1
|
Nagornykh AM, Tyumentseva MA, Tyumentsev AI, Akimkin VG. Anatomical and physiological aspects of the HIV infection pathogenesis in animal models. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the entire pathogenesis of HIV infection, from penetration at the gates of infection to the induction of severe immunodeficiency, is an essential tool for the development of new treatment methods. Less than 40 years of research into the mechanisms of HIV infection that lead to the development of acquired immunodeficiency syndrome have accumulated a huge amount of information, but HIV's own unique variability identifies new whitespaces.
Despite the constant improvement of the protocols of antiretroviral therapy and the success of its use, it has not yet been possible to stop the spread of HIV infection. The development of new protocols and the testing of new groups of antiretroviral drugs is possible, first of all, due to the improvement of animal models of the HIV infection pathogenesis. Their relevance, undoubtedly increases, but still depends on specific research tasks, since none of the in vivo models can comprehensively simulate the mechanism of the infection pathology in humans which leads to multi-organ damage.
The aim of the review was to provide up-to-date information on known animal models of HIV infection, focusing on the method of their infection and anatomical, physiological and pathological features.
Collapse
|
2
|
Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. J Virol 2018; 92:JVI.01905-17. [PMID: 29212937 DOI: 10.1128/jvi.01905-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.
Collapse
|
3
|
Nomaguchi M, Doi N, Koma T, Adachi A. HIV-1 mutates to adapt in fluxing environments. Microbes Infect 2017; 20:610-614. [PMID: 28859896 DOI: 10.1016/j.micinf.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is specifically adapted for replication, persistence, transmission, and survival in humans. HIV-1 is highly mutable in nature, and well responds to a variety of environmental pressures by altering its genome sequences. In this review, we have described experimental evidence that demonstrates this phantasmagoric property of HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan; Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan.
| |
Collapse
|
4
|
Hahn F, Schmalen A, Setz C, Friedrich M, Schlößer S, Kölle J, Spranger R, Rauch P, Fraedrich K, Reif T, Karius-Fischer J, Balasubramanyam A, Henklein P, Fossen T, Schubert U. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner. PLoS One 2017; 12:e0174254. [PMID: 28388673 PMCID: PMC5384750 DOI: 10.1371/journal.pone.0174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.
Collapse
Affiliation(s)
- Friedrich Hahn
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Schmalen
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schlößer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kölle
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Spranger
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Reif
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Karius-Fischer
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - Petra Henklein
- Institute of Biochemistry, Charité Universitätsmedizin-Berlin, Berlin, Germany
| | - Torgils Fossen
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
5
|
Detection of HIV-1 matrix protein p17 quasispecies variants in plasma of chronic HIV-1-infected patients by ultra-deep pyrosequencing. J Acquir Immune Defic Syndr 2014; 66:332-9. [PMID: 24732873 DOI: 10.1097/qai.0000000000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The HIV-1 matrix protein p17 (p17MA) is a pleiotropic protein that plays a key role in the HIV-1 life cycle. It has been long believed to have a highly conserved primary amino acid sequence and a well-preserved structural integrity to avoid severe fitness consequences. However, recent data revealed that the carboxy (COOH)-terminus of p17MA possesses high levels of predicted intrinsic disorder, which would subtend to at least partially unfolded status of this region. This finding pointed to the need of investigating p17MA heterogeneity. METHODS The degree of intrapatient variations in the p17MA primary sequence was assessed on plasma viral RNA by using ultra-deep pyrosequencing. RESULTS Data obtained support a complex nature of p17MA quasispecies, with variants present at variable frequency virtually in all patients. Clusters of mutations were scattered along the entire sequence of the viral protein, but they were more frequently detected within the COOH-terminal region of p17MA. Moreover, deletions and insertions also occurred in a restricted area of the COOH-terminal region. CONCLUSIONS On the whole, our data show that the intrapatient level of sequence diversity in the p17MA is much higher than predicted before. Our results pave the way for further studies aimed at unraveling possible correlations between the presence of distinct p17MA variants and peculiar clinical evolutions of HIV-1 disease. The presence of p17MA quasispecies diversity may offer new tools to improve our understanding of the viral adaptation during the natural history of HIV-1 infection.
Collapse
|
6
|
|
7
|
Simian immunodeficiency virus and human immunodeficiency virus type 1 matrix proteins specify different capabilities to modulate B cell growth. J Virol 2014; 88:5706-17. [PMID: 24623414 DOI: 10.1128/jvi.03142-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Exogenous HIV-1 matrix protein p17 (p17) deregulates the function of different cells after its N-terminal loop (AT20) binding to the chemokine receptors CXCR1 and CXCR2. One site within AT20 has been recently found to be the major determinant of viral fitness following transmission of simian immunodeficiency virus (SIV) to the human host. Therefore, we sought to determine whether SIV matrix protein (MA) was already capable of interacting with CXCR1 and CXCR2 and mimic p17 biological activities rather than this being a newly acquired function during host adaptation. We show here that SIV MA binds with the same affinity of p17 to CXCR1 and CXCR2 and displays both p17 proangiogenic on human primary endothelial cells and chemotactic activity on human primary monocytes and B cells. However, SIV MA exhibited a higher degree of plasticity than p17 in the C terminus, a region known to play a role in modulating B cell growth. Indeed, in contrast to p17, SIV MA was found to activate the phosphatidylinositol 3-kinase/Akt signaling pathway and strongly promote B cell proliferation and clonogenic activity. Interestingly, we have recently highlighted the existence of a Ugandan HIV-1 strain-derived p17 variant (S75X) with the same B cell growth-promoting activity of SIV MA. Computational modeling allowed us to hypothesize an altered C terminus/core region interaction behind SIV MA and S75X activity. Our findings suggest the appearance of a structural constraint in the p17 C terminus that controls B cell growth, which may help to elucidate the evolutionary trajectory of HIV-1. IMPORTANCE The HIV-1 matrix protein p17 (p17) deregulates the biological activities of different cells after binding to the chemokine receptors CXCR1 and CXCR2. The p17 functional domain responsible for receptors interaction includes an amino acid which is considered the major determinant of SIV replication in humans. Therefore, we sought to determine whether SIV matrix protein (SIV MA) already had the ability to bind to both chemokine receptors rather than being a function newly acquired during host adaptation. We show here that SIV MA binds to CXCR1 and CXCR2 and fully mimics the p17 proangiogenic and chemokine activity. However, it differs from p17 in its ability to signal into B cells and promote B cell growth and clonogenicity. Computational analysis suggests that the accumulation of mutations in the C-terminal region may have led to a further SIV MA adaptation to the human host. This finding in turn sheds light on the evolutionary trajectory of HIV-1.
Collapse
|
8
|
Abstract
Acquired immunodeficiency syndrome (AIDS) of humans is caused by two lentiviruses, human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2). Here, we describe the origins and evolution of these viruses, and the circumstances that led to the AIDS pandemic. Both HIVs are the result of multiple cross-species transmissions of simian immunodeficiency viruses (SIVs) naturally infecting African primates. Most of these transfers resulted in viruses that spread in humans to only a limited extent. However, one transmission event, involving SIVcpz from chimpanzees in southeastern Cameroon, gave rise to HIV-1 group M-the principal cause of the AIDS pandemic. We discuss how host restriction factors have shaped the emergence of new SIV zoonoses by imposing adaptive hurdles to cross-species transmission and/or secondary spread. We also show that AIDS has likely afflicted chimpanzees long before the emergence of HIV. Tracing the genetic changes that occurred as SIVs crossed from monkeys to apes and from apes to humans provides a new framework to examine the requirements of successful host switches and to gauge future zoonotic risk.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
9
|
Reacquisition of Nef-mediated tetherin antagonism in a single in vivo passage of HIV-1 through its original chimpanzee host. Cell Host Microbe 2013; 12:373-80. [PMID: 22980333 DOI: 10.1016/j.chom.2012.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/11/2012] [Accepted: 07/06/2012] [Indexed: 02/02/2023]
Abstract
The interferon-induced host restriction factor tetherin poses a barrier for SIV transmission from primates to humans. After cross-species transmission, the chimpanzee precursor of pandemic HIV-1 switched from the accessory protein Nef to Vpu to effectively counteract human tetherin. As we report here, the experimental reintroduction of HIV-1 into its original chimpanzee host resulted in a virus that can use both Vpu and Nef to antagonize chimpanzee tetherin. Functional analyses demonstrated that alterations in and near the highly conserved ExxxLL motif in the C-terminal loop of Nef were critical for the reacquisition of antitetherin activity. Strikingly, just two amino acid changes allowed HIV-1 Nef to counteract chimpanzee tetherin and promote virus release. Our data demonstrate that primate lentiviruses can reacquire lost accessory gene functions during a single in vivo passage and suggest that other functional constraints keep Nef ready to regain antitetherin activity.
Collapse
|
10
|
Bibollet-Ruche F, Heigele A, Keele BF, Easlick JL, Decker JM, Takehisa J, Learn G, Sharp PM, Hahn BH, Kirchhoff F. Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adaptation. J Clin Invest 2012; 122:1644-52. [PMID: 22505456 DOI: 10.1172/jci61429] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4(+) T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6060, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tebit DM, Arts EJ. Tracking a century of global expansion and evolution of HIV to drive understanding and to combat disease. THE LANCET. INFECTIOUS DISEASES 2011; 11:45-56. [PMID: 21126914 DOI: 10.1016/s1473-3099(10)70186-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Sharp PM, Hahn BH. The evolution of HIV-1 and the origin of AIDS. Philos Trans R Soc Lond B Biol Sci 2010; 365:2487-94. [PMID: 20643738 DOI: 10.1098/rstb.2010.0031] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major cause of acquired immune deficiency syndrome (AIDS) is human immunodeficiency virus type 1 (HIV-1). We have been using evolutionary comparisons to trace (i) the origin(s) of HIV-1 and (ii) the origin(s) of AIDS. The closest relatives of HIV-1 are simian immunodeficiency viruses (SIVs) infecting wild-living chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in west central Africa. Phylogenetic analyses have revealed the origins of HIV-1: chimpanzees were the original hosts of this clade of viruses; four lineages of HIV-1 have arisen by independent cross-species transmissions to humans and one or two of those transmissions may have been via gorillas. However, SIVs are primarily monkey viruses: more than 40 species of African monkeys are infected with their own, species-specific, SIV and in at least some host species, the infection seems non-pathogenic. Chimpanzees acquired from monkeys two distinct forms of SIVs that recombined to produce a virus with a unique genome structure. We have found that SIV infection causes CD4(+) T-cell depletion and increases mortality in wild chimpanzees, and so the origin of AIDS is more ancient than the origin of HIV-1. Tracing the genetic changes that occurred as monkey viruses adapted to infect first chimpanzees and then humans may provide insights into the causes of the pathogenicity of these viruses.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
13
|
Juompan LY, Hutchinson K, Montefiori DC, Nidtha S, Villinger F, Novembre FJ. Analysis of the immune responses in chimpanzees infected with HIV type 1 isolates. AIDS Res Hum Retroviruses 2008; 24:573-86. [PMID: 18426337 DOI: 10.1089/aid.2007.0182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of resistance to AIDS development in HIV-1-infected chimpanzees have remained elusive. Unique among chimpanzees naturally or experimentally infected with HIV, several animals of the Yerkes cohort have progressed to clinical AIDS with selection of isolates showing increased pathogenicity for chimpanzees. We compared progressors vs. nonprogressors among the HIV-infected chimpanzees that made up this cohort, eight of which have been infected with HIV-1 for over 14 years. The additional two progressors were infected de novo with chimpanzee-pathogenic HIV, rapidly leading to a progressor status. Nonprogressors were characterized by normal CD4(+) T cell counts and the absence of detectable viremia. In contrast, progressor chimpanzees had relatively high plasma viral loads associated with a dramatic loss of CD4(+) T cells. The analysis of immune responses showed a similar amplitude and breadth of ELISPOT T cell responses in both groups. HIV-specific proliferative responses were, however, absent in the progressor animals, which also exhibited increased levels of immune activation characterized by elevated levels of the circulating chemokines IP-10 and MCP-1. Of interest was the conservation of potent NK cell activity in all animals, potentially contributing to the extended symptom-free survival of progressor animals. Modest anti-HIV antibody titers were detectable in the nonprogressor group, but these antibodies exhibited good neutralizing activity. In progressors, however, two sets of data were noted: in animals that gradually selected for pathogenic isolates, or that were superinfected, very high neutralizing antibody titers were observed, although none to the pathogenic HIV. In contrast, two animals infected de novo with chimpanzee pathogenic HIV failed to mount an extensive humoral response and both failed to develop neutralizing antibodies to the virus. Taken together, pathogenic HIV infection in chimpanzees is associated with rapid loss of CD4(+) T cells and proliferative responses as well as higher levels of immune activation.
Collapse
Affiliation(s)
- Laure Y. Juompan
- Yerkes National Primate Research Center and Department of Microbiology, Emory University, Atlanta, Georgia 30329
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910
| | - Karen Hutchinson
- Special Pathogens Branch, Centers for Disease Control, Atlanta, Georgia 30333
| | | | - Soumya Nidtha
- Yerkes National Primate Research Center and Department of Microbiology, Emory University, Atlanta, Georgia 30329
- TransMed Partners, LLC, San Francisco, California
| | - François Villinger
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, Georgia 30329
| | - Francis J. Novembre
- Yerkes National Primate Research Center and Department of Microbiology, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
14
|
Wiegers K, Schwarck D, Reimer R, Bohn W. Activation of the glucocorticoid receptor releases unstimulated PBMCs from an early block in HIV-1 replication. Virology 2008; 375:73-84. [PMID: 18295813 DOI: 10.1016/j.virol.2008.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/19/2007] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
Abstract
Infection of resting peripheral mononuclear blood cells (PBMCs) with HIV-1 is not productive due to a block prior to integration of the provirus into the host genome. Here we show that a unique restriction is determined by the status of the glucocorticoid receptor (GR). Proviral integration increases after addition of a GR ligand. The ligand dependent effect is confined to an early time period after infection and requires GR and the GR binding viral protein Vpr. Endogenous GR and transiently expressed Vpr are localized in the cytoplasm in unstimulated PMCs and comigrate into the nucleus upon ligand addition. Thus, the predominant cytoplasmic localization of GR seems to be a specific obstacle for HIV replication. Accordingly, efficient proviral integration in a cell line with a constitutive cytoplasmic GR requires addition of a GR ligand. The data suggest that steroids can overcome the restriction on HIV provirus formation and thereby increase the reservoir of virus producing cells.
Collapse
Affiliation(s)
- Klaus Wiegers
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany.
| | | | | | | |
Collapse
|
15
|
Wain LV, Bailes E, Bibollet-Ruche F, Decker JM, Keele BF, Van Heuverswyn F, Li Y, Takehisa J, Ngole EM, Shaw GM, Peeters M, Hahn BH, Sharp PM. Adaptation of HIV-1 to its human host. Mol Biol Evol 2007; 24:1853-60. [PMID: 17545188 PMCID: PMC4053193 DOI: 10.1093/molbev/msm110] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) originated from three independent cross-species transmissions of simian immunodeficiency virus (SIVcpzPtt) infecting chimpanzees (Pan troglodytes troglodytes) in west central Africa, giving rise to pandemic (group M) and non-pandemic (groups N and O) clades of HIV-1. To identify host-specific adaptations in HIV-1 we compared the inferred ancestral sequences of HIV-1 groups M, N and O to 12 full length genome sequences of SIVcpzPtt and four of the outlying but closely related SIVcpzPts (from P. t. schweinfurthii). This analysis revealed a single site that was completely conserved among SIVcpzPtt strains but different (due to the same change) in all three groups of HIV-1. This site, Gag-30, lies within p17, the gag-encoded matrix protein. It is Met in SIVcpzPtt, underwent a conservative replacement by Leu in one lineage of SIVcpzPts but changed radically to Arg on all three lineages leading to HIV-1. During subsequent diversification this site has been conserved as a basic residue (Arg or Lys) in most lineages of HIV-1. Retrospective analysis revealed that Gag-30 had reverted to Met in a previous experiment in which HIV-1 was passaged through chimpanzees. To examine whether this substitution conferred a species specific growth advantage, we used site-directed mutagenesis to generate variants of these chimpanzee-adapted HIV-1 strains with Lys at Gag-30, and tested their replication in both human and chimpanzee CD4+ T lymphocytes. Remarkably, viruses encoding Met replicated to higher titers than viruses encoding Lys in chimpanzee T cells, but the opposite was found in human T cells. Taken together, these observations provide compelling evidence for host-specific adaptation during the emergence of HIV-1 and identify the viral matrix protein as a modulator of viral fitness following transmission to the new human host.
Collapse
Affiliation(s)
- Louise V Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim N, Dabrowska A, Jenner RG, Aldovini A. Human and simian immunodeficiency virus-mediated upregulation of the apoptotic factor TRAIL occurs in antigen-presenting cells from AIDS-susceptible but not from AIDS-resistant species. J Virol 2007; 81:7584-97. [PMID: 17494085 PMCID: PMC1933355 DOI: 10.1128/jvi.02616-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections lead to AIDS in humans and rhesus macaques (RM), while they are asymptomatic in species naturally infected with SIV, such as chimpanzees, sooty mangabeys (SM), and African green monkeys (AGM). Differential CD4(+) T-cell apoptosis may be responsible for these species-specific differences in susceptibility to disease. To identify factors that influence the different apoptotic responses of these species, we analyzed virus-infected human and nonhuman primate peripheral blood mononuclear cells (PBMC). We found that the apoptotic factor TRAIL was present at higher levels in human and RM PBMC cultures and was mediating, at least in part, CD4(+) T-cell apoptosis in these cultures. The species-specific increase in TRAIL and death receptor expression observed with cultures also occurred in vivo in SIV-infected RM but not in SIV-infected SM. In human and RM myeloid immature dendritic cells and macrophages, the virus-induced expression of TRAIL and other interferon-inducible genes, which did not occur in the same cells from chimpanzee, SM, and AGM, was Tat dependent. Our results link the differential induction of TRAIL in human and nonhuman primate cells to species-specific differences in disease susceptibility.
Collapse
Affiliation(s)
- Nayoung Kim
- Children's Hospital Boston, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
17
|
Abstract
One of the main host factors controlling resistance to disease appears to be the MHC. The recent poor results in HIV-1/AIDS Phase 3 vaccine field trials underline the importance of non-human primate models for AIDS. These models have been, and will continue to be, important for the definition of protective immune responses relevant to successful vaccine design because they supply essential information on the basic biology of lentivirus infections, mechanisms of resistance, escape and vaccine development.
Collapse
Affiliation(s)
- Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | |
Collapse
|
18
|
Haaft PT, Verschoor EJ, Verstrepen B, Niphuis H, Dubbes R, Koornstra W, Bogers W, Rosenwirth B, Heeney JL. Readily acquired secondary infections of human and simian immunodeficiency viruses following single intravenous exposure in non-human primates. J Gen Virol 2004; 85:3735-3745. [PMID: 15557247 DOI: 10.1099/vir.0.80223-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence suggests that exposed individuals may acquire multiple human immunodeficiency virus (HIV) infections more frequently than originally believed. As a result, circulating recombinant forms of HIV are emerging that are of particular concern in the AIDS epidemic and HIV vaccine development efforts. The aim of this study was to determine under what conditions secondary or superinfections of HIV or simian immunodeficiency virus (SIV) may be acquired under controlled settings in well-defined, non-human primate models. Retrospective analysis of macaques that had acquired apparent immunity upon infection with a defined attenuated SIV(mac) strain revealed that eight out of eight animals that were secondarily exposed to a new virus variant became infected with the new virus strain, but at low levels. Interestingly, similarly high frequencies of secondary infections were observed after early (4 months), as well as late (5 years), exposure following primary infection. As possible causes of susceptibility to secondary infections, perturbations in the immune system associated with exacerbated infections were then investigated prospectively. Results revealed that short-term immune-suppression therapy did not increase susceptibility to secondary infections. Taken together, data suggested that neither early- nor late-exposure immune-suppressive events following primary infection accounted for the observed high incidence of secondary infections. With HIV-1, the question of whether secondary infections with very closely related viral variants could occur in the chimpanzee model was addressed. In both animal models, secondary infections were confirmed, notably with relatively closely related SIV(mac) or HIV-1 strains, following a single exposure to the secondary virus strain. These findings reveal that secondary lentiviral infections may be acquired readily during different stages of primary infection, in contrast to co-infections, which are acquired at the moment of initial infection.
Collapse
Affiliation(s)
- Peter Ten Haaft
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Rob Dubbes
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Wim Koornstra
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Willy Bogers
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Brigitte Rosenwirth
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands
| |
Collapse
|
19
|
Suzuki Y, Misawa N, Sato C, Ebina H, Masuda T, Yamamoto N, Koyanagi Y. Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells. Virus Genes 2003; 27:177-88. [PMID: 14501196 DOI: 10.1023/a:1025732728195] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (deltaVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or DeltaVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Baumeister MA, Chattergoon MA, Weiner DB. Prospects for an HIV vaccine: conventional approaches and DNA immunization. Biotechnol Genet Eng Rev 2003; 19:205-42. [PMID: 12520879 DOI: 10.1080/02648725.2002.10648030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mark A Baumeister
- University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, 505 Stellar-Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
21
|
Fournier C, Cortay JC, Carbonnelle C, Ehresmann C, Marquet R, Boulanger P. The HIV-1 Nef protein enhances the affinity of reverse transcriptase for RNA in vitro. Virus Genes 2002; 25:255-69. [PMID: 12881637 DOI: 10.1023/a:1020971823562] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several viral proteins, including nucleocapsid protein, integrase, Vif, Tat, and Nef have been proposed to act as cofactors of HIV-1 reverse transcription. Using two viral RNA probes, one overlapping the primer-binding site (PBS) and the other representing the ribosomal frameshifting signal (FS) of HIV-1 RNA, we found that recombinant full-length Nef protein (NefLAI) increased the affinity of reverse transcriptase (RT) for RNA in vitro, and interacted directly with RT in protein co-precipitation assays. The effect on RT-RNA binding and the capacity of Nef to interact with RT was also observed with N-terminal deletion mutant NefDelta57 and NefSF2, although to a lesser level. NefDelta57 corresponded to the processed Nef protein present in the internal core of mature virions, and lacked the N-myristoylated N-terminus and N-terminal region implicated in virus infectivity and pathogenicity in vivo. NefSF2, a Nef allele from a highly pathogenic strain of HIV-1, differed from NefLAI by the amino acid sequence and immunoreactivity of its N-terminal domain. The effect observed with NefSF2 and NefDelta57, and data from phage biopanning experiments suggested that the RT-binding region in Nef involved the C-terminal flexible loop of its C-terminal domain, but the function in RT-RNA binding was also influenced by its N-terminal domain.
Collapse
Affiliation(s)
- Cécile Fournier
- Laboratoire de Virologie & Pathogénèse Virale, CNRS UMR 5537, Faculté de Médecine RTH Laennec, 7, Rue Guillaume Paradin 69008, Lyon, France
| | | | | | | | | | | |
Collapse
|
22
|
de Groot NG, Otting N, Doxiadis GGM, Balla-Jhagjhoorsingh SS, Heeney JL, van Rood JJ, Gagneux P, Bontrop RE. Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc Natl Acad Sci U S A 2002; 99:11748-53. [PMID: 12186979 PMCID: PMC129340 DOI: 10.1073/pnas.182420799] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2002] [Indexed: 11/18/2022] Open
Abstract
MHC class I molecules play an essential role in the immune defense against intracellular infections. The hallmark of the MHC is its extensive degree of polymorphism at the population level. However, the present comparison of MHC class I gene intron variation revealed that chimpanzees have experienced a severe repertoire reduction at the orthologues of the HLA-A, -B, and -C loci. The loss of variability predates the (sub)speciation of chimpanzees and did not effect other known gene systems. Therefore the selective sweep in the MHC class I gene may have resulted from a widespread viral infection. Based on the present results and the fact that chimpanzees have a natural resistance to the development of AIDS, we hypothesize that the selective sweep was caused by the chimpanzee-derived simian immunodeficiency virus (SIVcpz), the closest relative of HIV-1, or a closely related retrovirus. Hence, the contemporary chimpanzee populations represent the offspring of AIDS-resistant animals, the survivors of a HIV-like pandemic that took place in the distant past.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kandanearatchi A, Zuckerman M, Smith M, Vyakarnam A, Everall IP. Granulocyte-macrophage colony-stimulating factor enhances viral load in human brain tissue: amelioration with stavudine. AIDS 2002; 16:413-20. [PMID: 11834953 DOI: 10.1097/00002030-200202150-00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF) is elevated in cerebrospinal fluid in HIV- associated dementia; in addition, therapeutic GM-CSF elevates plasma viral load. OBJECTIVE To assess the effect of GM-CSF on viral replication and the potential ameliorative effect of antiretroviral therapy. DESIGN A primary human brain aggregate system is used as a model of the in vivo situation. METHOD Cultured aggregates were infected with the macrophage tropic strain HIV-1SF162 and then exposed to varying GM-CSF concentrations and 0.3 micromol/l stavudine. Viral replication was assessed by p24 expression in the supernatant and aggregates. Immunohistochemistry identified neurons, astrocytes, microglia and oligodendrocytes. RESULTS A GM-CSF concentration of 1 ng/ml resulted in a fivefold increase in microglial cells, the main HIV cellular reservoir (P = 0.0001). Prior GM-CSF exposure before infection of the aggregates resulted in sixfold increase in p24 levels compared with non-GM-CSF-exposed infected aggregates. Infected aggregates with or without GM-CSF had significant neuronal loss of 50% and 45%, respectively, and astrocytosis. Addition of stavudine to the infected aggregates, even in the presence of GM-CSF, reduced p24 levels to zero and prevented neuronal loss and astrocytosis. CONCLUSIONS This study demonstrates that GM-CSF enhances viral replication while addition of stavudine prevents this potentially detrimental process.
Collapse
|
24
|
Juompan L, Zhou J, Montefiori DC, Novembre FJ. Resistance to neutralizing antibody and expanded coreceptor usage are associated with human immunodeficiency virus type 1 isolates derived from chimpanzees with pathogenic infections. AIDS Res Hum Retroviruses 2001; 17:1705-14. [PMID: 11788022 DOI: 10.1089/08892220152741405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunologic and biologic factors associated with the progression to AIDS in HIV-1-infected chimpanzees were investigated. Chimpanzee C499 was euthanized in 1996 as a result of the development of AIDS approximately 11 years after infection with HIV-1. At the time of initial disease development (September 1995), blood from this animal was transfused to an uninfected chimpanzee, C455, resulting in a rapid loss of CD4(+) T cells. Virus isolates were derived from both animals and termed HIV-1(JC) (derived from C499 at the time of disease development; JC isolate) and HIV-1(NC) (derived from C455 1 month posttransfusion; NC isolate). In vitro studies demonstrate that the parental viruses used to inoculate C499 were susceptible to neutralization by serum from that animal. In contrast, serum from C499 at any time was unable to neutralize the JC or NC isolates. Similarly, the JC and NC isolates were highly resistant to neutralization by serum from C455. However, serum from C455 was also unable to neutralize either of the parental viruses or any of the normally neutralization sensitive isolates tested. Serum samples from the two additional chimpanzees that were inoculated with the NC isolate were also unable to neutralize these isolates. Coreceptor usage of the uncloned JC and NC isolates was somewhat expanded when compared with that of LAV1b and SF2. However, molecular clones derived from the JC and NC isolates (JC16 and NC7) displayed only a limited coreceptor repertoire despite having unique V3 loop sequences. The results suggest that the JC and NC isolates are neutralization escape mutants and display a different phenotype than the parental strains LAV1b and SF2.
Collapse
Affiliation(s)
- L Juompan
- Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
25
|
Trimble JJ, Salkowitz JR, Kestler HW. Animal models for AIDS pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:479-514. [PMID: 11013772 DOI: 10.1016/s1054-3589(00)49035-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- J J Trimble
- Biology Department, Saint Francis College, Loretto, Pennsylvania 15940, USA
| | | | | |
Collapse
|
26
|
Novembre FJ, de Rosayro J, Nidtha S, O'Neil SP, Gibson TR, Evans-Strickfaden T, Hart CE, McClure HM. Rapid CD4(+) T-cell loss induced by human immunodeficiency virus type 1(NC) in uninfected and previously infected chimpanzees. J Virol 2001; 75:1533-9. [PMID: 11152525 PMCID: PMC114058 DOI: 10.1128/jvi.75.3.1533-1539.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1(NC) (HIV-1(NC)). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4(+) T-cell loss to fewer than 26 cells/microl by 14 weeks after infection. CD4(+) T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1(LAV), experienced a more protracted course of peripheral CD4(+) T-cell loss after HIV-1(NC) inoculation, resulting in fewer than 200 cells/microl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1(NC) but were significantly and persistently increased after superinfection, with HIV-1(NC) representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date.
Collapse
Affiliation(s)
- F J Novembre
- Divisions of Microbiology and Immunology, Yerkes Regional Primate Research Center, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, Garcia JV. Genetic and functional diversity of human immunodeficiency virus type 1 subtype B Nef primary isolates. J Virol 2001; 75:1672-80. [PMID: 11160665 PMCID: PMC114076 DOI: 10.1128/jvi.75.4.1672-1680.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes.
Collapse
Affiliation(s)
- J L Foster
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Mills J, Desrosiers R, Rud E, Almond N. Live attenuated HIV vaccines: a proposal for further research and development. AIDS Res Hum Retroviruses 2000; 16:1453-61. [PMID: 11054258 DOI: 10.1089/088922200750005976] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J Mills
- Macfarlane Burnet Centre for Medical Research, Fairfield (Melbourne), Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Wei Q, Javadian A, Lausen N, Fultz PN. Distribution and quantification of human immunodeficiency virus type 1, strain JC499, proviral DNA in tissues from an infected chimpanzee. Virology 2000; 276:59-69. [PMID: 11021995 DOI: 10.1006/viro.2000.0520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Data are accumulating to show that the natural history of human immunodeficiency virus type 1 (HIV-1) in chimpanzees closely reproduces that in humans and is influenced by biologic properties of the infecting HIV-1 strain. To determine the distribution and relative amounts of HIV-1, proviral DNA in multiple tissues from a chimpanzee euthanized because of an abdominal tumor and kidney failure was quantified by nested PCR limiting-dilution assays. At death, 21 months after infection with HIV-1(JC499), this animal had a CD4(+) T-cell count of 268 and 1.7 x 10(5) copies of virion RNA/ml of plasma. The highest proviral burdens were in peripheral lymph nodes and blood, followed by lung, colon, and spleen; values ranged from 130 to 3350 proviral copies/microg DNA (equivalent to DNA in 150,000 cells). The lowest levels of virus were in the spinal cord, brain, and cecum (0.3 to 2.5 copies/microg DNA), with all other tissues harboring intermediate levels (6.8 to 114 copies/microg DNA). Viral burdens in all tissues were comparable to or greater than those reported for HIV-1-infected humans in all stages of disease. Immunohistochemistry for HIV-1 p24 Gag antigen revealed (i) trapping of HIV-1 on follicular dendritic cells in lymph node germinal centers and (ii) virus in the brain, where it was localized primarily to capillary endothelial cells in the cerebral cortex. Analysis of the genetic diversity of the Env V3 loop in tissues indicated that there was no apparent compartmentalization of HIV-1 variants. Of interest, in 83 of 94 (88.3%) clones sequenced, the unique GYGR motif at the tip of the V3 loop of HIV-1(JC499) had reverted to the more common GPGR. The results support the conclusion that HIV-1 has the potential to maintain high viral burdens in chimpanzees and to disseminate to most organs, including the central nervous system. The use of the chimpanzee model with HIV-1(JC499) (or related strains) in vaccine efficacy studies should prove valuable, especially when assessing protection against disease. Furthermore, comparison of both replicative properties of HIV-1(JC499) with SIVcpz strains and immune responses of chimpanzees infected with these viruses might provide new information about HIV pathogenesis.
Collapse
Affiliation(s)
- Q Wei
- Department of Microbiology, University of Alabama at Birmingham, BBRB 511, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
30
|
Nath BM, Schumann KE, Boyer JD. The chimpanzee and other non-human-primate models in HIV-1 vaccine research. Trends Microbiol 2000; 8:426-31. [PMID: 10989311 DOI: 10.1016/s0966-842x(00)01816-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Animal models are of great importance for the study of disease pathogenesis, particularly non-human-primate models of infectious diseases. The role of non-human primates in HIV-1 research is continually discussed and debated. Here, we examine three primate models: chimpanzee-HIV-1, rhesus macaque-simian immunodeficiency virus and rhesus macaque-SHIV, and discuss immunological similarities and differences, safety and monetary issues, and ethical concerns.
Collapse
Affiliation(s)
- B M Nath
- Dept of Pathology and Laboratory Medicine, University of Pennsylvania, 505 Stellar Chance, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
31
|
Abstract
The primate models of AIDS provide insights into pathogenesis, transmission, and immune responses to infection and are useful in testing vaccines and drugs. The HIV-1/chimpanzee, SIV(mac)/macaque, and SHIV/macaque models are the most widely used. The advantages and drawbacks of these and other models are discussed.
Collapse
Affiliation(s)
- S V Joag
- JODI Research Inc., Wexford, Pennsylvania and the Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas School of Medicine, Kansas, City, Kansas, USA
| |
Collapse
|
32
|
Mandell CP, Reyes RA, Cho K, Sawai ET, Fang AL, Schmidt KA, Luciw PA. SIV/HIV Nef recombinant virus (SHIVnef) produces simian AIDS in rhesus macaques. Virology 1999; 265:235-51. [PMID: 10600596 DOI: 10.1006/viro.1999.0051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The simian immunodeficiency virus (SIV) nef gene is an important determinant of viral load and acquired immunodeficiency syndrome (AIDS) in macaques. A role(s) for the HIV-1 nef gene in infection and pathogenesis was investigated by constructing recombinant viruses in which the nef gene of the pathogenic molecular clone SIVmac239 nef was replaced with either HIV-1sf2nef or HIV-1sf33nef. These chimeras, designated SHIV-2nef and SHIV-33nef, expressed HIV-1 Nef protein and replicated efficiently in cultures of rhesus macaque lymphoid cells. In two SHIV-2nef-infected juvenile rhesus macaques and in one of two SHIV-33nef-infected juvenile macaques, virus loads remained at low levels in both peripheral blood and lymph nodes in acute and chronic phases of infection (for >83 weeks). In striking contrast, the second SHIV-33nef-infected macaque showed high virus loads during the chronic stage of infection (after 24 weeks). CD4+ T-cell numbers declined dramatically in this latter animal, which developed simian AIDS (SAIDS) at 47-53 weeks after inoculation; virus was recovered at necropsy at 53 weeks and designated SHIV-33Anef. Sequence analysis of the HIV-1sf33 nef gene in SHIV-33Anef revealed four consistent amino acid changes acquired during passage in vivo. Interestingly, one of these consensus mutations generated a tyr-x-x-leu (Y-X-X-L) motif in the HIV-1sf33 Nef protein. This motif is characteristic of certain endocytic targeting sequences and also resembles a src-homology region-2 (SH-2) motif found in many cellular signaling proteins. Four additional macaques infected with SHIV-33Anef contained high virus loads, and three of these animals progressed to fatal SAIDS. Several of the consensus amino acid changes in Nef, including Y-X-X-L motif, were retained in these recipient animals exhibiting high virus load and disease. In summary, these findings indicate that the SHIV-33Anef chimera is pathogenic in rhesus macaques and that this approach, i.e., construction of chimeric viruses, will be important for analyzing the function(s) of HIV-1 nef genes in immunodeficiency in vivo, testing antiviral therapies aimed at inhibiting AIDS, and investigating adaptation of this HIV-1 accessory gene to the macaque host.
Collapse
Affiliation(s)
- C P Mandell
- Department of Medical Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|