1
|
Dai X, Zhang X, Ostrikov K, Abrahamyan L. Host receptors: the key to establishing cells with broad viral tropism for vaccine production. Crit Rev Microbiol 2020; 46:147-168. [PMID: 32202955 PMCID: PMC7113910 DOI: 10.1080/1040841x.2020.1735992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell culture-based vaccine technology is a flexible and convenient approach for vaccine production that requires adaptation of the vaccine strains to the new cells. Driven by the motivation to develop a broadly permissive cell line for infection with a wide range of viruses, we identified a set of the most relevant host receptors involved in viral attachment and entry. This identification was done through a review of different viral entry pathways and host cell lines, and in the context of the Baltimore classification of viruses. In addition, we indicated the potential technical problems and proposed some solutions regarding how to modify the host cell genome in order to meet industrial requirements for mass production of antiviral vaccines. Our work contributes to a finer understanding of the importance of breaking the host–virus recognition specificities for the possibility of creating a cell line feasible for the production of vaccines against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry and Physics and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Levon Abrahamyan
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
2
|
Rima BK, Duprex WP. New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Res 2011; 162:47-62. [DOI: 10.1016/j.virusres.2011.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/24/2022]
|
3
|
The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol 2011; 18:128-34. [PMID: 21217701 PMCID: PMC3059746 DOI: 10.1038/nsmb.1967] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/25/2010] [Indexed: 12/21/2022]
Abstract
The measles virus entry system, constituted of attachment (hemagglutinin, H) and fusion proteins, operates based on a variety of natural and targeted receptors. However, the mechanism triggering fusion of the viral envelope with the plasma membrane is not understood. Here we tested a model considering that the two heads of an H-dimer, which are covalently linked at their base, after binding two receptor molecules, move relative to each other to transmit the fusion-triggering signal. Indeed, stabilizing the H-dimer interface by additional inter-molecular disulfide bonds prevented membrane fusion, an effect reversed by a reducing agent. Moreover, a membrane-anchored designated receptor efficiently triggered fusion, provided it engaged the H-dimer at locations proximal to where the natural receptors bind, and distal to the H-dimer interface. We discuss how receptors may force H-heads to switch partners and transmit the fusion-triggering signal.
Collapse
|
4
|
Griffin DE, Oldstone MBA. Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Curr Top Microbiol Immunol 2009; 329:59-76. [PMID: 19198562 PMCID: PMC7121846 DOI: 10.1007/978-3-540-70523-9_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measles virus (MV) enters cells by membrane fusion at the cell surface at neutral pH. Two glycoproteins mediate this process: the hemagglutinin (H) and fusion (F) proteins. The H-protein binds to receptors, while the F-protein mediates fusion of the viral and cellular membranes. H naturally interacts with at least three different receptors. The wild-type virus primarily uses the signaling lymphocyte activation molecule (SLAM, CD150) expressed on certain lymphatic cells, while the vaccine strain has gained the ability to also use the ubiquitous membrane cofactor protein (MCP, CD46), a regulator of complement activation. Additionally, MV infects polarized epithelial cells through an unidentified receptor (EpR). The footprints of the three receptors on H have been characterized, and the focus of research is shifting to the characterization of receptor-specific conformational changes that occur in the H-protein dimer and how these are transmitted to the F-protein trimer. It was also shown that MV attachment and cell entry can be readily targeted to designated receptors by adding specificity determinants to the H-protein. These studies have contributed to our understanding of membrane fusion by the glycoprotein complex of paramyxoviruses in general.
Collapse
Affiliation(s)
- Diane E. Griffin
- Department of Molecular Microbiology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037 USA
| |
Collapse
|
5
|
Fleischli C, Sirena D, Lesage G, Havenga MJE, Cattaneo R, Greber UF, Hemmi S. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. J Gen Virol 2007; 88:2925-2934. [DOI: 10.1099/vir.0.83142-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46–CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11–SCR I–II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.
Collapse
Affiliation(s)
- Christoph Fleischli
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Guillaume Lesage
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Roberto Cattaneo
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
6
|
Fleischli C, Verhaagh S, Havenga M, Sirena D, Schaffner W, Cattaneo R, Greber UF, Hemmi S. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35. J Virol 2005; 79:10013-22. [PMID: 16014961 PMCID: PMC1181579 DOI: 10.1128/jvi.79.15.10013-10022.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.
Collapse
|
7
|
Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol 2005; 79:7503-13. [PMID: 15919905 PMCID: PMC1143628 DOI: 10.1128/jvi.79.12.7503-7513.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of pathogens use CD46, a ubiquitously expressed membrane protein that regulates complement activation, as a cellular attachment receptor. While the CD46 binding sites of several pathogens, including measles virus, Neisseria gonorrhea, and human herpesvirus 6, have been described, the region of CD46 responsible for adenovirus binding has not been determined. In this study, we used competition experiments with known CD46 ligands, CD46-specific antibodies, and a set of CD46 mutants to localize the binding domain for the group B adenovirus serotype 35 (Ad35). Our results show that Ad35 competes with measles virus for binding to CD46 but not with complement protein C3b. We further show that this interaction is a protein-protein interaction and that N glycosylations do not critically contribute to infection with Ad35 fiber-containing Ad vectors. Our data demonstrate that the native conformation of the CCP2 domain is crucial for Ad35 binding and that the substitution of amino acids at positions 130 to 135 or 152 to 156 completely abolishes the receptor function of CD46. These regions localize to the same planar face of CD46 and likely form an extended adenovirus binding surface, since no single amino acid substitution within these areas eliminates virus binding. Finally, we demonstrate that the infection with a virus possessing human group B serotype Ad11 fibers is also mediated by the CCP2 domain. This information is important to better characterize the mechanisms of the receptor recognition by adenovirus relative to other pathogens that interact with CD46, and it may help in the design of antiviral therapeutics against adenovirus serotypes that use CD46 as a primary cellular attachment receptor.
Collapse
Affiliation(s)
- Anuj Gaggar
- University of Washington School of Medicine, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
8
|
Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 2002; 3:659-66. [PMID: 12055630 DOI: 10.1038/ni810] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD46 is a widely expressed transmembrane protein that was initially identified as binding and inactivating C3b and C4b complement products. We used mice that were transgenic for one of two human CD46 isoforms that differ in their cytoplasmic domains (termed CD46-1 and CD46-2) to analyze the effect of CD46 stimulation on the immune response. We show here that CD46 can regulate inflammatory responses, either by inhibiting (CD46-1) or increasing (CD46-2) the contact hypersensitivity reaction. We found that engagement of CD46-1 or CD46-2 differentially affected CD8(+) T cell cytotoxicity, CD4(+) T cell proliferation, interleukin 2 (IL-2) and IL-10 production as well as tyrosine phosphorylation of Vav in T lymphocytes. These results indicate that CD46 plays a role in regulating the T cell induced inflammatory reaction and in fine-tuning the cellular immune response by bridging innate and acquired immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Binding Sites
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Division
- Cytoplasm
- Cytotoxicity, Immunologic/immunology
- Dermatitis, Contact/immunology
- Dinitrofluorobenzene/adverse effects
- Disease Models, Animal
- Immunity, Active/immunology
- Immunity, Innate/immunology
- Interleukin-10/biosynthesis
- Interleukin-2/biosynthesis
- Membrane Cofactor Protein
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Isoforms/immunology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Julien C Marie
- INSERM U404, Immunité et Vaccination, CERVI, 21 avenue Tony Garnier, 69365 Lyon, cedex 07, France
| | | | | | | | | | | |
Collapse
|
9
|
Christiansen D, De Sousa ER, Loveland B, Kyriakou P, Lanteri M, Wild FT, Gerlier D. A CD46CD[55-46] chimeric receptor, eight short consensus repeats long, acts as an inhibitor of both CD46 (MCP)- and CD150 (SLAM)-mediated cell-cell fusion induced by CD46-using measles virus. J Gen Virol 2002; 83:1147-1155. [PMID: 11961270 DOI: 10.1099/0022-1317-83-5-1147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to their cellular receptor use, measles virus (MV) strains can be separated into two phenotypes, CD46-using and CD46-non-using. A long chimeric receptor, CD46CD[55-46], was generated from the CD46 backbone, encompassing the four short consensus repeat (SCR) domains of CD46 linked via a flexible glycine hinge to SCR1 and SCR2 of CD55, SCR3 and SCR4 of CD46 and the STP, transmembrane and cytoplasmic tail of CD46. This chimeric receptor was proficient for MV binding but deficient in mediating MV-induced cell-to-cell fusion and virus replication, possibly due to the extended distance between the MV haemagglutinin (H) binding site (CD46 SCR1-SCR2) and the cell membrane. When coexpressed with either wild-type CD46 or CD150, this fusion-incompetent receptor exerted a dominant negative effect and inhibited both cell-to-cell fusion and entry of MV with CD46-using, but not CD46-non-using, phenotype. A soluble octameric CD46-C4bpalpha exhibited similar CD46- and CD150-mediated fusion inhibition properties only against CD46-using MV. This suggests that the long CD46CD[55-46] receptor acts by sequestering incoming MV prior to its binding to the shorter functional CD46 or CD150 receptor.
Collapse
Affiliation(s)
- Dale Christiansen
- Immunité et Infections Virales, VPV, CNRS-UCBL UMR 5537, Faculté de Médecine Lyon-RTH Laennec, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Emmanuel R De Sousa
- Immunité et Infections Virales, VPV, CNRS-UCBL UMR 5537, Faculté de Médecine Lyon-RTH Laennec, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| | - Bruce Loveland
- The Austin Research Institute, Heidelberg, Victoria 3084, Australia2
| | - Peter Kyriakou
- The Austin Research Institute, Heidelberg, Victoria 3084, Australia2
| | - Marc Lanteri
- The Austin Research Institute, Heidelberg, Victoria 3084, Australia2
| | | | - Denis Gerlier
- Immunité et Infections Virales, VPV, CNRS-UCBL UMR 5537, Faculté de Médecine Lyon-RTH Laennec, Rue Guillaume Paradin, 69372 Lyon Cedex 08, France1
| |
Collapse
|
10
|
Abstract
Human CD46, or membrane cofactor protein, is a regulator of complement activation and is used as a cellular receptor by measles virus. Using a series of 13 single point mutants, the region of short consensus repeat (SCR) 2 domain involved in the regulation of complement activation was mapped to residues E84, N94, Y98, E102, E103, I104 and E108. Molecular modelling localized all residues, with the exception of E84, close to each other on the external lateral face of the molecule, away from the residues important for the binding of measles virus, which are localized on the top of the molecule. The E84 residues is localized in the SCR1-2 hinge and the deleterious effect of its substitution by an alanine residue could affect the relative orientation and / or tilt of SCR1 on SCR2. Taken together, the results suggest that the measles virus binding and cofactor activity of CD46 map to distinct areas on the SCR2 module.
Collapse
Affiliation(s)
- D Christiansen
- Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Lyon RTH Laennec, Lyon, France
| | | | | |
Collapse
|
11
|
Schneider U, Bullough F, Vongpunsawad S, Russell SJ, Cattaneo R. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000; 74:9928-36. [PMID: 11024120 PMCID: PMC102030 DOI: 10.1128/jvi.74.21.9928-9936.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought proof of principle that one of the safest human vaccines, measles virus Edmonston B (MV-Edm), can be genetically modified to allow entry via cell surface molecules other than its receptor CD46. Hybrid proteins consisting of the epidermal growth factor (EGF) or the insulin-like growth factor 1 (IGF1) linked to the extracellular (carboxyl) terminus of the MV-Edm attachment protein hemagglutinin (H) were produced. The standard H protein gene was replaced by one coding for H/EGF or H/IGF1 in cDNA copies of the MV genome. Recombinant viruses were rescued and replicated to titers approaching those of the parental strain. MV displaying EGF or IGF1 efficiently entered CD46-negative rodent cells expressing the human EGF or the IGF1 receptor, respectively, and the EGF virus caused extensive syncytium formation and cell death. Taking advantage of a factor Xa protease recognition site engineered in the hybrid H proteins, the displayed domain was cleaved off from virus particles, and specific entry in rodent cells was abrogated. These studies prove that MV can be engineered to selectively eliminate cells expressing a targeted receptor and provide insights into the mechanism of MV entry.
Collapse
Affiliation(s)
- U Schneider
- Molecular Medicine Program, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
12
|
Christiansen D, Devaux P, Réveil B, Evlashev A, Horvat B, Lamy J, Rabourdin-Combe C, Cohen JH, Gerlier D. Octamerization enables soluble CD46 receptor to neutralize measles virus in vitro and in vivo. J Virol 2000; 74:4672-8. [PMID: 10775604 PMCID: PMC111988 DOI: 10.1128/jvi.74.10.4672-4678.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CHO Cells
- Cell Fusion
- Complement Activation
- Complement Inactivator Proteins
- Cricetinae
- Glycoproteins
- Hemagglutinins, Viral/metabolism
- Measles/prevention & control
- Measles virus/immunology
- Measles virus/metabolism
- Membrane Cofactor Protein
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- Neutralization Tests
- Receptors, Complement/chemistry
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- D Christiansen
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR 5537, F-69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christiansen D, Loveland B, Kyriakou P, Lanteri M, Escoffier C, Gerlier D. Interaction of CD46 with measles virus: accessory role of CD46 short consensus repeat IV. J Gen Virol 2000; 81:911-7. [PMID: 10725416 DOI: 10.1099/0022-1317-81-4-911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To define further the accessory role(s) of the CD46 (membrane cofactor protein) short consensus repeat (SCR) III and IV domains in the interaction of CD46 with measles virus (MV), chimeric proteins were generated by substituting domains from the structurally related protein decay accelerating factor (DAF, CD55): x3DAF (exchange of CD46 SCR III) and x4DAF (exchange of SCR IV). Transfected CHO cell lines that stably expressed these chimeric proteins were compared for MV binding and infection. Compared with wild-type CD46 (I-II-III-IV), a significant decrease in MV binding was observed with x4DAF. Despite this limited binding, these cells were still capable of supporting virus entry. In a quantitative fusion assay, no significant differences in fusion were observed as a result of the exchange of either CD46 SCR III or IV. However, the down-regulation of cell surface CD46 typically observed following MV infection was abolished with x4DAF, as was the redistribution of CD46 on the cell surface. Thus, CD46 SCR IV appears to be required for optimal virus binding and receptor down-regulation, although importantly, in spite of these functional limitations, x4DAF can still be used for MV entry.
Collapse
Affiliation(s)
- D Christiansen
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR 5537, 69372 Lyon Cedex 08, France The Austin Research Institute, Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Zelus BD, Wessner DR, Dveksler GS, Holmes KV. Neutralization of MHV-A59 by soluble recombinant receptor glycoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:3-9. [PMID: 9782258 DOI: 10.1007/978-1-4615-5331-1_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The interaction of viruses with specific receptors is an important determinant of viral tissue tropism and species specificity. Our goals are to understand how mouse hepatitis virus (MHV) recognizes its cellular receptor, MHVR, and how post-binding interactions with this receptor influence viral fusion and entry. Murine cells express a variety of cell surface molecule in the biliary glycoprotein (Bgp) family that are closely related to the MHVR. When these proteins are expressed at high levels in cell culture, they function as MHV receptors. We used a baculovirus expression system to produce soluble recombinant murine Bgp receptors in which the transmembrane and cytoplasmic domains have been replaced with a six-histidine tag. The soluble glycoproteins were purified to apparent homogeneity and shown to react with antisera to the native receptor. We compared the virus neutralizing activities of various soluble receptor glycoproteins. Soluble MHVR [sMHVR(1-4)] had 10-20 fold more virus neutralizing activity the soluble protein derived from the Bgp1b glycoprotein [sBgp1b(1-4)], from MHV-resistant SJL mice. The sMHVR(1-4) glycoprotein was 60-100 fold more active than a truncated receptor molecule containing only the first two immunoglobulin-like domains, sMHVR(1,2). The observation that sMHVR lacking domains 3 and 4 neutralizes MHV-A59 very poorly suggests that these domains may influence virus binding or subsequent steps associated with neutralization.
Collapse
Affiliation(s)
- B D Zelus
- Department of Microbiology, University of Colorado, Denver 80262, USA
| | | | | | | |
Collapse
|
15
|
Buchholz CJ, Koller D, Devaux P, Mumenthaler C, Schneider-Schaulies J, Braun W, Gerlier D, Cattaneo R. Mapping of the primary binding site of measles virus to its receptor CD46. J Biol Chem 1997; 272:22072-9. [PMID: 9268348 DOI: 10.1074/jbc.272.35.22072] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The measles virus (MV) hemagglutinin binds to the complement control protein (CCP) CD46 primarily through the two external modules, CCP-I and -II. To define the residues involved in binding, 40 amino acids predicted to be solvent-exposed on the CCP-I-II module surface were changed to either alanine or serine. Altered proteins were expressed on the cell surface, and their abilities to bind purified MV particles, a soluble form of hemagglutinin (sH) and nine CD46-specific antibodies competing to different levels with sH attachment, were measured. All proteins retained, at least in part, MV and sH binding, but some completely lost binding to certain antibodies. Amino acids essential for binding of antibodies weakly or moderately competing with sH attachment are situated in the membrane-distal tip of CCP-I, whereas residues involved in binding of strongly sH competing antibodies cluster in the center of CCP-I (Arg-25, Asp-27) or in CCP-II (Arg-69, Asp-70). Both clusters face the same side of CCP-I-II and map close to amino acid exchanges impairing sH binding (E11A, R29A, P39A, and D70A) or MV binding (D70A and E84A) and to a six-amino acid loop, previously shown to be necessary for sH binding.
Collapse
Affiliation(s)
- C J Buchholz
- Institut für Molekularbiologie, Abt.I, Universität Zürich, Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|