis of Tat-NSP4(90) fusion protein in transformed potato tuber tissues demonstrates the feasibility of plant cell delivery of the HIV-1 Tat transduction domain as a carrier for non-specific targeting of fused antigens to the mucosal immune system.
Collapse
Affiliation(s)
- T-G Kim
- Department of Biochemistry and Microbiology and Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | |
Collapse
|
45
|
Rodríguez-Díaz J, López-Andújar P, García-Díaz A, Cuenca J, Montava R, Buesa J. Expression and purification of polyhistidine-tagged rotavirus NSP4 proteins in insect cells. Protein Expr Purif 2003; 31:207-12. [PMID: 14550638 DOI: 10.1016/s1046-5928(03)00166-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rotavirus nonstructural NSP4 protein, a transmembrane endoplasmic reticulum-specific glycoprotein, has been described as the first viral enterotoxin. Purified NSP4 or a peptide corresponding to NSP4 residues 114-135 induces diarrhea in young mice. NSP4 has a membrane-destabilizing activity and causes an increase in intracellular calcium levels and chloride secretion by a calcium-dependent signalling pathway in eucaryotic cells. In this study, four recombinant baculoviruses were generated expressing the rotavirus NSP4 glycoprotein from the human strains Wa and Ito, the porcine strain OSU, and the simian strain SA11, which belong to two different NSP4 genotypes, A and B. The recombinant glycoproteins, expressed as polyhistidine-tagged molecules, were analyzed by Western blotting and immunoprecipitation. Newborn mice responded with diarrhea after inoculation with each of the recombinant NSP4 proteins.
Collapse
Affiliation(s)
- Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine and Hospital Clínico Universitario, University of Valencia, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Viroporins are a group of proteins that participate in several viral functions, including the promotion of release of viral particles from cells. These proteins also affect cellular functions, including the cell vesicle system, glycoprotein trafficking and membrane permeability. Viroporins are not essential for the replication of viruses, but their presence enhances virus growth. Comprising some 60-120 amino acids, viroporins have a hydrophobic transmembrane domain that interacts with and expands the lipid bilayer. Some viroporins also contain other motifs, such as basic amino acid residues or a domain rich in aromatic amino acids that confers on the protein the ability to interact with the interfacial lipid bilayer. Viroporin oligomerization gives rise to hydrophilic pores at the membranes of virus-infected cells. As the list of known viroporins steadily grows, recent research efforts focus on deciphering the actions of the viroporins poliovirus 2B, alphavirus 6K, HIV-1 Vpu and influenza virus M2. All these proteins can enhance the passage of ions and small molecules through membranes depending on their concentration gradient. Future work will lengthen the list of viroporins and will provide a deeper understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Maria Eugenia Gonzalez
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| | | |
Collapse
|
47
|
Kim TG, Langridge WHR. Assembly of cholera toxin B subunit full-length rotavirus NSP4 fusion protein oligomers in transgenic potato. PLANT CELL REPORTS 2003; 21:884-890. [PMID: 12789506 DOI: 10.1007/s00299-003-0599-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Revised: 01/17/2003] [Accepted: 01/21/2003] [Indexed: 05/24/2023]
Abstract
A CTB-NSP4(175) fusion gene encoding the entire 175-aa murine rotavirus NSP4 enterotoxin protein was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation. The CTB-NSP4(175) enterotoxin fusion gene was detected in the genomic DNA of transformed leaves by PCR DNA amplification. Synthesis and assembly of the full-length CTB-NSP4(175) fusion protein into oligomeric structures of pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding of CTB-NSP4(175 )fusion protein pentamers to intestinal epithelial cell membrane receptors was quantified by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). The ELISA results showed that CTB-NSP4(175) fusion protein was 0.006-0.026% of the total soluble tuber protein. The synthesis of CTB-NSP4(175) monomers and their assembly into biologically active oligomers in transformed potato tubers demonstrates the feasibility of using edible plants for the synthesis of enterocyte-targeted full-length rotavirus enterotoxin antigens that retain all of their pathogenic epitopes for initiation of a maximum mucosal immune response.
Collapse
Affiliation(s)
- T-G Kim
- Department of Biochemistry and Microbiology and Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | |
Collapse
|
48
|
Lin SL, Tian P. Detailed computational analysis of a comprehensive set of group A rotavirus NSP4 proteins. Virus Genes 2003; 26:271-82. [PMID: 12876455 DOI: 10.1023/a:1024451314534] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rotavirus infection causes diarrhea to humans, animals and birds. The NSP4 protein of Group A rotavirus has been recognized as a viral enterotoxin. This single protein plays important roles in viral pathogenesis and morphogenesis. Domains involved in structure and biologic functions have been proposed mainly based on the SA11 strain, a prototype of group A rotavirus. NSP4 has been classified into different genotypes based on sequence homology. These analyses are based on representative strains selected but not comprehensive. In this paper, we collected all NSP4 sequences in the GenBank and performed a detailed computational analysis. Our analysis of 176 NSP4 proteins in Groups A, B and C rotaviruses confirms that the recently published avian NSP4 sequences belong to a new genotype (Mori Y., Borgan M.A., Ito N., Sugiyama M. and Minamoto N., Virus Res 89, 145-151, 2002), besides the four known NSP4 genotypes of Group A mammalian rotaviruses. Significant differences were discovered in the physicochemical properties between the avian and mammalian NSP4 proteins. In particular, lack of a highly probable coiled-coil region in the avian sequences implies a diversion of the NSP4 quaternary structure from the latter, although the secondary and tertiary structures may be similar. Fourteen amino acids are found absolutely conserved in the Group A NSP4 sequences, regardless of genotype. Of the conserved residues, two are glycosylation sites, one is in the middle of the transmembrane segment, seven span the VP4 binding domain, and five are clustered in the middle of the toxic peptide region, indicating the functional importance of the conservation.
Collapse
Affiliation(s)
- Shuo Liang Lin
- Wyeth Research, 401 N. Middletown Road, B180/216-41, Pearl River, NY 10965, USA.
| | | |
Collapse
|
49
|
Mirazimi A, Magnusson KE, Svensson L. A cytoplasmic region of the NSP4 enterotoxin of rotavirus is involved in retention in the endoplasmic reticulum. J Gen Virol 2003; 84:875-883. [PMID: 12655088 DOI: 10.1099/vir.0.18786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rotavirus genome encodes two glycoproteins, one structural (VP7) and one non-structural (NSP4), both of which mature and remain in the endoplasmic reticulum (ER). While three amino acids in the N terminus have been proposed to function as a retention signal for VP7, no information is yet available on how NSP4 remains associated with the ER. In this study, we have investigated the ER retention motif of NSP4 by producing various C-terminal truncations. Deleting the C terminus by 52 amino acids did not change the intracellular distribution of NSP4, but an additional deletion of 38 amino acids diminished the ER retention and resulted in the expression of NSP4 on the cell surface. Brefeldin A treatment prevented NSP4 from reaching the cell surface, suggesting that C-terminal truncated plasma membrane NSP4 is transported through the normal secretory pathway. On the basis of these results, we propose that the region between amino acids 85 and 123 in the cytoplasmic region of NSP4 are involved in ER retention.
Collapse
Affiliation(s)
- Ali Mirazimi
- Department of Virology, Swedish Institute for Infectious Disease Control/Karolinska Institute, 171 82 Solna, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, University of Linköping, Sweden
| | - Lennart Svensson
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, University of Linköping, Sweden
- Department of Virology, Swedish Institute for Infectious Disease Control/Karolinska Institute, 171 82 Solna, Sweden
| |
Collapse
|
50
|
II, 7. Interaction of the rotavirus nonstructural glycoprotein NSP4 with viral and cellular components. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|