1
|
Abstract
Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.
Collapse
|
2
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
3
|
Kumar NA, Kunnakkadan U, Thomas S, Johnson JB. In the Crosshairs: RNA Viruses OR Complement? Front Immunol 2020; 11:573583. [PMID: 33133089 PMCID: PMC7550403 DOI: 10.3389/fimmu.2020.573583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Complement, a part of the innate arm of the immune system, is integral to the frontline defense of the host against innumerable pathogens, which includes RNA viruses. Among the major groups of viruses, RNA viruses contribute significantly to the global mortality and morbidity index associated with viral infection. Despite multiple routes of entry adopted by these viruses, facing complement is inevitable. The initial interaction with complement and the nature of this interaction play an important role in determining host resistance versus susceptibility to the viral infection. Many RNA viruses are potent activators of complement, often resulting in virus neutralization. Yet, another facet of virus-induced activation is the exacerbation in pathogenesis contributing to the overall morbidity. The severity in disease and death associated with RNA virus infections shows a tip in the scale favoring viruses. Growing evidence suggest that like their DNA counterparts, RNA viruses have co-evolved to master ingenious strategies to remarkably restrict complement. Modulation of host genes involved in antiviral responses contributed prominently to the adoption of unique strategies to keep complement at bay, which included either down regulation of activation components (C3, C4) or up regulation of complement regulatory proteins. All this hints at a possible “hijacking” of the cross-talk mechanism of the host immune system. Enveloped RNA viruses have a selective advantage of not only modulating the host responses but also recruiting membrane-associated regulators of complement activation (RCAs). This review aims to highlight the significant progress in the understanding of RNA virus–complement interactions.
Collapse
Affiliation(s)
- Nisha Asok Kumar
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Umerali Kunnakkadan
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
4
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|
5
|
Gifford G, Vu VP, Banda NK, Holers VM, Wang G, Groman EV, Backos D, Scheinman R, Moghimi SM, Simberg D. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J Control Release 2019; 302:181-189. [PMID: 30974134 PMCID: PMC6684249 DOI: 10.1016/j.jconrel.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 01/04/2023]
Abstract
Complement activation plays an important role in pharmacokinetic and performance of intravenously administered nanomedicines. Significant efforts have been directed toward engineering of nanosurfaces with low complement activation, but due to promiscuity of complement factors and redundancy of pathways, it is still a major challenge. Cell membrane-anchored Decay Accelerating Factor (DAF, a.k.a. CD55) is an efficient membrane bound complement regulator that inhibits both classical and alternative C3 convertases by accelerating their spontaneous decay. Here we tested the effect of various short consensus repeats (SCRs, "sushi" domains) of human CD55 on nanoparticle-mediated complement activation in human sera and plasma. Structural modeling suggested that SCR-2, SCR-3 and SCR-4 are critical for binding to the alternative pathway C3bBb convertase, whereas SCR-1 is dispensable. Various domains were expressed in E.coli and purified by an affinity column. SCRs were added to lepirudin plasma or sera from different healthy subjects, to monitor nanoparticle-mediated complement activation as well as C3 opsonization. Using superparamagnetic iron oxide nanoworms (SPIO NWs), we found that SCR-2-3-4 was the most effective inhibitor (IC50 ~0.24 μM for C3 opsonization in sera), followed by SCR-1-2-3-4 (IC50 ~0.6 μM), whereas shorter domains (SCR-3, SCR-2-3, SCR-3-4) were ineffective. SCR-2-3-4 also inhibited C5a generation (IC50 ~0.16 μM in sera). In addition to SPIO NWs, SCR-2-3-4 effectively inhibited C3 opsonisation and C5a production by clinically approved nanoparticles (Feraheme, LipoDox and Onivyde). SCR-2-3-4 inhibited both lectin and alternative pathway activation by nanoparticles. When added to lepirudin-anticoagulated blood from healthy donors, it significantly reduced the uptake of SPIO NWs by neutrophils and monocytes. These results suggest that soluble domains of membrane-bound complement inhibitors are potential candidates for preventing nanomedicine-mediated complement activation in human subjects.
Collapse
Affiliation(s)
- Geoffrey Gifford
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vivian P Vu
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Ernest V Groman
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Donald Backos
- Computational Chemistry and Biology Core Facility, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Robert Scheinman
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - S Moein Moghimi
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. Complement Evasion Strategies of Viruses: An Overview. Front Microbiol 2017; 8:1117. [PMID: 28670306 PMCID: PMC5472698 DOI: 10.3389/fmicb.2017.01117] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation - either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae.
Collapse
Affiliation(s)
- Palak Agrawal
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Renuka Nawadkar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Hina Ojha
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Jitendra Kumar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
7
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
9
|
Jonsson N, Gullberg M, Israelsson S, Lindberg AM. A rapid and efficient method for studies of virus interaction at the host cell surface using enteroviruses and real-time PCR. Virol J 2009; 6:217. [PMID: 19968865 PMCID: PMC2797521 DOI: 10.1186/1743-422x-6-217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/07/2009] [Indexed: 12/03/2022] Open
Abstract
Background Measuring virus attachment to host cells is of great importance when trying to identify novel receptors. The presence of a usable receptor is a major determinant of viral host range and cell tropism. Furthermore, identification of appropriate receptors is central for the understanding of viral pathogenesis and gives possibilities to develop antiviral drugs. Attachment is presently measured using radiolabeled and subsequently gradient purified viruses. Traditional methods are expensive and time-consuming and not all viruses are stable during a purification procedure; hence there is room for improvement. Real-time PCR (RT-PCR) has become the standard method to detect and quantify virus infections, including enteroviruses, in clinical samples. For instance, primers directed to the highly conserved 5' untranslated region (5'UTR) of the enterovirus genome enable detection of a wide spectrum of enteroviruses. Here, we evaluate the capacity of the RT-PCR technology to study enterovirus host cell interactions at the cell surface and compare this novel implementation with an established assay using radiolabeled viruses. Results Both purified and crude viral extracts of CVB5 generated comparable results in attachment studies when analyzed with RT-PCR. In addition, receptor binding studies regarding viruses with coxsackie- and adenovirus receptor (CAR) and/or decay accelerating factor (DAF) affinity, further demonstrated the possibility to use RT-PCR to measure virus attachment to host cells. Furthermore, the RT-PCR technology and crude viral extracts was used to study attachment with low multiplicity of infection (0.05 × 10-4TCID50/cell) and low cell numbers (250), which implies the range of potential implementations of the presented technique. Conclusion We have implemented the well-established RT-PCR technique to measure viral attachment to host cells with high accuracy and reproducibility, at low cost and with less effort than traditional methods. Furthermore, replacing traditional methods with RT-PCR offers the opportunity to use crude virus containing extracts to investigate attachment, which could be considered as a step towards viral attachment studies in a more natural state.
Collapse
Affiliation(s)
- Nina Jonsson
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.
| | | | | | | |
Collapse
|
10
|
Hafenstein S, Bowman VD, Chipman PR, Bator Kelly CM, Lin F, Medof ME, Rossmann MG. Interaction of decay-accelerating factor with coxsackievirus B3. J Virol 2007; 81:12927-35. [PMID: 17804498 PMCID: PMC2169128 DOI: 10.1128/jvi.00931-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many entero-, parecho-, and rhinoviruses use immunoglobulin (Ig)-like receptors that bind into the viral canyon and are required to initiate viral uncoating during infection. However, some of these viruses use an alternative or additional receptor that binds outside the canyon. Both the coxsackievirus-adenovirus receptor (CAR), an Ig-like molecule that binds into the viral canyon, and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). A cryoelectron microscopy reconstruction of a variant of CVB3 complexed with DAF shows full occupancy of the DAF receptor in each of 60 binding sites. The DAF molecule bridges the canyon, blocking the CAR binding site and causing the two receptors to compete with one another. The binding site of DAF on CVB3 differs from the binding site of DAF on the surface of echoviruses, suggesting independent evolutionary processes.
Collapse
Affiliation(s)
- Susan Hafenstein
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim MS, Racaniello VR. Enterovirus 70 receptor utilization is controlled by capsid residues that also regulate host range and cytopathogenicity. J Virol 2007; 81:8648-55. [PMID: 17537857 PMCID: PMC1951352 DOI: 10.1128/jvi.01569-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus type 70, an etiologic agent of acute hemorrhagic conjunctivitis, may bind different cellular receptors depending on cell type. To understand how EV70-receptor interaction is controlled, we studied two variants of the virus with distinct receptor utilization. EV70-Rmk, derived by passage in rhesus monkey kidney cells, replicates poorly in HeLa cells and does not cause cytopathic effects. Decay accelerating factor (DAF) is not a cell receptor for EV70-Rmk. Passage of EV70-Rmk in HeLa cells lead to isolation of EV70-Dne, which does not replicate in rhesus monkey kidney cells but grows to high titers in HeLa cells and causes cytopathic effects. DAF is sufficient for cell entry of EV70-Dne. EV70-Rmk replicates in human eye and brain-derived cell lines, whereas the Dne strain replicates only in HeLa cells and in conjunctiva-derived 15C4 cells. The two EV70 strains differ by five amino acid changes in the viral capsid. Single substitution of four of the five EV70-Rmk amino acids with the residue from EV70-Dne leads to lytic replication in HeLa cells. Conversely, substitution of any of the five EV70-Dne amino acids with the EV70-Rmk amino acid does not alter replication in HeLa cells. Three of these capsid amino acids are predicted to be located in the canyon encircling the fivefold axis of symmetry, one amino acid is found at the fivefold axis of symmetry, and one is located the interior of the capsid. The five EV70 residues define a region of the capsid that controls viral host range, DAF utilization, and cytopathogenicity.
Collapse
Affiliation(s)
- Melissa Stewart Kim
- Department of Microbiology, Columbia University College of Physicians & Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
12
|
O'Brien DP, Israel DA, Krishna U, Romero-Gallo J, Nedrud J, Medof ME, Lin F, Redline R, Lublin DM, Nowicki BJ, Franco AT, Ogden S, Williams AD, Polk DB, Peek RM. The role of decay-accelerating factor as a receptor for Helicobacter pylori and a mediator of gastric inflammation. J Biol Chem 2006; 281:13317-13323. [PMID: 16543227 DOI: 10.1074/jbc.m601805200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persistent gastritis induced by Helicobacter pylori is the strongest known risk factor for peptic ulcer disease and distal gastric adenocarcinoma, a process for which adherence of H. pylori to gastric epithelial cells is critical. Decay-accelerating factor (DAF), a protein that protects epithelial cells from complement-mediated lysis, also functions as a receptor for several microbial pathogens. In this study, we investigated whether H. pylori utilizes DAF as a receptor and the role of DAF within H. pylori-infected gastric mucosa. In vitro studies showed that H. pylori adhered avidly to Chinese hamster ovary cells expressing human DAF but not to vector controls. In H. pylori, disruption of the virulence factors vacA, cagA, and cagE did not alter adherence, but deletion of DAF complement control protein (CCP) domains 1-4 or the heavily O-glycosylated serine-threonine-rich COOH-terminal domain reduced binding. In cultured gastric epithelial cells, H. pylori induced transcriptional up-regulation of DAF, and genetic deficiency of DAF attenuated the development of inflammation among H. pylori-infected mice. These results indicate that DAF may regulate H. pylori-epithelial cell interactions relevant to pathogenesis.
Collapse
Affiliation(s)
- Daniel P O'Brien
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Dawn A Israel
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Uma Krishna
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Judith Romero-Gallo
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - John Nedrud
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Feng Lin
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Raymond Redline
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Douglas M Lublin
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Bogdan J Nowicki
- Departments of Obstetrics & Gynecology and Biomedical Sciences and Division of Microbial Pathogenesis and Immune Response, Meharry Medical Center, Nashville, Tennessee 37208
| | - Aime T Franco
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Seth Ogden
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Amanda D Williams
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - D Brent Polk
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279
| | - Richard M Peek
- Division of Gastroenterology, Departments of Medicine, Pediatrics, and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279; Department of Veterans Affairs Medical Center, Nashville, Tennessee 37212.
| |
Collapse
|
13
|
Morgan BP, Berg CW, Harris CL. ''Homologous restriction'' in complement lysis: roles of membrane complement regulators. Xenotransplantation 2005; 12:258-65. [PMID: 15943774 DOI: 10.1111/j.1399-3089.2005.00237.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complement system is a powerful bactericidal immune defence with the potential to damage self cells. Protection of self is provided by expression on cells of a battery of membrane regulators that inhibit activation of complement. Roles of complement in the rejection of transplanted organs have long been recognized, and are particularly relevant in xenotransplantation, where hyperacute rejection is complement-driven. Inhibiting complement was therefore considered early in the history of xenografting, and the use of membrane complement regulators to this end was proposed more than two decades ago. For each of the membrane regulators in humans, early studies implied a species-specificity of action, inhibiting human complement but not that from other species. The dogma of species-specificity dictated strategies for inhibiting complement in xenografts and drove the creation of donor transgenic pigs expressing human regulators. Here we critically evaluate the evidence for species-specificity in membrane complement regulators from humans and other animals. We challenge the dogma and show that there is considerable cross-species activity for each of the membrane regulators of complement. Acceptance of the fact that species selectivity is not a limitation will open new avenues for protection of the xenograft from complement damage.
Collapse
Affiliation(s)
- B Paul Morgan
- Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
14
|
Nokhbeh MR, Hazra S, Alexander DA, Khan A, McAllister M, Suuronen EJ, Griffith M, Dimock K. Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines. J Virol 2005; 79:7087-94. [PMID: 15890948 PMCID: PMC1112099 DOI: 10.1128/jvi.79.11.7087-7094.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enterovirus 70 (EV70), the causative agent of acute hemorrhagic conjunctivitis, exhibits a restricted tropism for conjunctival and corneal cells in vivo but infects a wide spectrum of mammalian cells in culture. Previously, we demonstrated that human CD55 is a receptor for EV70 on HeLa cells but that EV70 also binds to sialic acid-containing receptors on a variety of other human cell lines. Virus recognition of sialic acid attached to underlying glycans by a particular glycosidic linkage may contribute to host range, tissue tropism, and pathogenesis. Therefore, we tested the possibility that EV70 binds to alpha2,3-linked sialic acid, like other viruses associated with ocular infections. Through the use of linkage-specific sialidases, sialyltransferases, and lectins, we show that EV70 recognizes alpha2,3-linked sialic acid on human corneal epithelial cells and on U-937 cells. Virus attachment to both cell lines is CD55 independent and sensitive to benzyl N-acetyl-alpha-D-galactosaminide, an inhibitor of O-linked glycosylation. Virus binding to corneal cells, but not U-937 cells, is inhibited by proteinase K, but not by phosphatidylinositol-specific phospholipase C treatment. These results are consistent with the idea that a major EV70 receptor on corneal epithelial cells is an O-glycosylated, non-glycosyl phosphatidylinositol-anchored membrane glycoprotein containing alpha2,3-linked sialic acid, while sialylated receptors on U-937 cells are not proteinaceous.
Collapse
Affiliation(s)
- M Reza Nokhbeh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jimenez-Clavero MA, Escribano-Romero E, Ley V, Spiller OB. More recent swine vesicular disease virus isolates retain binding to coxsackie-adenovirus receptor, but have lost the ability to bind human decay-accelerating factor (CD55). J Gen Virol 2005; 86:1369-1377. [PMID: 15831949 DOI: 10.1099/vir.0.80669-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swine vesicular disease virus (SVDV) evolved from coxsackie B virus serotype 5 (CVB5) in the recent past, crossing the species barrier from humans to pigs. Here, SVDV isolates from early and recent outbreaks have been compared for their capacity to utilize the progenitor virus receptors coxsackie-adenovirus receptor (CAR) and decay-accelerating factor (DAF; CD55). Virus titre of CVB5 and SVDV isolates It'66 and UK'72 on human HeLa cells was reduced by pre-incubation with either anti-DAF or anti-CAR antibodies; however, recent SVDV isolates R1072, R1120 and SPA'93 did not infect HeLa cells lytically. CVB5 and SVDV infection of the pig cell line IB-RS-2 was inhibited completely by anti-CAR antibodies for all isolates, and no reduction was observed following pre-incubation of cells with anti-pig DAF antibodies. Expression of human DAF in the pig cell line IB-RS-2 enhanced the virus titre of early SVDV isolates by 25-fold, but had no effect on recent SVDV isolate titre. Binding of radiolabelled CVB5 to IB-RS-2 cells was increased seven- to eightfold by expression of human DAF and binding of early SVDV isolates was increased 1.2-1.3-fold, whereas no increase in binding by recent SVDV isolates was mediated by human DAF expression. Addition of soluble hDAF-Fc inhibited CVB5, but not SVDV, infection of pig cells. Pre-incubation of all viruses with soluble hCAR-Fc blocked infection of IB-RS-2 pig cells completely; titration of the amount of soluble hCAR-Fc required to block infection revealed that early isolate UK'72 was the least susceptible to inhibition, and the most recent isolate, SPA'93, was the most susceptible.
Collapse
Affiliation(s)
- Miguel A Jimenez-Clavero
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - Victoria Ley
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra Coruña km 7·5, 28040 Madrid, Spain
| | - O Brad Spiller
- Virus Receptor and Immune Evasion Group, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Third Floor Henry Wellcome Research Institute, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
16
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
17
|
Newcombe NG, Beagley LG, Christiansen D, Loveland BE, Johansson ES, Beagley KW, Barry RD, Shafren DR. Novel role for decay-accelerating factor in coxsackievirus A21-mediated cell infectivity. J Virol 2004; 78:12677-82. [PMID: 15507656 PMCID: PMC525106 DOI: 10.1128/jvi.78.22.12677-12682.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decay-accelerating factor (DAF) is involved in the cell membrane attachment of many human enteroviruses. Presently, further specific active roles of DAF in mediating productive cell infection and in the pathogenesis of natural enterovirus infection are poorly understood. In an attempt to more fully understand the role of DAF in lytic cell infection we examined the specific interactions of the prototype strain of coxsackievirus A21 (CVA21) with surface-expressed DAF. Investigations into discrete DAF-CVA21 interactions focused on viral binding; viral particle elution with respect to the parameters of time, temperature, and pH; and subsequent cell infection. Radiolabeled-virus binding assays revealed that peak elution of CVA21 from DAF occurred within 15 min of initial attachment and that the DAF-eluted virus increased in a linear fashion with respect to temperature and pH. CVA21 eluted from endogenous surface-expressed DAF was highly infectious, in contrast to CVA21 eluted from intercellular adhesion molecule 1 (ICAM-1), which retained little to no infectivity. Using an adenovirus transduction system, we demonstrate that CVA21 can remain infectious for up to 24 h after DAF binding and is capable of initiating a multicycle lytic infection upon delayed ICAM-1 surface expression. Taken together, the data suggest that a major role of DAF in cell infection by the prototype strain of CVA21 is to provide membrane concentration of infectious virions, effectively increasing viral interactions with endogenous or induced ICAM-1.
Collapse
Affiliation(s)
- Nicole G Newcombe
- The Picornaviral Research Unit, Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Johansson ES, Xing L, Cheng RH, Shafren DR. Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J Virol 2004; 78:12603-12. [PMID: 15507647 PMCID: PMC525059 DOI: 10.1128/jvi.78.22.12603-12612.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.
Collapse
Affiliation(s)
- E Susanne Johansson
- Picornaviral Research Unit, Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences, Bldg., 2300 Newcastle, New South Wales, Australia.
| | | | | | | |
Collapse
|
19
|
Hudault S, Spiller OB, Morgan BP, Servin AL. Human diffusely adhering Escherichia coli expressing Afa/Dr adhesins that use human CD55 (decay-accelerating factor) as a receptor does not bind the rodent and pig analogues of CD55. Infect Immun 2004; 72:4859-63. [PMID: 15271948 PMCID: PMC470588 DOI: 10.1128/iai.72.8.4859-4863.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/17/2004] [Accepted: 04/05/2004] [Indexed: 11/20/2022] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli (DAEC) bacteria that are responsible for recurrent urinary tract and gastrointestinal infections recognized as a receptor the glycosylphosphatidylinositol (GPI)-anchored protein decay-accelerating factor (DAF; CD55) at the brush border of cultured human intestinal cells. Results show that Afa/Dr DAEC C1845 bacteria were poorly associated with the mucosa of the gastrointestinal tract of infected mice. We conducted experiments with Chinese hamster ovary (CHO) cells stably transfected with mouse (GPI or transmembrane forms), pig, or human CD55 or mouse Crry cDNAs or transfected with empty vector pDR2EF1 alpha. Recombinant E. coli AAEC185 bacteria expressing Dr or F1845 adhesins bound strongly to CHO cells expressing human CD55 but not to the CHO cells expressing mouse (transmembrane and GPI anchored), rat, or pig CD55 or mouse Crry. Positive clustering of CD55 around Dr-positive bacteria was observed in human CD55-expressing CHO cells but not around the rarely adhering Dr-positive bacteria randomly distributed at the cell surface of CHO cells expressing mouse, rat, or pig CD55.
Collapse
Affiliation(s)
- Sylvie Hudault
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, F-92296 ChAtenay-Malabry, France
| | | | | | | |
Collapse
|
20
|
Williams DT, Chaudhry Y, Goodfellow IG, Lea S, Evans DJ. Interactions of decay-accelerating factor (DAF) with haemagglutinating human enteroviruses: utilizing variation in primate DAF to map virus binding sites. J Gen Virol 2004; 85:731-738. [PMID: 14993659 DOI: 10.1099/vir.0.19674-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cellular receptor for the haemagglutinating enteroviruses (HEV), and the protein that mediates haemagglutination, is the membrane complement regulatory protein decay accelerating factor (DAF; CD55). Although primate DAF is highly conserved, significant differences exist to enable cell lines derived from primates to be utilized for the characterization of the DAF binding phenotype of human enteroviruses. Thus, several distinct DAF-binding phenotypes of a selection of HEVs (viz. coxsackievirus A21 and echoviruses 6, 7, 11-13, 29) were identified from binding and infection assays using a panel of primate cells derived from human, orang-utan, African Green monkey and baboon tissues. These studies complement our recent determination of the crystal structure of SCR(34) of human DAF [Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J. & Lea, S. (2003). J Biol Chem 278, 10691-10696] and have enabled us to better map the regions of DAF with which enteroviruses interact and, in certain cases, predict specific virus-receptor contacts.
Collapse
Affiliation(s)
- David T Williams
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Yasmin Chaudhry
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Ian G Goodfellow
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| | - Susan Lea
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - David J Evans
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Glasgow G11 5JR, UK
| |
Collapse
|
21
|
Haddad A, Nokhbeh MR, Alexander DA, Dawe SJ, Grisé C, Gulzar N, Dimock K. Binding to decay-accelerating factor is not required for infection of human leukocyte cell lines by enterovirus 70. J Virol 2004; 78:2674-81. [PMID: 14990687 PMCID: PMC353723 DOI: 10.1128/jvi.78.6.2674-2681.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 70 (EV70) is one of several human enteroviruses that exhibit a propensity for infecting the central nervous system (CNS). The mechanisms by which neurotropic enteroviruses gain access to and invade the CNS are poorly understood. One possibility is that circulating leukocytes become infected and carry neurotropic enteroviruses to the CNS. We examined the ability of EV70 to infect cell lines derived from lymphoid, myeloid, and monocytic lineages. Most leukocyte cell lines tested bound radiolabeled EV70 and were permissive for EV70 replication, suggesting that EV70, in contrast to other enteroviruses, has an in vitro tropism that includes lymphoid, monocytic, and myeloid cell lines. For some of the cell lines, virus binding and infection correlated with surface expression of decay-accelerating factor (DAF), an attachment protein for EV70 on HeLa cells. However, EV70 also adsorbed to and infected cell lines that expressed little or no DAF. In contrast to what was observed for HeLa cells, neither DAF-specific monoclonal antibodies nor phosphatidylinositol-specific phospholipase C treatment inhibited EV70 binding to permissive leukocyte cell lines, and antibody blockade of DAF had little or no effect on EV70 replication. We also found that neither the human coxsackievirus-adenovirus receptor nor intercellular cell adhesion molecule 1, which mediate the entry of coxsackie B viruses and coxsackievirus A21, respectively, functions as a receptor for EV70. EV70 binding to all cell lines was sensitive to sialidase treatment and to inhibition of O glycosylation by benzyl N-acetyl-alpha-D-galactosaminide. Taken together, these results suggest that a sialylated molecule(s) other than DAF serves as a receptor for EV70 on permissive human leukocyte cell lines.
Collapse
Affiliation(s)
- Alain Haddad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
22
|
Newcombe NG, Johansson ES, Au G, Lindberg AM, Barry RD, Shafren DR. Enterovirus capsid interactions with decay-accelerating factor mediate lytic cell infection. J Virol 2004; 78:1431-9. [PMID: 14722298 PMCID: PMC321397 DOI: 10.1128/jvi.78.3.1431-1439.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular receptor usage of numerous human enteroviruses can differ significantly between low-cell-culture-passaged clinical isolates and highly laboratory-passaged prototype strains. The prototype strain of coxsackievirus A21 (CVA21) displays a dual-receptor specificity as determined with a receptor complex consisting of decay-accelerating factor (DAF) and intercellular adhesion molecule 1 (ICAM-1). In this study, the cellular receptor interactions of low-cell-passage CVA21 clinical isolates with respect to their interactions with cell surface-expressed DAF and ICAM-1 were compared to those of the CVA21 prototype (Kuykendall) strain. Dual-receptor usage of DAF and ICAM-1 by CVA21 clinical isolates was confirmed by cell transfection and radiolabeled binding assays. The cellular attachment of clinical and prototype CVA21 strains to cells that coexpressed DAF and ICAM-1 was not additive compared to the viral binding to cells expressing one or other receptor. In fact, the binding data suggest there is an inhibition of CVA21 cellular attachment in environments where high-level coexpression of both DAF and ICAM-1 occurs. Antibody cross-linking of DAF rendered cells susceptible to lytic infection by the CVA21 clinical isolates. In a novel finding, three clinical isolates could, to various degrees, infect and lyse DAF-expressing cells in the absence of DAF-antibody cross-linking and ICAM-1 expression. Sequence analysis of the P1 region of clinical and prototype virus genomes identified a number of coding changes that may contribute to the observed enhanced DAF usage phenotype of the clinical CVA21 isolates. None of the amino acid changes was located in the previously postulated ICAM-1 footprint, a receptor-binding environment that was conserved on the capsid surface of all CVA21 clinical isolates. Taken together, the data suggest that community-circulating strains of CVA21 can infect target cells expressing either ICAM-1 or DAF alone and that such interactions extend tissue tropism and impact directly on viral pathogenesis.
Collapse
Affiliation(s)
- Nicole G Newcombe
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Newcastle, New South Wales 2300, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Newcombe NG, Andersson P, Johansson ES, Au GG, Lindberg AM, Barry RD, Shafren DR. Cellular receptor interactions of C-cluster human group A coxsackieviruses. J Gen Virol 2003; 84:3041-3050. [PMID: 14573809 DOI: 10.1099/vir.0.19329-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular receptor complex of coxsackievirus A21 (CVA21), a C-cluster human enterovirus, is formed by the subtle interaction of individual cellular receptors, decay accelerating factor (DAF) and intercellular adhesion molecule-1 (ICAM-1). In this receptor complex, DAF functions in the membrane sequestration of the virus, while the role of ICAM-1 is as the functional cellular internalization receptor. However, despite the elucidation of the CVA21-cell receptor interactions, there have been few definite investigations into cellular receptor usage of other coxsackie A viruses (CVAs) belonging to the C-cluster. In the present study, radiolabelled virus-binding assays demonstrated that CVA13, -15, -18 and -20, a subset of the human enterovirus C-cluster, bind directly to surface-expressed ICAM-1, but not to surface-expressed DAF. Furthermore, lytic infection of ICAM-1-expressing rhabdomyosarcoma (RD) cells by this C-cluster subset of viruses was inhibited by specific ICAM-1 monoclonal antibody blockade, except for that of CVA20. Despite possessing ICAM-1-binding capabilities, CVA20 employed an as yet unidentified internalization receptor for cell entry and subsequent productive lytic infection of ICAM-1-negative RD cells. In a further example of C-cluster cellular receptor heterogeneity, CVA13 exhibited significant binding to the surface of CHO cells expressing neither DAF nor ICAM-1. Despite a common receptor usage of ICAM-1 by this subset of C-cluster CVAs, the amino acid residues postulated to represent the ICAM-1-receptor footprint were not conserved.
Collapse
Affiliation(s)
- Nicole G Newcombe
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | - Per Andersson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-382 91 Kalmar, Sweden
| | - E Susanne Johansson
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | - Gough G Au
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-382 91 Kalmar, Sweden
| | - Richard D Barry
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| | - Darren R Shafren
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia
| |
Collapse
|
24
|
Williams P, Chaudhry Y, Goodfellow IG, Billington J, Powell R, Spiller OB, Evans DJ, Lea S. Mapping CD55 function. The structure of two pathogen-binding domains at 1.7 A. J Biol Chem 2003; 278:10691-6. [PMID: 12499389 DOI: 10.1074/jbc.m212561200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decay-accelerating factor (CD55), a regulator of the alternative and classical pathways of complement activation, is expressed on all serum-exposed cells. It is used by pathogens, including many enteroviruses and uropathogenic Escherichia coli, as a receptor prior to infection. We describe the x-ray structure of a pathogen-binding fragment of human CD55 at 1.7 A resolution containing two of the three domains required for regulation of human complement. We have used mutagenesis to map biological functions onto the molecule; decay-accelerating activity maps to a single face of the molecule, whereas bacterial and viral pathogens recognize a variety of different sites on CD55.
Collapse
Affiliation(s)
- Pamela Williams
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The interaction of viruses with host cell receptors is the initial step in viral infection and is an important determinant of virus host range, tissue tropism, and pathogenesis. The complement regulatory protein decay-accelerating factor (DAF/CD55) is an attachment receptor for enterovirus 70 (EV70), a member of the Picornaviridae, commonly associated with an eye infection in humans known as acute hemorrhagic conjunctivitis. In early work, the EV70 receptor on erythrocytes, responsible for its hemagglutinating activity, was shown to be sensitive to neuraminidase, implying an essential role for sialic acid in virus attachment. Here, we extend these results to show that cell surface sialic acid is required for EV70 binding to nucleated cells susceptible to virus infection and that sialic acid binding is important in productive infection. Through the use of site-directed mutagenesis to eliminate the single N-linked glycosylation site of DAF and of a chimeric receptor protein in which the O-glycosylated domain of DAF was replaced by a region of the HLA-B44 molecule, a role in EV70 binding for the sialic acid residues of DAF was excluded, suggesting the existence of at least one additional, sialylated EV70-binding factor at the cell surface. Treatment of cells with metabolic inhibitors of glycosylation excluded a role for the N-linked oligosaccharides of glycoproteins but suggested that O-linked glycosylation is important for EV70 binding.
Collapse
Affiliation(s)
- David A Alexander
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
26
|
Greenstone HL, Santoro F, Lusso P, Berger EA. Human Herpesvirus 6 and Measles Virus Employ Distinct CD46 Domains for Receptor Function. J Biol Chem 2002; 277:39112-8. [PMID: 12171934 DOI: 10.1074/jbc.m206488200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We employed a quantitative cell fusion assay to identify structural domains of CD46 required for its function as a receptor for human herpesvirus 6 (HHV-6). We examined the activities of recombinant variants of CD46, including different isoforms as well as engineered truncations and molecular chimeras with decay-accelerating factor, a related protein in the family of regulators of complement activation (RCA). We observed strong receptor activity for all four CD46 isoforms, which differ in the membrane-proximal extracellular and cytoplasmic domains, indicating that the critical determinants for HHV-6 receptor activity reside outside the C-terminal portion of CD46. Analysis of the short consensus repeat (SCR) regions that comprise most of the extracellular portion of CD46 indicated a strong dependence on SCRs 2 and 3 and no requirement for SCRs 1 or 4. Fusion-inhibition studies with SCR-specific monoclonal antibodies supported the essential role of SCRs 2 and 3 in HHV-6 receptor activity. These findings contrast markedly with fusion mediated by measles virus glycoproteins for which we observed a strict dependence on SCRs 1 and 2, consistent with previous reports. These results expand the emerging notion that CD46 and other members of the RCA family are co-opted in distinct manners by different infectious pathogens.
Collapse
|
27
|
Stuart AD, Eustace HE, McKee TA, Brown TDK. A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J Virol 2002; 76:9307-22. [PMID: 12186914 PMCID: PMC136471 DOI: 10.1128/jvi.76.18.9307-9322.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored complement regulatory protein decay-accelerating factor (DAF) is used by a number of enteroviruses as a receptor during infection. DAF and other GPI-anchored proteins can be found in cholesterol-rich ordered domains within the plasma membrane that are known as "lipid rafts." We have shown, by using drugs to specifically inhibit various endocytosis routes, that infection by a DAF-using strain of echovirus 11 (EV11) is dependent upon cholesterol and an intact cytoskeleton, whereas a non-DAF-using mutant derived from it was unaffected by these drugs. Using RNA transfection and virus-binding assays, we have shown that this requirement for cholesterol, the actin cytoskeleton, and the microtubule network occurs postbinding of the virus but prior to uncoating of the RNA, indicating a role during virus entry. Confocal microscopy of virus infection supported the role of cholesterol and the cytoskeleton during entry. In addition, [(35)S]methionine-labeled DAF-using EV11, but not the non-DAF-using EV11, could be copurified with lipid raft components during infection after Triton X-100 extraction. These data indicate that DAF usage by EV11 enables the virus to associate with lipid rafts and enter cells through this novel route.
Collapse
Affiliation(s)
- Amanda D Stuart
- Division of Virology, Department of Pathology, University of Cambridge, CB2 1QP Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Hourcade D, Liszewski MK, Krych-Goldberg M, Atkinson JP. Functional domains, structural variations and pathogen interactions of MCP, DAF and CR1. IMMUNOPHARMACOLOGY 2000; 49:103-16. [PMID: 10904110 DOI: 10.1016/s0162-3109(00)80296-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Regulators of Complement Activation (RCA) are a fascinating group of proteins that play important roles in innate and acquired immunity. In this review, we examine structure-function aspects of three membrane-bound RCA proteins and discuss the unique impact of their genetic organization on their evolution.
Collapse
Affiliation(s)
- D Hourcade
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
29
|
Selvarangan R, Goluszko P, Popov V, Singhal J, Pham T, Lublin DM, Nowicki S, Nowicki B. Role of decay-accelerating factor domains and anchorage in internalization of Dr-fimbriated Escherichia coli. Infect Immun 2000; 68:1391-9. [PMID: 10678952 PMCID: PMC97293 DOI: 10.1128/iai.68.3.1391-1399.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dr-fimbriated Escherichia coli capable of invading epithelial cells recognizes human decay-accelerating factor (DAF) as its cellular receptor. The role of extracellular domains and the glycosylphosphatidylinositol anchor of DAF in the process of internalization of Dr(+) E. coli was characterized in a cell-cell interaction model. Binding of Dr(+) E. coli to the short consensus repeat 3 domain of DAF expressed by Chinese hamster ovary cells was critical for internalization to occur. Deletion of short consensus repeat 3 domain or replacement of Ser(165) by Leu in this domain, or the use of a monoclonal antibody to this region abolished internalization. Replacing the glycosylphosphatidylinositol anchor of DAF with the transmembrane anchor of membrane cofactor protein or HLA-B44 resulted in abolition or reduction of internalization respectively. Cells expressing glycosylphosphatidylinositol-anchored DAF but not the transmembrane-anchored DAF internalized Dr(+) E. coli through a glycolipid pathway, since the former cells were more sensitive to inhibition by methyl-beta-cyclodextrin, a sterol-chelating agent. Electron microscopic studies revealed that the intracellular vacuoles containing the internalized Dr(+) E. coli were morphologically distinct between the anchor variants of DAF. The cells expressing glycosylphosphatidylinositol-anchored DAF contained a single bacterium in tight-fitting vacuoles, while the cells expressing transmembrane-anchored DAF contained multiple (two or three) bacteria in spacious phagosomes. This finding suggests that distinct postendocytic events operate in the cells expressing anchor variants of DAF. We provide direct evidence for the DAF-mediated internalization of Dr(+) E. coli and demonstrate the significance of the glycosylphosphatidylinositol anchor, which determines the ability and efficiency of the internalization event.
Collapse
Affiliation(s)
- R Selvarangan
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas 77555-1062, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Powell RM, Ward T, Goodfellow I, Almond JW, Evans DJ. Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. J Gen Virol 1999; 80 ( Pt 12):3145-3152. [PMID: 10567645 DOI: 10.1099/0022-1317-80-12-3145] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Decay accelerating factor (DAF) functions as a cell attachment receptor for a wide range of human enteroviruses, the interaction accounting for the haemagglutination phenotype exhibited by many members of this family. Haemagglutination inhibition assays using purified truncated soluble DAF (sDAF) receptors and short consensus repeat (SCR) domain-specific antibodies have been used to determine the domain(s) of DAF to which the viruses bind. Further sDAF-mediated virus neutralization and biosensor analysis have been used to confirm the virus-binding domains of DAF. Of the four distinct clusters of human enteroviruses, three contain representatives that bind DAF. The majority of DAF-binding enteroviruses occupy the 'CBV-like' cluster, and require SCR domains 2-4 for DAF binding. In contrast, the DAF-binding representatives of the 'ENV70-like' and 'PV-like' clusters require SCR1 for DAF interaction. These studies confirm that DAF binding is a widespread characteristic amongst phylogenetically divergent clusters within the enteroviruses and suggest that the ability to bind DAF may have evolved more than once within this group of viruses.
Collapse
Affiliation(s)
- Robert M Powell
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 5AJ, UK2
| | - Trevor Ward
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 5AJ, UK2
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK1
| | - Ian Goodfellow
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK1
| | - Jeffrey W Almond
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 5AJ, UK2
| | - David J Evans
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK1
| |
Collapse
|