1
|
Yamada S, Katano H, Sato Y, Suzuki T, Uda A, Ishijima K, Suzuki M, Yamada D, Harada S, Kinoshita H, Nguyen PHA, Ebihara H, Maeda K, Saijo M, Fukushi S. Macacine alphaherpesvirus 1 (B Virus) Infection in Humans, Japan, 2019. Emerg Infect Dis 2024; 30:177-179. [PMID: 38086399 PMCID: PMC10756385 DOI: 10.3201/eid3001.230435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Two human patients with Macacine alphaherpesvirus 1 infection were identified in Japan in 2019. Both patients had worked at the same company, which had a macaque facility. The rhesus-genotype B virus genome was detected in cerebrospinal fluid samples from both patients.
Collapse
|
2
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
3
|
Thierry B. Studying the Tonkean macaques of Strasbourg, a tale full of sound and fury. Primates 2023; 64:559-572. [PMID: 37597117 DOI: 10.1007/s10329-023-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
In this paper, I chronicle the Strasbourg population of Tonkean macaques (Macaca tonkeana) over a period of half a century. In 1972, Tonkean macaques were imported from Sulawesi, Indonesia, to eastern France, leading to the establishment of two social groups in the Strasbourg region several years later. Our research team studied the social behavior and cognitive abilities of these Tonkean macaques for four decades. The species is characterized by a high degree of social tolerance. This has proven to be very informative in comparative studies of macaque social behavior, opening a new perspective on the evolution of primate societies. Over the years, the population has grown, and more social groups have been formed. However, the fact that some of the Tonkean macaques were healthy carriers of the herpes B virus led to disagreements over their management and eventually to the elimination of the positive individuals. Many individuals from the Strasbourg population are now kept in sanctuaries, and the number of captive breeding groups is limited. We still have much to learn about Tonkean macaques and there is a need for studies carried out in their native habitat in Sulawesi.
Collapse
Affiliation(s)
- Bernard Thierry
- Laboratoire de Psychologie Sociale et Cognitive, Centre National de la Recherche Scientifique, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Amano M, Sapkanarak K, Thbthimthong W, Meesawat S, Kemthong T, Suttisan N, Abe H, Malaivijitnond S, Yasuda J. Development of Quantitative Real-Time PCR and Loop-Mediated Isothermal Amplification Assays for the Surveillance and Diagnosis of Herpes B Virus Infection. Viruses 2023; 15:2086. [PMID: 37896863 PMCID: PMC10611326 DOI: 10.3390/v15102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.
Collapse
Affiliation(s)
- Murasaki Amano
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Krittiga Sapkanarak
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wipaporn Thbthimthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutchanat Suttisan
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Haruka Abe
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Vietnam Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Herpes B virus: History, zoonotic potential, and public health implications. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
[B virus]. Uirusu 2021; 71:125-136. [PMID: 37245975 DOI: 10.2222/jsv.71.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
B virus is a herpes virus that natutaly infects macaque monkeys. It is extremely neuropathogenic when infection occurs in humans. B virus infection has been reported only in laboratory workers and breeders of macaque monkeys in North America and the United Kingdom, and it is therefore recognized as a rare infectious disease. The first cases of B virus disease were reported in Japan in 2019 and in China in 2021, although no cases had been reported since 1997. Although B virus disease has not been reported for more than 20 years, the potential threat has always existed. The viral factors responsible for the strong neuropathogenicity of B virus to humans has not been identified. There are no reports of infection by contact with wild macaque monkeys, but the possibility can not been ruled out. In this paper, we describe its virological properties, findings from B virus disease from patient-reported cases, and the genotype of B virus.
Collapse
|
7
|
Wisely SM, Sayler KA, Anderson CJ, Boyce CL, Klegarth AR, Johnson SA. Macacine Herpesvirus 1 Antibody Prevalence and DNA Shedding among Invasive Rhesus Macaques, Silver Springs State Park, Florida, USA. Emerg Infect Dis 2019; 24:345-351. [PMID: 29350146 PMCID: PMC5782895 DOI: 10.3201/eid2402.171439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We compiled records on macacine herpesvirus 1 (McHV-1) seroprevalence and, during 2015–2016, collected saliva and fecal samples from the free-ranging rhesus macaques of Silver Springs State Park, a popular public park in central Florida, USA, to determine viral DNA shedding and perform sequencing. Phylogenetic analysis of the US5 and US5-US6 intragenic sequence from free-ranging and laboratory McHV-1 variants did not reveal genomic differences. In animals captured during 2000–2012, average annual seroprevalence was 25% ± 9 (mean ± SD). We found 4%–14% (95% CI 2%–29%) of macaques passively sampled during the fall 2015 mating season shed McHV-1 DNA orally. We did not observe viral shedding during the spring or summer or from fecal samples. We conclude that these macaques can shed McHV-1, putting humans at risk for exposure to this potentially fatal pathogen. Management plans should be put in place to limit transmission of McHV-1 from these macaques.
Collapse
|
8
|
Eberle R, Jones-Engel L. Questioning the Extreme Neurovirulence of Monkey B Virus (Macacine alphaherpesvirus 1). Adv Virol 2018; 2018:5248420. [PMID: 29666644 PMCID: PMC5831965 DOI: 10.1155/2018/5248420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/10/2018] [Indexed: 01/20/2023] Open
Abstract
Monkey B virus (Macacine alphaherpesvirus 1; BV) occurs naturally in macaques of the genus Macaca, which includes rhesus and long-tailed (cynomolgus) monkeys that are widely used in biomedical research. BV is closely related to the human herpes simplex viruses (HSV), and BV infections in its natural macaque host are quite similar to HSV infections in humans. Zoonotic BV is extremely rare, having been diagnosed in only a handful of North American facilities with the last documented case occurring in 1998. However, BV is notorious for its neurovirulence since zoonotic infections are serious, usually involving the central nervous system, and are frequently fatal. Little is known about factors underlying the extreme neurovirulence of BV in humans. Here we review what is actually known about the molecular biology of BV and viral factors affecting its neurovirulence. Based on what is known about related herpesviruses, areas for future research that may elucidate mechanisms underlying the neurovirulence of this intriguing virus are also reviewed.
Collapse
Affiliation(s)
- R. Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - L. Jones-Engel
- Department of Anthropology and Center for Studies in Ecology and Demography, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Identification of unique B virus (Macacine Herpesvirus 1) epitopes of zoonotic and macaque isolates using monoclonal antibodies. PLoS One 2017; 12:e0182355. [PMID: 28783746 PMCID: PMC5544422 DOI: 10.1371/journal.pone.0182355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Our overall aim is to develop epitope-based assays for accurate differential diagnosis of B virus zoonotic infections in humans. Antibodies to cross-reacting epitopes on human-simplexviruses continue to confound the interpretation of current assays where abundant antibodies exist from previous infections with HSV types 1 and 2. To find B virus-specific epitopes we cloned ten monoclonal antibodies (mAbs) from the hybridomas we produced. Our unique collection of rare human sera from symptomatic and asymptomatic patients infected with B virus was key to the evaluation and identification of the mAbs as reagents in competition ELISAs (mAb-CE). The analysis of the ten mAbs revealed that the target proteins for six mAbs was glycoprotein B of which two are reactive to simian simplexviruses and not to human simplexviruses. Two mAbs reacted specifically with B virus glycoprotein D, and two other mAbs were specific to VP13/14 and gE-gI complex respectively. The mAbs specific to VP13/14 and gE-gI are strain specific reacting with B virus isolates from rhesus and Japanese macaques and not with isolates from cynomolgus and pigtail macaques. The mAb-CE revealed that a high proportion of naturally B virus infected rhesus macaques and two symptomatic humans possess antibodies to epitopes of VP13/14 protein and on the gE-gI complex. The majority of sera from B virus infected macaques and simplexvirus-infected humans competed with the less specific mAbs. These experiments produced a novel panel of mAbs that enabled B virus strain identification and confirmation of B virus infected macaques by the mAb-CE. For human sera the mAb-CE could be used only for selected cases due to the selective B virus strain-specificity of the mAbs against VP13/14 and gE/gI. To fully accomplish our aim to provide reagents for unequivocal differential diagnosis of zoonotic B virus infections, additional mAbs with a broader range of specificities is critical.
Collapse
|
10
|
Eberle R, Maxwell LK, Nicholson S, Black D, Jones-Engel L. Genome sequence variation among isolates of monkey B virus (Macacine alphaherpesvirus 1) from captive macaques. Virology 2017; 508:26-35. [PMID: 28494342 PMCID: PMC5535784 DOI: 10.1016/j.virol.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
Abstract
Complete genome sequences of 19 strains of monkey B virus (Macacine alphaherpesvirus 1; BV) isolated from several macaque species were determined. A low level of sequence variation was present among BV isolates from rhesus macaques. Most variation among BV strains isolated from rhesus macaques was located in regions of repetitive or quasi-repetitive sequence. Variation in coding sequences (polypeptides and miRNAs) was minor compared to regions of non-coding sequences. Non-coding sequences in the long and short repeat regions of the genome did however exhibit islands of conserved sequence. Oral and genital isolates from a single monkey were identical in sequence and varied only in the number of iterations of repeat units in several areas of repeats. Sequence variation between BV isolates from different macaque species (different BV genotypes) was much greater and was spread across the entire genome, confirming the existence of different genotypes of BV in different macaque species.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - L K Maxwell
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - S Nicholson
- Department of Biochemistry and Molecular Biology, College of Agriculture Sciences and Natural Resources, Oklahoma State University, Stillwater, OK, USA
| | - D Black
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - L Jones-Engel
- Department of Anthropology, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Abstract
Viruses related to the herpes simplex viruses of humans are present in all nonhuman primate (NHP) species tested and cross species transmission has been documented. The herpesvirus present in macaques, Herpes B virus (BV) rarely causes disease in its natural macaque host. However, when transmitted to a nonnative host, BV has occasionally caused severe and even fatal disease if not treated immediately. Here we present a comprehensive review of the taxonomy, molecular biology, physiology, epidemiology, diagnosis and treatment of BV. We also summarizes what is known about related herpesviruses of other NHP species and the zoonotic potential of these viruses.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Oklahoma, USA
| | - L Jones-Engel
- Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Washington, USA
| |
Collapse
|
12
|
Abstract
Worldwide regulatory guidelines for drug safety evaluations recommend testing in both a rodent and a nonrodent species. Non-human primates, which are phylogenetically close to man, are often thought of as the “ideal” nonrodent species. Historically, because of conservation issues, biosafety concerns, and price and supply issues, use of nonhuman primates in toxicology programs has been restricted to special cases. Recently, however, biopharmaceutical scientists have turned to primates as the only nonhuman species in which the biological activities of some drugs are expressed. Also, as the cost of test article for toxicology studies has increased, there has been a corresponding increase in the use of primates because of their smaller body size compared to dogs. With increasing demand, primatologists have solved the price, supply, and conservation issues by worldwide development of breeding centers that produce adequate numbers of well-characterized rhesus and cynomolgus macaques. New international personnel protective standards, shipping and quarantine requirements have addressed some of the public health concerns. However, tuberculosis, Herpesvirus simiae (B virus) and the “Ebola-like” hemorrhagic primate viruses remain of concern to primate researchers. With new requirements for specialized training, housing, equipment, and procedures for primate research and husbandry, many pharmaceutical companies now outsource their primate toxicology work to contract research organizations. The effort to “harmonize” international regulatory requirements for nonclinical toxicology has led to more uniformity in nonhuman primate study design. Typical study designs and procedures are discussed.
Collapse
Affiliation(s)
- William Hobson
- Sierra Biomedical, A Division of Charles River Laboratories, Inc., Sparks, Nevada, USA
| |
Collapse
|
13
|
Russell JNH, Marsh AK, Willer DO, Ambagala APN, Dzamba M, Chan JK, Pilon R, Fournier J, Brudno M, Antony JM, Sandstrom P, Evans BJ, MacDonald KS. A novel strain of cynomolgus macaque cytomegalovirus: implications for host-virus co-evolution. BMC Genomics 2016; 17:277. [PMID: 27044312 PMCID: PMC4820910 DOI: 10.1186/s12864-016-2588-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background Cytomegaloviruses belong to a large, ancient, genus of DNA viruses comprised of a wide array of species-specific strains that occur in diverse array of hosts. Methods In this study we sequenced the ~217 Kb genome of a cytomegalovirus isolated from a Mauritius cynomolgus macaque, CyCMV Mauritius, and compared it to previously sequenced cytomegaloviruses from a cynomolgus macaque of Filipino origin (CyCMV Ottawa) and two from Indian rhesus macaques (RhCMV 180.92 and RhCMV 68–1). Results Though more closely related to CyCMV Ottawa, CyCMV Mauritius is less genetically distant from both RhCMV strains than is CyCMV Ottawa. Several individual genes, including homologues of CMV genes RL11B, UL123, UL83b, UL84 and a homologue of mammalian COX-2, show a closer relationship between homologues of CyCMV Mauritius and the RhCMVs than between homologues of CyCMV Mauritius and CyCMV Ottawa. A broader phylogenetic analysis of 12 CMV strains from eight species recovers evolutionary relationships among viral strains that mirror those amongst the host species, further demonstrating co-evolution of host and virus. Conclusions Phylogenetic analyses of rhesus and cynomolgus macaque CMV genome sequences demonstrate co-speciation of the virus and host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2588-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Angie K Marsh
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - David O Willer
- Department of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Aruna P N Ambagala
- Department of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada.,Present Address: Canadian Science Centre for Human and Animal Health, National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, R3E 3M4, MB, Canada
| | - Misko Dzamba
- Department of Computer Science, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Jacqueline K Chan
- Department of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Richard Pilon
- National HIV & Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, K1A 0K9, ON, Canada
| | - Jocelyn Fournier
- Scientific Services Division, Health Products & Food Branch, Health Canada, Ottawa, K1A 0L2, ON, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Joseph M Antony
- Department of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada.,Department of Microbiology, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Paul Sandstrom
- National HIV & Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, K1A 0K9, ON, Canada
| | - Ben J Evans
- Biology Department, McMaster University, Life Sciences Building, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Kelly S MacDonald
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, M5S 1A8, ON, Canada. .,Department of Microbiology, Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada. .,Section of Infectious Diseases, Department of Internal Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, R3E 0J9, MB, Canada. .,Present Address: University of Manitoba, Basic Medical Sciences Building, Room 501, 745 Bannatyne Ave., Winnipeg, R3E 0J9, MB, Canada.
| |
Collapse
|
14
|
Abstract
Human risks of acquiring a zoonotic disease from animals used in biomedical research have declined over the last decade because higher quality research animals have defined microbiologic profiles. Even with diminished risks, the potential for exposure to infectious agents still exists, especially from larger species such as nonhuman primates, which may be obtained from the wild, and from livestock, dogs, ferrets, and cats, which are generally not raised in barrier facilities and are not subject to the intensive health monitoring performed routinely on laboratory rodents and rabbits. Additionally, when laboratory animals are used as models for infectious disease studies, exposure to microbial pathogens presents a threat to human health. Also, with the recognition of emerging diseases, some of which are zoonotic, constant vigilance and surveillance of laboratory animals for zoonotic diseases are still required.
Collapse
Affiliation(s)
- James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen Otto
- Animal Resources Ctr University Texas Austin, Austin, TX, USA
| | - Lesley A. Colby
- Department of comparative Medicine University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Ohsawa K, Black D, Ohsawa M, Eberle R. Genome sequence of a pathogenic isolate of monkey B virus (species Macacine herpesvirus 1). Arch Virol 2014; 159:2819-21. [PMID: 24903602 DOI: 10.1007/s00705-014-2130-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
The only genome sequence for monkey B virus (BV; species Macacine herpesvirus 1) is that of an attenuated vaccine strain originally isolated from a rhesus monkey (BVrh). Here we report the genome sequence of a virulent BV strain isolated from a cynomolgus macaque (BVcy). The overall genome organization is the same, although sequence differences exist. The greatest sequence divergence is located in non-coding areas of the long and short repeat regions. Like BVrh, BVcy has duplicated Ori elements and lacks an ORF corresponding to the γ34.5 gene of herpes simplex virus. Nine of ten miRNAs and the majority of ORFs are conserved between BVrh and BVcy. The most divergent genes are several membrane-associated proteins and those encoding immediate early proteins.
Collapse
Affiliation(s)
- Kazutaka Ohsawa
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | |
Collapse
|
16
|
|
17
|
Tyler S, Severini A, Black D, Walker M, Eberle R. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 2011; 410:181-91. [PMID: 21130483 PMCID: PMC3017652 DOI: 10.1016/j.virol.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 01/24/2023]
Abstract
We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.
Collapse
Affiliation(s)
- Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Dept. of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Darla Black
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - R. Eberle
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
18
|
Inhibition of B virus (Macacine herpesvirus 1) by conventional and experimental antiviral compounds. Antimicrob Agents Chemother 2009; 54:452-9. [PMID: 19858259 DOI: 10.1128/aac.01435-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B virus infection of humans results in high morbidity and mortality in as many as 80% of identified cases. The main objective of this study was to conduct a comparative analysis of conventional and experimental antiviral drug susceptibilities of B virus isolates from multiple macaque species and zoonotically infected humans. We used a plaque reduction assay to establish the effective inhibitory doses of acyclovir, ganciclovir, and vidarabine, as well as those of a group of experimental nucleoside analogs with known anti-herpes simplex virus activity. Four of the experimental drugs tested were 10- to 100-fold more potent inhibitors of B virus replication than conventional antiviral agents. Drug efficacies were similar for multiple B virus isolates tested, with variations within 2-fold of the median effective concentration (EC(50)) for each drug, and each EC(50) was considerably lower than those for B virus thymidine kinase (TK) mutants. We observed no differences in the viral TK amino acid sequence between B virus isolates from rhesus monkeys and those from human zoonoses. Differences in the TK protein sequence between cynomolgus and pigtail macaque B virus isolates did not affect drug sensitivity except in the case of one compound. Taken together, these data suggest that future B virus zoonoses will respond consistently to conventional antiviral treatment. Further, the considerably higher potency of FEAU (2'-fluoro-5-ethyl-Ara-U) than of conventional antiviral drugs argues for its compassionate use in advanced human B virus infections.
Collapse
|
19
|
Oya C, Ochiai Y, Taniuchi Y, Takano T, Fujima A, Ueda F, Hondo R, Yoshikawa Y. Prevalence of herpes B virus genome in the trigeminal ganglia of seropositive cynomolgus macaques. Lab Anim 2008; 42:99-103. [PMID: 18348771 DOI: 10.1258/la.2007.006031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herpes B virus infection is almost asymptomatic in macaques (Macaca spp.), which are the natural hosts of this pathogen, but is the cause of high mortality in humans. Reactivation of the latent virus in the trigeminal ganglia (TG) results in the shedding of infectious particles into the oral mucosal membrane. Saliva contaminated with the reactivated virus from the ganglia of the natural host is considered to be important for viral transmission to humans and other monkeys. In the present study, we investigated the prevalence of the herpes B virus genome in the left and right TG of seropositive asymptomatic cynomolgus macaques. The latent virus genome was detected using a polymerase chain reaction and microplate hybridization assay. We found that the virus DNA was present in one or both TG of 12 of the 30 macaques (40%) tested, with the virus being detected from both TG in five of the 12 macaques and from a single TG in the remaining seven.
Collapse
Affiliation(s)
- C Oya
- Department of Veterinary Public Health, Nippon Veterinary and Life Sciences University, Musashino, Tokyo 180-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Scharf BA, Wan CH, Bluth M, Eberle R, Videan EN, Smith E, Coplan J. Lethargy, ulcers, bronchopneumonia and death in two aged female bonnet macaques presumed to be caused by Cercopithicine herpes virus I. J Med Primatol 2008; 37 Suppl 1:60-4. [PMID: 18269531 DOI: 10.1111/j.1600-0684.2007.00264.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Over the course of 4 weeks, two female aged bonnet macaque (Macaca radiata) group-housed females died after the dominant male was removed from the group and the newly dominant male persistently chased, caught and bred all females in the pen. The two aged affected females were observed exhibiting lethargy, dyspnea, with widespread necroulcerative lesions in and around the mouth, muzzle and bridge of their noses. Extensive ulcerative glossitis, necrotic bronchopneumonia with intra-nuclear inclusions and the absence of other evidence is highly suggestive that death was caused by an alphaherpes virus commonly known as herpes B virus. Herpes B virus is a potentially zoonotic disease periodically shed by macaques, which is structurally related to herpes simplex viruses I and II of humans. The emergence of fatal B virus to primates in this pen may have been associated with the combination of age and stress in the affected individuals.
Collapse
Affiliation(s)
- Bruce A Scharf
- Downstate Medical School, Division of Laboratory Animal Resources, Brooklyn, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Elmore D, Eberle R. Monkey B virus (Cercopithecine herpesvirus 1). Comp Med 2008; 58:11-21. [PMID: 19793452 PMCID: PMC2703160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 05/28/2023]
Abstract
Macaques are a particularly valuable nonhuman primate model for a wide variety of biomedical research endeavors. B virus (Cercopithecine herpesvirus 1; BV) is an alpha-herpesvirus that naturally infects conventional populations of macaques. Serious disease due to BV is rare in macaques, but when transmitted to humans, BV has a propensity to invade the central nervous system and has a fatality rate greater than 70% if not treated promptly. The severe consequences of human BV infections led to the inclusion of BV in the original NIH list of target viruses for elimination by development of specific pathogen-free rhesus colonies. In macaques and especially in humans, diagnosis of BV infection is not straightforward. Furthermore, development and maintenance of true BV specific pathogen-free macaque colonies has proven dif cult. In this overview we review the natural history of BV in macaques, summarize what is known about the virus at the molecular level, and relate this information to problems associated with diagnosis of BV infections and development of BV-free macaque colonies.
Collapse
Key Words
- bsl, biosafety level
- bv, b virus (cercopithecine herpesvirus 1)
- chhv, chimpanzee herpesvirus
- hsv, herpes simplex virus
- hvp2, herpesvirus papio 2 (cercopithecine herpesvirus 16)
- hvs1, herpesvirus saimiri 1
- mab, monoclonal antibody
- orf, open reading frame
- rl, long repeat region
- rs, short repeat region
- sa8, simian agent 8 (cercopithecine herpesvirus 2)
- spf, specific pathogen free
- cns, central nervous system
Collapse
Affiliation(s)
| | - Richard Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater OK
| |
Collapse
|
22
|
Ritchey JW, Payton ME, Eberle R. Clinicopathological characterization of monkey B virus (Cercopithecine herpesvirus 1) infection in mice. J Comp Pathol 2005; 132:202-17. [PMID: 15737347 DOI: 10.1016/j.jcpa.2004.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 10/12/2004] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to establish a small animal model for monkey B virus (BV) infection. Mice were inoculated intramuscularly with several BV isolates. Comparisons were based upon the doses required to produce infection (ID50), non-central nervous system (CNS) clinical disease (CS50), CNS disease (CNSD50) and lethal effect (LD50). Strains differed in respect of the dose required to produce clinical disease in BALB/c mice. C57BL/6 mice were more resistant than BALB/c mice to CNS disease. Skin lesions at the inoculation site consisted of epidermal necrosis, ulceration, serocellular crusts and underlying dermatitis. CNS lesions included marked inflammation in the ipsilateral dorsal root ganglion and lumbar spinal cord (point of viral entry). The distribution of the lumbar spinal cord lesions suggested viral entry via sensory afferent neurons, ventral motor tracts, or both. The lesions in the more cranial spinal cord segments suggested ascension to the brain via bilateral spinothalamic and spinoreticular tracts. Brain lesions included encephalitis with neuronal necrosis and white matter destruction located consistently at the base of the brainstem, the reticular system, and rostrally to the thalamus and hypothalamus. Viral antigen was detected immunohistochemically in the lesions. The results indicated an ascending encephalomyelitis syndrome similar to that produced by BV in man.
Collapse
Affiliation(s)
- J W Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078-2007, USA
| | | | | |
Collapse
|
23
|
Oya C, Ochiai Y, Taniuchi Y, Takano T, Ueda F, Yoshikawa Y, Hondo R. Specific detection and identification of herpes B virus by a PCR-microplate hybridization assay. J Clin Microbiol 2004; 42:1869-74. [PMID: 15131142 PMCID: PMC404616 DOI: 10.1128/jcm.42.5.1869-1874.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes B virus DNA was specifically amplified by PCR, targeting the regions that did not cross-react with herpes simplex virus (HSV). The amplified products, which were shown to be highly genetic polymorphisms among herpes B virus isolates, were identified by microplate hybridization with probes generated by PCR. The products immobilized in microplate wells were hybridized with the biotin-labeled probes derived from the SMHV strain of herpes B virus. The amplified products derived from the SMHV and E2490 strains of herpes B virus were identified by microplate hybridization. PCR products amplified from the trigeminal ganglia of seropositive cynomolgus macaques were identified as herpes B virus DNA. The utility of the PCR-microplate hybridization assay for genetic detection and identification of the polymorphic region of herpes B virus was determined.
Collapse
Affiliation(s)
- Chika Oya
- Department of Veterinary Public Health, Nippon Veterinary and Animal Science University, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Herpesviruses are found throughout the animal kingdom. Members of this family share properties including a highly orchestrated system of transcription, destruction of the host cell by active viral replication and an ability to persist in the host in a latent form. Human herpesviruses have all been implicated in causing substantial disease after allotransplantation. Often transmission of these viruses has been through the donor organ or blood products. Analogous species of herpesviruses exist in nonhuman primates. Accordingly, concern regarding the risk of their transmission and disease exists with xenotransplant procedures. This chapter reviews herpesviruses of nonhuman primates and their potential implication for causing disease after xenotransplantation.
Collapse
Affiliation(s)
- M G Michaels
- Division of Allergy, Immunology and Infectious Diseases, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Rogers KM, Ealey KA, Ritchey JW, Black DH, Eberle R. Pathogenicity of different baboon herpesvirus papio 2 isolates is characterized by either extreme neurovirulence or complete apathogenicity. J Virol 2003; 77:10731-9. [PMID: 14512523 PMCID: PMC224954 DOI: 10.1128/jvi.77.20.10731-10739.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 07/02/2003] [Indexed: 11/20/2022] Open
Abstract
In comparisons of the pathogenicity of simian alphaherpesviruses in mice, two isolates of the baboon virus HVP2 were nearly as lethal as monkey B virus, a biological safety level 4 agent (J. W. Ritchey, K. A. Ealey, M. Payton, and R. Eberle, J. Comp. Pathol. 127:150-161, 2002). To confirm these results, mice were inoculated intramuscularly with 10(5) PFU of HVP2 isolates obtained from different baboon subspecies and primate centers. Some of the HVP2 isolates (6 of 13) caused paralysis and death in the mice, while 7 of 13 HVP2 isolates produced no clinical signs of disease. The apathogenic HVP2 isolates (HVP2ap) induced only low levels of serum antiviral immunoglobulin G relative to levels observed in sera from mice infected with the neurovirulent isolates of HVP2 (HVP2nv). Histological examination of tissues from mice inoculated with HVP2nv isolates showed extensive neural tissue destruction, while mice infected with HVP2ap isolates showed no lesions. Tissue samples collected at 48-h intervals postinfection suggested that HVP2ap isolates failed to replicate at the site of inoculation. There was no significant difference in the in vitro replication, plaque size, or cytopathic effect morphology of HVP2ap versus HVP2nv isolates. While HVP2 isolates replicated better in Vero monkey kidney cells than in murine L cells, plaquing efficiency of individual isolates did not correlate with the dichotomous pathogenic properties seen in mice. Phylogenetic analyses of both coding and intergenic regions (US4-6) of the HVP2 genome separated isolates into two distinct clades that correlated with the two in vivo virulence phenotypes. Taken together, these results demonstrate that two subtypes of HVP2 exist that are very closely related but differ dramatically in their ability to cause disease in a murine model.
Collapse
Affiliation(s)
- Kristin M Rogers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078-2007, USA
| | | | | | | | | |
Collapse
|
26
|
Perelygina L, Zhu L, Zurkuhlen H, Mills R, Borodovsky M, Hilliard JK. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J Virol 2003; 77:6167-77. [PMID: 12743273 PMCID: PMC155011 DOI: 10.1128/jvi.77.11.6167-6177.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of herpes B virus (Cercopithecine herpesvirus 1) strain E2490, isolated from a rhesus macaque, was determined. The total genome length is 156,789 bp, with 74.5% G+C composition and overall genome organization characteristic of alphaherpesviruses. The first and last residues of the genome were defined by sequencing the cloned genomic termini. There were six origins of DNA replication in the genome due to tandem duplication of both oriL and oriS regions. Seventy-four genes were identified, and sequence homology to proteins known in herpes simplex viruses (HSVs) was observed in all cases but one. The degree of amino acid identity between B virus and HSV proteins ranged from 26.6% (US5) to 87.7% (US15). Unexpectedly, B virus lacked a homolog of the HSV gamma(1)34.5 gene, which encodes a neurovirulence factor. Absence of this gene was verified in two low-passage clinical isolates derived from a rhesus macaque and a zoonotically infected human. This finding suggests that B virus most likely utilizes mechanisms distinct from those of HSV to sustain efficient replication in neuronal cells. Despite the considerable differences in G+C content of the macaque and B virus genes (51% and 74.2%, respectively), codons used by B virus are optimal for the tRNA population of macaque cells. Complete sequence of the B virus genome will certainly facilitate identification of the genetic basis and possible molecular mechanisms of enhanced B virus neurovirulence in humans, which results in an 80% mortality rate following zoonotic infection.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Viral/analysis
- Genome, Viral
- Herpesvirus 1, Cercopithecine/chemistry
- Herpesvirus 1, Cercopithecine/genetics
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/genetics
- Herpesvirus 2, Human/chemistry
- Herpesvirus 2, Human/genetics
- Humans
- Macaca mulatta
- Molecular Sequence Data
- Open Reading Frames/genetics
- Sequence Analysis, DNA
- Viral Proteins/chemistry
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ludmila Perelygina
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta 30303, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Perelygina L, Patrusheva I, Manes N, Wildes MJ, Krug P, Hilliard JK. Quantitative real-time PCR for detection of monkey B virus (Cercopithecine herpesvirus 1) in clinical samples. J Virol Methods 2003; 109:245-51. [PMID: 12711069 DOI: 10.1016/s0166-0934(03)00078-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A TaqMan based real-time PCR assay was developed for rapid detection and quantitation of herpes B virus (Cercopithecine herpesvirus 1) in clinical samples. The assay utilizes B virus-specific primers and a probe to the non-conserved region of the gG gene to discriminate B virus from closely related alphaherpesviruses. Fifty copies of B virus DNA could be detected with 100% sensitivity with a wide range of quantitation spanning 6 logs. The assay was highly reproducible with intra- and inter-assay coefficients of variation of 0.6 and 2.4%, respectively. Clinical utility of the developed real-time PCR was evaluated by testing genomic DNA prepared from B virus clinical isolates (n=23) and human and monkey clinical specimens (n=62). This novel method was also compared with conventional cell culture with respect to sensitivity and specificity. TaqMan PCR assay was shown to be equally specific and more sensitive than culture method (culture vs. PCR sensitivity 50%) and was able to identify all B virus clinical isolates tested. Fast, reliable assessment of B virus DNA in infected cells and tissues makes real-time PCR assay a valuable tool for diagnosis and management of B virus infections.
Collapse
Affiliation(s)
- Ludmila Perelygina
- Viral Immunology Center, Department of Biology, Georgia State University, P.O. Box 4118, Atlanta, GA 30302-4118, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Huff JL, Barry PA. B-virus (Cercopithecine herpesvirus 1) infection in humans and macaques: potential for zoonotic disease. Emerg Infect Dis 2003; 9:246-50. [PMID: 12603998 PMCID: PMC2901951 DOI: 10.3201/eid0902.020272] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nonhuman primates are widely used in biomedical research because of their genetic, anatomic, and physiologic similarities to humans. In this setting, human contact directly with macaques or with their tissues and fluids sometimes occurs. Cercopithecine herpesvirus 1 (B virus), an alphaherpesvirus endemic in Asian macaques, is closely related to herpes simplex virus (HSV). Most macaques carry B virus without overt signs of disease. However, zoonotic infection with B virus in humans usually results in fatal encephalomyelitis or severe neurologic impairment. Although the incidence of human infection with B virus is low, a death rate of >70% before the availability of antiviral therapy makes this virus a serious zoonotic threat. Knowledge of the clinical signs and risk factors for human B-virus disease allows early initiation of antiviral therapy and prevents severe disease or death.
Collapse
Affiliation(s)
- Jennifer L Huff
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
29
|
Huff JL, Eberle R, Capitanio J, Zhou SS, Barry PA. Differential detection of B virus and rhesus cytomegalovirus in rhesus macaques. J Gen Virol 2003; 84:83-92. [PMID: 12533703 DOI: 10.1099/vir.0.18808-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-human primate herpesviruses establish and maintain a lifelong persistent infection in immunocompetent hosts in the absence of clinical signs of disease. A fundamental issue for understanding the natural history of non-human primate herpesviruses is whether the viruses are maintained in a truly latent state or one characterized by a low level of chronic expression. To address this issue, a real-time PCR assay was developed to quantify Cercopithecine herpesvirus type 1 (B virus) DNA in mucosal fluids of rhesus macaques. This assay was rapid, sensitive (10 genome copies) and specific for B virus obtained from multiple species of macaques. The shedding profile of B virus was compared to another endemic herpesvirus, rhesus cytomegalovirus (RhCMV), in colony-reared monkeys. Mucosal swabs or saliva samples were taken daily from two groups of seropositive monkeys undergoing either a stressful relocation (group 1) or daily chair restraint (group 2). B virus DNA was detected in mucosal fluids from four animals relocated during the breeding season (group 1) but not from 10 animals moved at other times of the year. No B virus DNA was detected in any group 2 monkey. In contrast, RhCMV DNA was detected in the majority of animals of both groups 1 and 2. Detection of B virus DNA shedding is a relatively rare event associated with the breeding season, while RhCMV DNA is persistently detected in mucosal fluids of most monkeys.
Collapse
Affiliation(s)
- J L Huff
- Center for Comparative Medicine, University of California-Davis, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
| | - R Eberle
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - J Capitanio
- California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | - S S Zhou
- Center for Comparative Medicine, University of California-Davis, Davis, CA 95616, USA
| | - P A Barry
- California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
- Department of Medical Pathology, University of California-Davis, Davis, CA 95616, USA
- Center for Comparative Medicine, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
30
|
Abstract
The study of viral molecular genetics has produced a considerable body of research into the sequences and phylogenetic relationships of human and animal viruses. A review of this literature suggests that humans have been afflicted by viruses throughout their evolutionary history, although the number and types have changed. Some viruses show evidence of long-standing intimate relationship and cospeciation with hominids, while others are more recently acquired from other species, including African monkeys and apes while our line was evolving in that continent, and domesticated animals and rodents since the Neolithic. Viral selection for specific resistance polymorphisms is unlikely, but in conjunction with other parasites, viruses have probably contributed to selection pressure maintaining major histocompatibility complex (MHC) diversity and a strong immune response. They may also have played a role in the loss in our lineage of N-glycolylneuraminic acid (Neu5Gc), a cell-surface receptor for many infectious agents. Shared viruses could have affected hominid species diversity both by promoting divergence and by weeding out less resistant host populations, while viruses carried by humans and other animals migrating out of Africa may have contributed to declines in other populations. Endogenous retroviral insertions since the divergence between humans and chimpanzees were capable of directly affecting hominid evolution through changes in gene expression and development.
Collapse
|
31
|
Engel GA, Jones-Engel L, Schillaci MA, Suaryana KG, Putra A, Fuentes A, Henkel R. Human exposure to herpesvirus B-seropositive macaques, Bali, Indonesia. Emerg Infect Dis 2002; 8:789-95. [PMID: 12141963 PMCID: PMC3266706 DOI: 10.3201/eid0808.010467] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesvirus B (Cercopithecine herpesvirus 1) has been implicated as the cause of approximately 40 cases of meningoencephalitis affecting persons in direct or indirect contact with laboratory macaques. However, the threat of herpesvirus B in nonlaboratory settings worldwide remains to be addressed. We investigated the potential for exposure to herpesvirus B in workers at a "monkey forest" (a temple that has become a tourist attraction because of its monkeys) in Bali, Indonesia. In July 2000, 105 workers at the Sangeh Monkey Forest in Central Bali were surveyed about contact with macaques (Macaca fascicularis). Nearly half of those interviewed had either been bitten or scratched by a macaque. Prevalence of injury was higher in those who fed macaques. Serum from 31 of 38 Sangeh macaques contained antibodies to herpesvirus B. We conclude that workers coming into contact with macaques at the Sangeh Monkey Forest are at risk for exposure to herpesvirus B.
Collapse
|
32
|
Ohsawa K, Black DH, Sato H, Eberle R. Sequence and genetic arrangement of the U(S) region of the monkey B virus (cercopithecine herpesvirus 1) genome and comparison with the U(S) regions of other primate herpesviruses. J Virol 2002; 76:1516-20. [PMID: 11773425 PMCID: PMC135856 DOI: 10.1128/jvi.76.3.1516-1520.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of the unique short (U(S)) region of monkey B virus (BV) was determined. The 13 genes identified are arranged in the same order and orientation as in herpes simplex virus (HSV). These results demonstrate that the BV U(S) region is entirely colinear with that of HSV type 1 (HSV-1), HSV-2, and simian agent 8 virus.
Collapse
Affiliation(s)
- Kazutaka Ohsawa
- Laboratory Animal Center for Biomedical Research, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
33
|
|
34
|
Blewett EL, Black DH, Lerche NW, White G, Eberle R. Simian foamy virus infections in a baboon breeding colony. Virology 2000; 278:183-93. [PMID: 11112493 DOI: 10.1006/viro.2000.0649] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence, transmission, and variation of simian foamy viruses (SFVs) in baboons was investigated. Over 95% of adult baboons in the breeding colony as well as recently imported adult animals had high titers of anti-SFV serum IgG. Maternal antibody was detectable in infants' serum up to 6 months of age. Approximately 30% of infants in breeding harems experienced SFV infections by 1 year of age. Shedding of SFV in oral secretions was common, with 13% of samples from normal adult animals and 35% from immunosuppressed animals containing infectious SFV. SFV was isolated from three baboon subspecies (olive, yellow, and chacma baboons) and sequences from both the pol and the LTR regions of the provirus were amplified by PCR and sequenced. Phylogenetic analysis indicated that all baboon isolates formed a single lineage distinct from SFVs of other African monkey species. Within the baboon SFV lineage, two distinct clades were apparent, which consisted of isolates from yellow and olive baboons and isolates from chacma baboons. Competition ELISAs indicated that, while SFV isolates of these two groups were very closely related, antigenic differences do exist between them. SFV isolates from a drill and a mandrill were distinct from baboon SFV isolates, both genetically and antigenically.
Collapse
Affiliation(s)
- E L Blewett
- College of Osteopathic Medicine, Tulsa, Oklahoma 74107, USA
| | | | | | | | | |
Collapse
|