1
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
2
|
Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. J Virol 2023; 97:e0187022. [PMID: 37991365 PMCID: PMC10734542 DOI: 10.1128/jvi.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/28/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Collapse
Affiliation(s)
- Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kinjal Majumder
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yee T. Ong
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Marc C. Johnson
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Rangasamy N, Chinniah R, Ravi PM, Vijayan M, Sivanadham R, K V D, Pandi S, Sevak V, Krishnan P, Karuppiah B. HLA-DRB1* and DQB1* allele and haplotype diversity in eight tribal populations: Global affinities and genetic basis of diseases in South India. INFECTION GENETICS AND EVOLUTION 2020; 89:104685. [PMID: 33359263 DOI: 10.1016/j.meegid.2020.104685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
The distribution of HLA class-II DRB1* and DQB1* alleles/ haplotypes were studied in 438 individuals of 8 Dravidian tribal groups inhabiting the Western Ghats, south India. The HLA typing was performed by PCR-SSP method. In order to identify the 5-locus Ancestral Extended Haplotypes (AEH), the alleles of HLA-A, -B and -C loci were typed for DNAs with predominant 2-locus haplotypes. The analyses have revealed allele HLA-DRB1*15 as the most predominant allele (Lowest / Highest range: Urali, 14.81 / Malasar, 48.94), followed by the alleles DRB1*10 (Katunayakan, 1.85 / Paliyan, 48.21), DRB1*14 (Paliyan 4.46 / Katunayakan, 40.74), DRB1*12 (Mannan, 1.64 / Katunayakan, 20.37) and DRB1*03 (Mannan, 1.64 / Urali, 29.63). The most frequent DQB1* alleles were DQB1*02 (Paliyan 3.57 / Urali, 23.15), DQB1*05 (Katunayakan, 27.77 / Paliyan 84.82) and DQB1*06 (Malasar, 8.51 / Kuruman, 33.51). The most predominant two-locus haplotypes observed were DRB1*15-DQB1*05, DRB1*10-DQB1*05, DRB1*15-DQB1*06 and DRB1*04-DQB1*05. The present study of HLA immunogenetics of south Indian tribes have revealed the presence of globally shared two and 5-locus haplotypes. Many of these haplotypes were implicated in a number of diseases in south India. We observed the presence of ancestral extended haplotypes (AEHs), hitherto not reported in Indian populations such as, A*68-B*35-C*02-DRB1*15:01-DQB1*05:01, A*24-B*57-C*06-DRB1*04:01-DQB1*05:01 and A*24-B*35-C*02-DRB1*15:01-DQB1*05:02. The dendrogram based phylogenetic analyses have revealed the Caucasian affinity of Urali, palaeo-Mediterranean and Indo-European affinity of Malasar tribes. The presence of globally shared susceptible and protective haplotypes reiterated the mosaic immunogenetic fabric of south Indian tribes.
Collapse
Affiliation(s)
- Nandakumar Rangasamy
- PG & Research Department of Zoology, Periyar EVR College, Tiruchirappalli 620023, Tamil Nadu, India
| | - Rathika Chinniah
- Department of Immunology, Madurai Kamaraj University, Madurai 625021, India
| | - Padma-Malini Ravi
- Department of Immunology, Madurai Kamaraj University, Madurai 625021, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | - Darsa K V
- Department of Environmental Studies, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Sasiharan Pandi
- Department of Immunology, Madurai Kamaraj University, Madurai 625021, India
| | - Vandit Sevak
- Department of Immunology, Madurai Kamaraj University, Madurai 625021, India
| | - Prabhakaran Krishnan
- PG & Research Department of Zoology, Periyar EVR College, Tiruchirappalli 620023, Tamil Nadu, India
| | | |
Collapse
|
4
|
Esbjörnsson J, Jansson M, Jespersen S, Månsson F, Hønge BL, Lindman J, Medina C, da Silva ZJ, Norrgren H, Medstrand P, Rowland-Jones SL, Wejse C. HIV-2 as a model to identify a functional HIV cure. AIDS Res Ther 2019; 16:24. [PMID: 31484562 PMCID: PMC6727498 DOI: 10.1186/s12981-019-0239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Two HIV virus types exist: HIV-1 is pandemic and aggressive, whereas HIV-2 is confined mainly to West Africa and less pathogenic. Despite the fact that it has been almost 40 years since the discovery of AIDS, there is still no cure or vaccine against HIV. Consequently, the concepts of functional vaccines and cures that aim to limit HIV disease progression and spread by persistent control of viral replication without life-long treatment have been suggested as more feasible options to control the HIV pandemic. To identify virus-host mechanisms that could be targeted for functional cure development, researchers have focused on a small fraction of HIV-1 infected individuals that control their infection spontaneously, so-called elite controllers. However, these efforts have not been able to unravel the key mechanisms of the infection control. This is partly due to lack in statistical power since only 0.15% of HIV-1 infected individuals are natural elite controllers. The proportion of long-term viral control is larger in HIV-2 infection compared with HIV-1 infection. We therefore present the idea of using HIV-2 as a model for finding a functional cure against HIV. Understanding the key differences between HIV-1 and HIV-2 infections, and the cross-reactive effects in HIV-1/HIV-2 dual-infection could provide novel insights in developing functional HIV cures and vaccines.
Collapse
|
5
|
Inhibitory Effects of HIV-2 Vpx on Replication of HIV-1. J Virol 2018; 92:JVI.00554-18. [PMID: 29743354 DOI: 10.1128/jvi.00554-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 share a striking genomic resemblance; however, variability in the genetic sequence accounts for the presence of unique accessory genes, such as the viral protein X (vpx) gene in HIV-2. Dual infection with both viruses has long been described in the literature, yet the molecular mechanism of how dually infected patients tend to do better than those who are monoinfected with HIV-1 has not yet been explored. We hypothesized that in addition to extracellular mechanisms, an HIV-2 accessory gene is the culprit, and interference at the viral accessory/regulatory protein level is perhaps responsible for the attenuated pathogenicity of HIV-1 observed in dually infected patients. Following simulation of dual infection in cell culture experiments, we found that pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction. Importantly, we have found that this dampening of the infectivity of HIV-1 was a result of interviral interference carried out by viral protein X of HIV-2, resulting in a severe hindrance to the replication dynamics of HIV-1, influencing both its early and late phases of the viral life cycle. Our findings shed light on potential intracellular interactions between the two viruses and broaden our understanding of the observed clinical spectrum in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV-1.IMPORTANCE Dual infection with human immunodeficiency virus types 1 and 2 is relatively common in areas of endemicity. For as-yet-unclarified reasons, patients who are dually infected were shown to have lower viral loads and generally a lower rate of progression to AIDS than those who are monoinfected. We aimed to explore dual infection in cell culture, to elucidate possible mechanisms by which HIV-2 may be able to exert such an effect. Our results indicate that on the cellular level, pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction, which was found to be a result of interviral interference carried out by viral protein X of HIV-2. These findings broaden our knowledge of interviral interactions on the cellular level and may provide an explanation for the decreased pathogenicity of HIV-1 in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV.
Collapse
|
6
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Correlates of T-cell-mediated viral control and phenotype of CD8(+) T cells in HIV-2, a naturally contained human retroviral infection. Blood 2013; 121:4330-9. [PMID: 23558015 DOI: 10.1182/blood-2012-12-472787] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While a significant proportion of HIV-2-infected individuals are asymptomatic and maintain undetectable viral loads (controllers), 15% to 20% progress to AIDS and are predicted by detectable viremia. Identifying immune correlates that distinguish these 2 groups should provide insights into how a potentially pathogenic retrovirus can be naturally controlled. We performed a detailed study of HIV-2-specific cellular responses in a unique community cohort in Guinea-Bissau followed for over 2 decades. T-cell responses were compared between controllers (n = 33) and viremic subjects (n = 27) using overlapping peptides, major histocompatibility complex class I tetramers, and multiparameter flow cytometry. HIV-2 viral control was significantly associated with a high-magnitude, polyfunctional Gag-specific CD8(+) T-cell response but not with greater perforin upregulation. This potentially protective HIV-2-specific response is surprisingly narrow. HIV-2 Gag-specific CD8(+) T cells are at an earlier stage of differentiation than cytomegalovirus-specific CD8(+) T-cells, do not contain high levels of cytolytic markers, and exhibit low levels of activation and proliferation, representing distinct properties from CD8(+) T cells associated with HIV-1 control. These data reveal the potential T-cell correlates of HIV-2 control and the detailed phenotype of virus-specific CD8(+) T cells in a naturally contained retroviral infection.
Collapse
|
8
|
van Tienen C, Schim van der Loeff M, Whittle H. Effect of HIV-2 infection on HIV-1 disease progression. N Engl J Med 2012; 367:1962; author reply 1962-3. [PMID: 23150973 DOI: 10.1056/nejmc1210334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Leligdowicz A, Onyango C, Yindom LM, Peng Y, Cotten M, Jaye A, McMichael A, Whittle H, Dong T, Rowland-Jones S. Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection. Eur J Immunol 2010; 40:1963-72. [PMID: 20411566 DOI: 10.1002/eji.200940295] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
HIV-1-specific CD8(+) T cells are present in most HIV-1-infected people and play an important role in controlling viral replication, but the characteristics of an effective HIV-specific T-cell response are largely unknown. The majority of HIV-2-infected people behave as long-term non-progressors while those who progress to AIDS do so in a manner indistinguishable from HIV-1. A detailed study of HIV-2 infection may identify protective immune responses. Robust gag p26-specific T-cell responses are elicited during HIV-2 infection and correlate with control of viremia. In this study, we analyzed features of an HLA-B 3501-restricted T-cell response to HIV-2 p26 that may contribute to virus control. In contrast to HIV-1, HIV-2-specific T cells are at an early stage of differentiation (CD27(+)CD28(+)), a finding that relates directly to CD4(+) T-cell levels and inversely to immune activation. The cells demonstrate IFN-gamma secretion, oligoclonal T-cell receptor Vbeta gene segment usage, exceptional avidity and secretion of pro-inflammatory cytokines. Despite the potentially strong selection pressure imposed on the virus by these cells, there was no evidence of HIV-2 sequence evolution. We propose that in chronic HIV-2 infection, the maintenance of early-differentiated, highly avid CD8(+) T cells could account for the non-progressive course of disease. Such responses may be desirable from an HIV vaccine.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Weatherall Institute of Molecular Medicine, Medical Research Council Human Immunology Unit, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thushan I de Silva, Carla van Tienen, Sarah L Rowland-Jones,. Dual infection with HIV-1 and HIV-2: double trouble or destructive interference? ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 and HIV-2 are two related retroviruses and, in regions where both infections are endemic, HIV-1/2 dual infection can occur. Several important questions arise about the interplay between these two viruses in a single host, including: what is the potential for HIV-1–HIV-2 recombinants to form, are there synergistic or inhibitory mechanisms that result in distinct viral replication dynamics when compared with HIV-1 or HIV-2 monoinfected individuals and what are the factors to consider when choosing antiretroviral regimes in HIV-1/2 dual-infected individuals? We summarize the relevant evidence to answer these questions, as well as indentify trends in prevalence and how the natural history of HIV-1/2 dual infection differs from that of HIV-1 or HIV-2 monoinfection. The epidemiological and in vitro evidence pertaining to the question of whether HIV-2 infection may protect against HIV-1 superinfection will also be addressed.
Collapse
|
11
|
Promkhatkaew D, Pinyosukhee N, Thongdeejaroen W, Teeka J, Wutthinantiwong P, Leangaramgul P, Sawanpanyalert P, Warachit P. Prime-Boost Immunization of Codon Optimized HIV-1 CRF01_AE Gag in BCG with Recombinant Vaccinia Virus Elicits MHC Class I and II Immune Responses in Mice. Immunol Invest 2009; 38:762-79. [PMID: 19860587 PMCID: PMC9491105 DOI: 10.3109/08820130903070544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The HIV-1 CRF01_AE gag gene was modified by codon restriction for Mycobacterium spp. and transformed into BCG; and it was designated as rBCG/codon optimized gagE. This produced 11 fold higher HIV-1 gag protein expression than the recombinant native gene rBCG/HIV-1gagE. In mice, CTL activity could be induced either by a single immunization of the codon optimized construct or by using it as a priming antigen in the prime-boost modality with recombinant Vaccinia virus expressing native HIV-1 gag. Specific secreted cytokine responses were also investigated. Only when rBCG gag was codon optimized did the prime-boost immunization produce significantly enhanced IFN-γ and IL-2 secretion indicating recognition via CD4+ and CD8+ T cells, and these responses seemed to be codon optimized immunogen dose-responsive. On contrary, the prime-boost vaccination using an equal amount of native rBCG/HIV-1gagE instead, or a single rBCG/codon optimized gagE immunization, had no similar effect on the cytokine secretion. These findings suggest that the use of recombinant codon BCG construct with recombinant Vaccinia virus encoding CRF01_AE gag as the prime-boost HIV vaccine candidate, will induce CD4+ Th1 and CD8+ T cell cytokine secretions in addition to enhancing CD8+ CTL response.
Collapse
|
12
|
Ondondo BO, Rowland-Jones SL, Dorrell L, Peterson K, Cotten M, Whittle H, Jaye A. Comprehensive analysis of HIV Gag-specific IFN-gamma response in HIV-1- and HIV-2-infected asymptomatic patients from a clinical cohort in The Gambia. Eur J Immunol 2009; 38:3549-60. [PMID: 19016530 DOI: 10.1002/eji.200838759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Majority of HIV-2-infected individuals meet the criteria of long-term non-progressors. This has been linked to superior qualitative HIV-2-specific cellular immune responses that correlate with viral control. However, it is unknown whether this is due to frequent targeting of immunodominant Gag epitopes in HIV-2 than HIV-1 infection. We describe a comprehensive comparison of the magnitude, breadth and frequency of Gag responses and the degree of cross-recognition of frequently targeted, immunodominant Gag peptides in a cross-sectional study of asymptomatic HIV-1- and HIV-2-infected individuals. Fresh PBMC from 20 HIV-1- and 20 HIV-2-infected patients with similar CD4(+) T-cell counts (p=0.36) were stimulated with pools of HIV-1 and/or HIV-2 Gag peptides in an IFN-gamma ELISPOT assay. We found no difference in the cumulative magnitude of IFN-gamma responses (p=0.75) despite significantly lower plasma viral loads in HIV-2-infected people (p<0.0001). However, Gag211-290 was targeted with significantly higher magnitude in HIV-2-infected subjects (p=0.03) although this did not correlate with viral control. There was no difference in frequently targeted Gag peptides, the breadth, immunodominance or cross-recognition of Gag peptide pools between the two infections. This suggests that other factors may control viral replication in HIV-2 infection.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Gag-specific CD4+ T-cell frequency is inversely correlated with proviral load and directly correlated with immune activation in infection with human immunodeficiency virus type 2 (HIV-2) but not HIV-1. J Virol 2008; 82:9795-9. [PMID: 18653457 DOI: 10.1128/jvi.01217-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection, unlike HIV-1 infection, is normally characterized by low rates of CD4 depletion and low-to-undetectable viremia. We found that the frequency of Gag-specific CD4(+) T cells featured positive correlations with the expression of markers of CD4 activation and a negative correlation with peripheral blood mononuclear cell-associated proviral load in infection with HIV-2, in contrast with HIV-1. Moreover, HIV-2-infected individuals exhibited a greater ability to respond to HIV-1 Gag peptides (heterologous responses). Our data suggest a potential link between HIV-2-specific CD4 responses, immune activation, and viral control, which may in turn relate to the better prognosis associated with HIV-2 infection.
Collapse
|
14
|
HIV-2 amino acid substitutions in Gag and Env proteins occurring simultaneously with viral load upsurge in a drug-naïve patient. J Infect Chemother 2008; 14:151-5. [PMID: 18622680 DOI: 10.1007/s10156-007-0585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
It has been reported that the peptides of human immunodeficiency virus type 2 (HIV-2) most frequently recognized by cytotoxic T lymphocytes are firstly in Gag and secondly in Env proteins. In the present case study, we attempted to observe amino acid substitutions in Gag and Env proteins and related parameters possibly associated with an increase in HIV-2 load. A sudden, eightfold, increase in HIV-2 load occurred in a drug-naïve patient with human leukocyte antigen-B*5801 during the last phase of a longitudinal observation period from months 29 to 40. The genetic diversity of Gag and Env increased gradually prior to the HIV-2 load increase. The proportions of synonymous substitutions in both Gag and Env were greater than the proportions of nonsynonymous substitutions at every sampling point for 40 months, and the net charge of the V3-loop increased from months 29 to 40. Three amino acid substitutions (V2861 in Gag, K303T and N337 K/R in Env) were observed from months 29 to 40. Only one amino acid substitution (V286I) was observed with an increase in HIV-2 load in the Gag region where the clustering of epitopes was reported. These results suggest that the sites encompassing these three substituted positions are candidates for HIV-2 epitopes, although further careful examinations will be required.
Collapse
|
15
|
Leligdowicz A, Rowland-Jones S. Tenets of protection from progression to AIDS: lessons from the immune responses to HIV-2 infection. Expert Rev Vaccines 2008; 7:319-31. [PMID: 18393602 DOI: 10.1586/14760584.7.3.319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past 25 years, life survival curves of many countries have been remodeled owing to HIV infection. Both HIV-1 and HIV-2 can cause AIDS, yet patients infected with HIV-2 fare much better clinically and most will never experience detrimental effects of the infection. Despite over two decades of comprehensive research into vaccine development, a prophylactic vaccine is not yet realized. An essential missing link in the innovation of a successful vaccine strategy is the description of a favorable immune response that abolishes virus replication. Lessons learned from studying the role of the immune system in the long-term nonprogression characteristic of HIV-2 infection will offer insight into how a balanced immune response can protect from the destruction of the immune system associated with chronic HIV-1 infection.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Medical Research Council Laboratories, Fajara, Atlantic Road, PO Box 273, The Gambia, West Africa.
| | | |
Collapse
|
16
|
Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 2008; 38:350-63. [PMID: 18200635 DOI: 10.1002/eji.200737768] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
HIV-2 is distinguished clinically and immunologically from HIV-1 infection by delayed disease progression and maintenance of HIV-specific CD4(+) T cell help in most infected subjects. Thus, HIV-2 provides a unique natural human model in which to investigate correlates of immune protection against HIV disease progression. Here, we report a detailed assessment of the HIV-2-specific CD4(+) and CD8(+) T cell response compared to HIV-1, using polychromatic flow cytometry to assess the quality of the HIV-specific T cell response by measuring IFN-gamma, IL-2, TNF-alpha, MIP-1beta, and CD107a mobilization (degranulation) simultaneously following Gag peptide stimulation. We find that HIV-2-specific CD4(+) and CD8(+) T cells are more polyfunctional that those specific for HIV-1 and that polyfunctional HIV-2-specific T cells produce more IFN-gamma and TNF-alpha on a per-cell basis than monofunctional T cells. Polyfunctional HIV-2-specific CD4(+) T cells were generally more differentiated and expressed CD57, while there was no association between function and phenotype in the CD8(+) T cell fraction. Polyfunctional HIV-specific T cell responses are a hallmark of non-progressive HIV-2 infection and may be related to good clinical outcome in this setting.
Collapse
Affiliation(s)
- Melody G Duvall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Leligdowicz A, Yindom LM, Onyango C, Sarge-Njie R, Alabi A, Cotten M, Vincent T, da Costa C, Aaby P, Jaye A, Dong T, McMichael A, Whittle H, Rowland-Jones S. Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection. J Clin Invest 2007; 117:3067-74. [PMID: 17823657 PMCID: PMC1964515 DOI: 10.1172/jci32380] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 06/13/2007] [Indexed: 12/24/2022] Open
Abstract
HIV-2 infection in the majority of infected subjects follows an attenuated disease course that distinguishes it from infection with HIV-1. Antigen-specific T cells are pivotal in the management of chronic viral infections but are not sufficient to control viral replication in HIV-1-positive subjects, and their function in HIV-2 infection is not fully established. In a community-based cohort of HIV-2 long-term nonprogressors in rural Guinea-Bissau, we performed what we believe is the first comprehensive analysis of HIV-2-specific immune responses. We demonstrate that Gag is the most immunogenic protein. The magnitude of the IFN-gamma immune response to the HIV-2 proteome was inversely correlated with HIV-2 viremia, and this relationship was specifically due to the targeting of Gag. Furthermore, patients with undetectable viremia had greater Gag-specific responses compared with patients with high viral replication. The most frequently recognized peptides clustered within a defined region of Gag, and responses to a single peptide in this region were associated with low viral burden. The consistent relationship between Gag-specific immune responses and viremia control suggests that T cell responses are vital in determining the superior outcome of HIV-2 infection. A better understanding of how HIV-2 infection is controlled may identify correlates of effective protective immunity essential for the design of HIV vaccines.
Collapse
|
18
|
Cecil C, West A, Collier M, Jurgens C, Madden V, Whitmore A, Johnston R, Moore DT, Swanstrom R, Davis NL. Structure and immunogenicity of alternative forms of the simian immunodeficiency virus gag protein expressed using Venezuelan equine encephalitis virus replicon particles. Virology 2007; 362:362-73. [PMID: 17275057 PMCID: PMC1991297 DOI: 10.1016/j.virol.2006.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/08/2006] [Accepted: 12/21/2006] [Indexed: 11/15/2022]
Abstract
Venezuelan equine encephalitis virus replicon particles (VRP) were engineered to express different forms of SIV Gag to compare expression in vitro, formation of intra- and extracellular structures and induction of humoral and cellular immunity in mice. The three forms examined were full-length myristylated SIV Gag (Gagmyr+), full-length Gag lacking the myristylation signal (Gagmyr-) or a truncated form of Gagmyr- comprising only the matrix and capsid domains (MA/CA). Comparison of VRP-infected primary mouse embryo fibroblasts, mouse L929 cells and primate Vero cells showed comparable expression levels for each protein, as well as extracellular virus-like particles (VRP-Gagmyr+) and distinctive cytoplasmic aggregates (VRP-Gagmyr-) with each cell type. VRP were used to immunize BALB/c mice, and immune responses were compared using an interferon (IFN)-gamma ELISPOT assay and a serum antibody ELISA. Although all three VRP generated similar levels of IFN-gamma-producing cells at 1 week post-boost, at 10 weeks post-boost the MA/CA-VRP-induced response was maintained at a significantly higher level relative to that induced by Gagmyr+-VRP. Antibody responses to MA/CA-VRP and Gagmyr+-VRP were not significantly different.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Embryo, Mammalian/cytology
- Encephalitis Virus, Venezuelan Equine/genetics
- Enzyme-Linked Immunosorbent Assay
- Female
- Fibroblasts
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- Genetic Vectors/genetics
- H-2 Antigens/immunology
- Interferon-gamma/biosynthesis
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Microscopy, Electron, Transmission
- Models, Animal
- Pregnancy
- Replicon/genetics
- Simian Immunodeficiency Virus/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vero Cells
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Chad Cecil
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rowland-Jones S. Protective immunity against HIV infection: lessons from HIV-2 infection. Future Microbiol 2006; 1:427-33. [PMID: 17661633 DOI: 10.2217/17460913.1.4.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite two decades of intensive research, the correlates of protective immunity to HIV-1 infection remain elusive. Much less attention has been paid to the related human virus strain, HIV-2, which can cause AIDS, but does not usually do so in the majority of infected people. What can be learned from HIV-2 infection about how the human host can peacefully coexist with a pathogenic retrovirus?
Collapse
|
20
|
Duvall MG, Jaye A, Dong T, Brenchley JM, Alabi AS, Jeffries DJ, van der Sande M, Togun TO, McConkey SJ, Douek DC, McMichael AJ, Whittle HC, Koup RA, Rowland-Jones SL. Maintenance of HIV-specific CD4+ T cell help distinguishes HIV-2 from HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6973-81. [PMID: 16709858 DOI: 10.4049/jimmunol.176.11.6973] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-gamma or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-gamma+/IL-2+) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people.
Collapse
Affiliation(s)
- Melody G Duvall
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vieira G, Chies J. Immunodominant viral peptides as determinants of cross-reactivity in the immune system--Can we develop wide spectrum viral vaccines? Med Hypotheses 2005; 65:873-9. [PMID: 16051445 PMCID: PMC7131089 DOI: 10.1016/j.mehy.2005.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/16/2005] [Indexed: 11/16/2022]
Abstract
When we look back to Edward Jenner vaccination of a young man in 1796, we cannot help thinking that he was both lucky and crazy. Crazy because he decided to test in a human being a hypothesis based mainly in the traditional belief that people who had acquired cowpox from the udders of a cow were thereafter resistant to smallpox, a quite devastating disease, and lucky because (even considering that he did not know this at that time) he succeeded to induce protection against a pathogen through the induction of an immune response directed against a different agent. Not only was he able to protect the young man but he took the first step towards the development of a vast new field, vaccination. It is acceptable to say that Jenner was lucky because he succeeded in promoting protection against smallpox using a cowpox virus and this induction of protection in a cross-reactive way is believed to be quite rare. Nevertheless, more and more examples of cross-reactive immune responses are being described and we are beginning to admit that cross-reactivity is far more common and important than we used to think. Here we review cross-reactivity in the immune system and the plasticity of T cell recognition. Based on the existence of T cell receptor promiscuous recognition and cross-recognition of conserved viral immunodominant epitopes, we propose two approaches to develop wide spectrum viral vaccines. The first one is based on the identification, characterization, and cloning of immunodominant viral epitopes able to stimulate responses against different viruses. The produced peptides could then be purified and serve as a basis for vaccine therapies. A second strategy is based on the identification of conserved patterns in immunodominant viral peptides and the production of synthetic peptides containing the amino acid residues necessary for MHC anchoring and TCR contact. Although we are still far from a complete knowledge of the cross-reactivity phenomenon in the immune system, the analysis of immunodominant viral epitopes and the identification of particular “viral patterns” seems to be important steps towards the development of wide spectrum viral vaccines.
Collapse
Affiliation(s)
| | - J.A.B. Chies
- Corresponding author. Tel.: +55 51 33 16 67 40; fax: +55 51 33 16 73 11.
| |
Collapse
|
22
|
Hanson A, Sarr AD, Shea A, Jones N, Mboup S, Kanki P, Cao H. Distinct profile of T cell activation in HIV type 2 compared to HIV type 1 infection: differential mechanism for immunoprotection. AIDS Res Hum Retroviruses 2005; 21:791-8. [PMID: 16218803 DOI: 10.1089/aid.2005.21.791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanism for the lower rate of disease progression in HIV-2 infection remains undefined. We evaluated T cell activation in a cohort of HIV-infected commercial sex workers in Dakar, Senegal. CD8+ T cell activation was significantly lower in HIV-2- compared to HIV-1-infected volunteers and both groups displayed higher activation levels compared to seronegative individuals. In contrast, CD4+ T cell activation was similar between the HIV-1 and HIV-2 groups and significantly higher compared to the seronegative group. Interestingly, HIV-2-positive volunteers with evidence of Gag-specific CD8+ T cell responses displayed lower CD4+ T cell activation. Our data suggest that the distinct T cell activation profile in HIV-2-positive individuals may reflect on the presence of effective host immune responses in HIV-2 infection.
Collapse
Affiliation(s)
- Andrea Hanson
- California Department of Health Services, Richmond, California 94804, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Gillespie GMA, Pinheiro S, Sayeid-Al-Jamee M, Alabi A, Kaye S, Sabally S, Sarge-Njie R, Njai H, Joof K, Jaye A, Whittle H, Rowland-Jones S, Dorrell L. CD8+ T cell responses to human immunodeficiency viruses type 2 (HIV-2) and type 1 (HIV-1) gag proteins are distinguishable by magnitude and breadth but not cellular phenotype. Eur J Immunol 2005; 35:1445-53. [PMID: 15832290 DOI: 10.1002/eji.200526007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying the relatively slow progression of human immunodeficiency virus type 2 (HIV-2) compared with HIV-1 infection are undefined and could be a result of more effective immune responses. We used HIV-2 and HIV-1 IFN-gamma enzyme-linked immunospot assays to evaluate CD8(+) T cell responses in antiretroviral-naive HIV-2- ('HIV-2(+)') and HIV-1-infected ('HIV-1(+)') individuals. Gag-specific responses were detected in the majority of HIV-2(+) and HIV-1(+) subjects. Overlapping gag peptide analysis indicated a significantly greater magnitude and breadth of responses in the HIV-1(+) cohort, and this difference was attributable to low responses in HIV-2(+) subjects with undetectable viral load (medians 2107 and 512 spot-forming units per 10(6) PBMC, respectively, p=0.007). We investigated the phenotype of viral epitope-specific CD8(+) T cells identified with HLA-B53- and HLA-B58-peptide tetramers (8 HIV-2(+), 11 HIV-1(+) subjects). HIV-2-specific CD8(+) T cells were predominantly CD27(+) CD45RA(-), and only a minority expressed perforin. The limited breadth and low frequency of CD8(+) T cell responses to HIV-2 gag in aviremic HIV-2(+) subjects suggests that these responses reflect antigen load in plasma, as is the case in HIV-1 infection. Immune control of HIV-2 does not appear to be related to the frequency of perforin-expressing virus-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Geraldine M A Gillespie
- MRC Human Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Association of HLA and diseases is well known. Several population studies are available suggesting evidence of association of HLAs in more than 40 diseases. HLA found across various populations vary widely. Some of the reasons attributed for such variation are occurrence of social stratification based on geography, language and religion, consequences of founder effect, racial admixture or selection pressure due to environmental factors. Hence certain HLA alleles that are predominantly associated with disease susceptibility or resistance in one population may or may not show any association in other populations for the same disease. Despite of these limitations, HLA associations are widely studied across the populations worldwide and are found to be important in prediction of disease susceptibility, resistance and of evolutionary maintenance of genetic diversity. This review consolidates the HLA data on some prominent autoimmune and infectious diseases among various ethnic groups and attempts to pinpoint differences in Indian and other population.
Collapse
Affiliation(s)
- Yogita Ghodke
- Bioprospecting Laboratory, Interdisciplinary School of Health Sciences, University of Pune, Pune, India
| | | | | | | |
Collapse
|
25
|
Andersson S, Larsen O, Da Silva Z, Linder H, Norrgren H, Dias F, Thorstensson R, Aaby P, Biberfeld G. Human immunodeficiency virus (HIV)-2-specific T lymphocyte proliferative responses in HIV-2-infected and in HIV-2-exposed but uninfected individuals in Guinea-Bissau. Clin Exp Immunol 2005; 139:483-9. [PMID: 15730394 PMCID: PMC1809326 DOI: 10.1111/j.1365-2249.2005.02723.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV)-2-specific T lymphocyte proliferative responses were determined in cultures of peripheral blood mononuclear cells from HIV-2-exposed uninfected individuals, HIV-2-infected individuals and HIV-negative controls in Guinea-Bissau. Increased HIV-2-specific T lymphocyte proliferative responses were detected in both groups compared to HIV-negative controls (healthy HIV-uninfected individuals without known exposure to an HIV-infected person); five out of 29 of the HIV-2-exposed uninfected and half (16 of 32) of the HIV-2-infected individuals had stimulation indexes >2, compared to one out of 49 of the HIV-negative controls (P = 0.003 and P < 0.0001, respectively). The exposed uninfected individuals had reactivity to a HIV-2 V3-peptide corresponding to amino acids 311-326 of the envelope glycoprotein, while the HIV-2-infected people reacted mainly to HIV-2 whole viral lysate. Thus, this study demonstrates a high degree of HIV-2-specific T helper cell activity, as measured by lymphocyte proliferation, in HIV-2-exposed uninfected individuals as well as in HIV-2-infected subjects. These immune responses could be important for resistance to the infection and for the control of established infection and, thus, play a role in the lower transmission and progression of HIV-2 compared to HIV-1.
Collapse
Affiliation(s)
- S Andersson
- Swedish Institute for Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zheng NN, Kiviat NB, Sow PS, Hawes SE, Wilson A, Diallo-Agne H, Critchlow CW, Gottlieb GS, Musey L, McElrath MJ. Comparison of human immunodeficiency virus (HIV)-specific T-cell responses in HIV-1- and HIV-2-infected individuals in Senegal. J Virol 2004; 78:13934-42. [PMID: 15564501 PMCID: PMC533895 DOI: 10.1128/jvi.78.24.13934-13942.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log(10) spot-forming cells/10(6) peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (>/=64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4(+) T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4(+) T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.
Collapse
Affiliation(s)
- N N Zheng
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Newsome TP, Scaplehorn N, Way M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 2004; 306:124-9. [PMID: 15297625 DOI: 10.1126/science.1101509] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cascade of events that leads to vaccinia-induced actin polymerization requires Src-dependent tyrosine phosphorylation of the viral membrane protein A36R. We found that a localized outside-in signaling cascade induced by the viral membrane protein B5R is required to potently activate Src and induce A36R phosphorylation at the plasma membrane. In addition, Src-mediated phosphorylation of A36R regulated the ability of virus particles to recruit and release conventional kinesin. Thus, Src activity regulates the transition between cytoplasmic microtubule transport and actin-based motility at the plasma membrane.
Collapse
Affiliation(s)
- Timothy P Newsome
- Cell Motility Laboratory, Room 529, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
28
|
Shea A, Sarr DA, Jones N, Penning L, Eisen G, Gueye-Ndiaye A, Mboup S, Kanki P, Cao H. CCR5 receptor expression is down-regulated in HIV type 2 infection: implication for viral control and protection. AIDS Res Hum Retroviruses 2004; 20:630-5. [PMID: 15242539 DOI: 10.1089/0889222041217383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-2 is known to display an attenuated phenotype in vivo with prolonged time to disease and decreased rate of transmission. Observational studies in Senegal have demonstrated protection from HIV-1 infection, although the putative mechanism for immunoprotection remains undefined. We evaluated HIV-2-seropositive women from a cohort of commercial sex workers in Dakar, Senegal and identified individuals with very low surface CCR5 receptor expression on CD4+ T cells. In vitro up-regulation of the CCR5 receptor was readily achieved. Down-regulation of the CCR5 was not correlated with activation markers (HLA-DR), beta-chemokine levels, or plasma viral loads. A correlation was observed with HIV-2-specific CD8+ T cell activity as measured by intracellular cytokine production. We postulate that down-regulation of the CCR5 receptor in HIV-2 infection contributes to slower disease course and to the protective mechanism against HIV-1 superinfection, mediated in part by HIV-2-specific cellular immune responses.
Collapse
Affiliation(s)
- A Shea
- California Department of Health Services, Richmond, 94804, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Masemola A, Mashishi T, Khoury G, Mohube P, Mokgotho P, Vardas E, Colvin M, Zijenah L, Katzenstein D, Musonda R, Allen S, Kumwenda N, Taha T, Gray G, McIntyre J, Karim SA, Sheppard HW, Gray CM. Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J Virol 2004; 78:3233-43. [PMID: 15016844 PMCID: PMC371059 DOI: 10.1128/jvi.78.7.3233-3243.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An understanding of the relationship between the breadth and magnitude of T-cell epitope responses and viral loads is important for the design of effective vaccines. For this study, we screened a cohort of 46 subtype C human immunodeficiency virus type 1 (HIV-1)-infected individuals for T-cell responses against a panel of peptides corresponding to the complete subtype C genome. We used a gamma interferon ELISPOT assay to explore the hypothesis that patterns of T-cell responses across the expressed HIV-1 genome correlate with viral control. The estimated median time from seroconversion to response for the cohort was 13 months, and the order of cumulative T-cell responses against HIV proteins was as follows: Nef > Gag > Pol > Env > Vif > Rev > Vpr > Tat > Vpu. Nef was the most intensely targeted protein, with 97.5% of the epitopes being clustered within 119 amino acids, constituting almost one-third of the responses across the expressed genome. The second most targeted region was p24, comprising 17% of the responses. There was no correlation between viral load and the breadth of responses, but there was a weak positive correlation (r = 0.297; P = 0.034) between viral load and the total magnitude of responses, implying that the magnitude of T-cell recognition did not contribute to viral control. When hierarchical patterns of recognition were correlated with the viral load, preferential targeting of Gag was significantly (r = 0.445; P = 0.0025) associated with viral control. These data suggest that preferential targeting of Gag epitopes, rather than the breadth or magnitude of the response across the genome, may be an important marker of immune efficacy. These data have significance for the design of vaccines and for interpretation of vaccine-induced responses.
Collapse
Affiliation(s)
- Agatha Masemola
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Marques ETA, Chikhlikar P, de Arruda LB, Leao IC, Lu Y, Wong J, Chen JS, Byrne B, August JT. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J Biol Chem 2003; 278:37926-36. [PMID: 12824194 DOI: 10.1074/jbc.m303336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several genetic vaccines encoding antigen chimeras containing the lysosome-associated membrane protein (LAMP) translocon, transmembrane, and cytoplasmic domain sequences have elicited strong mouse antigen-specific immune responses. The increased immune response is attributed to trafficking of the antigen chimera to the major histocompatibility class II (MHC II) compartment where LAMP is colocalized with MHC II. In this report, we describe a new form of an HIV-1 p55gag DNA vaccine, with the gag sequence incorporated into the complete LAMP cDNA sequence. Gag encoded with the translocon, transmembrane and cytoplasmic lysosomal membrane targeting sequences of LAMP, without the luminal domain, was poorly expressed, did not traffic to lysosomes or MHC II compartments of transfected cells, and elicited a limited immune response from DNA immunized mice. In contrast, addition of the LAMP luminal domain sequence to the construct resulted in a high level of expression of the LAMP/Gag protein chimera in transfected cells that was further increased by including the inverted terminal repeat sequences of the adeno-associated virus to the plasmid vector. This LAMP/Gag chimera with the complete LAMP protein colocalized with endogenous MHC II of transfected cells and elicited strong cellular and humoral immune responses of immunized mice as compared with the response to DNA-encoding native Gag, with a 10-fold increase in CD4+ responses, a 4- to 5-fold increase in CD8+ T-cell responses, and antibody titers of >100,000. These results reveal novel roles of the LAMP luminal domain as a determinant of Gag protein expression, lysosomal trafficking, and possibly of the immune response to Gag.
Collapse
Affiliation(s)
- Ernesto T A Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alabi AS, Jaffar S, Ariyoshi K, Blanchard T, Schim van der Loeff M, Awasana AA, Corrah T, Sabally S, Sarge-Njie R, Cham-Jallow F, Jaye A, Berry N, Whittle H. Plasma viral load, CD4 cell percentage, HLA and survival of HIV-1, HIV-2, and dually infected Gambian patients. AIDS 2003; 17:1513-20. [PMID: 12824789 DOI: 10.1097/00002030-200307040-00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine baseline plasma viral loads according to the CD4 cell percentage (CD4%) in HIV-1, HIV-2 and dually infected patients (HIV-D), and to relate these measurements to survival. PATIENTS AND METHODS A total of 119 HIV-1, 137 HIV-2 and 81 HIV-D-infected patients attending the Medical Research Council clinic in The Gambia were recruited from 1991 according to baseline CD4%, and followed until death or the end of December 2000. HIV-1 and HIV-2 RNA levels were measured by in-house reverse transcriptase polymerase chain reaction assays. RESULTS The plasma viral load, which varied inversely with CD4%, was similar in HIV-1 singly and dually infected patients, but was significantly higher in HIV-1 than in HIV-2 singly infected patients, except in those with a CD4% less than 14%. HIV-2 plasma viral load in dually infected patients did not vary significantly with CD4%, but was significantly lower than in HIV-2 singly infected patients with CD4% less than 14%. Multivariate analysis showed that only CD4% was independently associated with survival in HIV-1 and HIV-D infections; whereas both CD4% and plasma viral load were independently associated with survival in HIV-2 infections. The mortality rate of HIV-D-infected patients was not significantly different from that of HIV-1-infected patients, but was significantly higher in the absence of HLA B58. CONCLUSION HIV-2 infection does not alter HIV-1 replication or prolong survival in dually infected patients. In a clinical setting in Africa, where many patients present with advanced disease, CD4% may be a more important predictor of prognosis than plasma viral load.
Collapse
Affiliation(s)
- Abraham S Alabi
- Medical Research Council Laboratories, Banjul, The Gambia, West Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lopes AR, Jaye A, Dorrell L, Sabally S, Alabi A, Jones NA, Flower DR, De Groot A, Newton P, Lascar RM, Williams I, Whittle H, Bertoletti A, Borrow P, Maini MK. Greater CD8+ TCR heterogeneity and functional flexibility in HIV-2 compared to HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:307-16. [PMID: 12817012 DOI: 10.4049/jimmunol.171.1.307] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus-specific CD8(+) T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8(+) T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8(+) T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8(+) T cells was associated with an enhanced potential for CD8 expansion and IFN-gamma production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8(+) T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8(+) T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/immunology
- Antigen Presentation
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Division/immunology
- Cell Line
- Clone Cells
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Gene Rearrangement, T-Lymphocyte/physiology
- HIV Infections/immunology
- HIV Infections/pathology
- HIV Infections/virology
- HIV-1/immunology
- HIV-1/metabolism
- HIV-2/immunology
- HIV-2/metabolism
- HLA-A2 Antigen/immunology
- Humans
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
Collapse
Affiliation(s)
- A Ross Lopes
- Institute of Hepatology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Elizaga ML, McElrath MJ. Progress in the development of a preventive HIV-1 vaccine. Clin Lab Med 2002; 22:963-80, vii. [PMID: 12489290 DOI: 10.1016/s0272-2712(02)00020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Control of human immunodeficiency virus type-1 (HIV-1) infection is the foremost public health challenge at the turn of the millennium. Two decades, 22 million fatalities, and 40 million living victims after its discovery, HIV-1 continues its inexorable spread. Over the past few years, scientists have made tremendous progress in understanding the immunopathogenesis of HIV-1 infection and identifying potential targets for intervention with vaccines. Future progress will require a coordinated and proactive response to foster understanding of the benefits of vaccines and to encourage a receptive atmosphere for community vaccine testing and implementation.
Collapse
Affiliation(s)
- Marnie L Elizaga
- Seattle HIV-1 Vaccines Trial Unit, 901 Boren Ave, Suite 1320, Seattle, WA 98104, USA
| | | |
Collapse
|
35
|
Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RMM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3400-6. [PMID: 12218162 DOI: 10.4049/jimmunol.169.6.3400] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The causal relationships among CD4 cell depletion, HIV replication, and immune activation are not well understood. HIV-2 infection, "nature's experiment" with inherently attenuated HIV disease, provides additional insights into this issue. We report the finding that in HIV-2 and HIV-1 patients with a comparable degree of CD4 depletion the imbalance in the relative sizes of the naive and memory T cell populations and the up-regulation of CD4 and CD8 cell activation markers (HLA-DR, CD38, CD69, Fas molecules) are similar, even though the viral load in the plasma of HIV-2-infected patients is two orders of magnitude lower than in HIV-1 patients and HIV-2 patients are known to have slower rates of CD4 T cell decline and a better clinical prognosis. Moreover, we found a similar increase in the frequency of cycling CD4 T cells (Ki67+), which was in strong correlation with the expression of activation markers. Finally, the level of T cell anergy, as assessed by the proliferative responses to CD3 stimulation and to a panel of microbial Ags, proved to be comparable in HIV-1 and HIV-2 patients with a similar degree of CD4 depletion despite large differences in viral load. Our data are consistent with a direct causal relationship between immune activation and CD4 cell depletion in HIV disease and an only indirect relation of these parameters to the virus replication rate. Invoking the concept of proximal immune activation and virus transmission, which links efficient transmission of virus to local cell activation and proliferation in response to Ags and inflammation, we propose an integrative interpretation of the data and suggest that strongly elevated immune activation induces CD4 cell depletion and not vice versa, with potential implications for the choice of treatment strategies.
Collapse
Affiliation(s)
- Ana E Sousa
- Clinical Immunology Unit/Institute of Molecular Medicine, Faculty of Medicine of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jacqueline D Reeves
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| | - Robert W Doms
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| |
Collapse
|
37
|
Affiliation(s)
- P J Bock
- Department of Internal Medicine, Division of Infectious Diseases, Graduate Program in Cellular and Molecular Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
38
|
Rietdorf J, Ploubidou A, Reckmann I, Holmström A, Frischknecht F, Zettl M, Zimmermann T, Way M. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 2001; 3:992-1000. [PMID: 11715020 DOI: 10.1038/ncb1101-992] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccinia virus, a close relative of the causative agent of smallpox, exploits actin polymerization to enhance its cell-to-cell spread. We show that actin-based motility of vaccinia is initiated only at the plasma membrane and remains associated with it. There must therefore be another form of cytoplasmic viral transport, from the cell centre, where the virus replicates, to the periphery. Video analysis reveals that GFP-labelled intracellular enveloped virus particles (IEVs) move from their perinuclear site of assembly to the plasma membrane on microtubules. We show that the viral membrane protein A36R, which is essential for actin-based motility of vaccinia, is also involved in microtubule-mediated movement of IEVs. We further show that conventional kinesin is recruited to IEVs via the light chain TPR repeats and is required for microtubule-based motility of the virus. Vaccinia thus sequentially exploits the microtubule and actin cytoskeletons to enhance its cell-to-cell spread.
Collapse
Affiliation(s)
- J Rietdorf
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sarr AD, Lu Y, Sankalé JL, Eisen G, Popper S, Mboup S, Kanki PJ, Cao H. Robust HIV type 2 cellular immune response measured by a modified anthrax toxin-based enzyme-linked immunospot assay. AIDS Res Hum Retroviruses 2001; 17:1257-64. [PMID: 11559425 DOI: 10.1089/088922201750461311] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evaluation of immune mechanisms responsible for control of viral replication is critical to understanding HIV-2 attenuated biological characteristics in pathogenesis and transmission. Evaluation of the cellular immune response is often based on labor-intensive techniques that limit the scope of most studies performed. A simple and rapid anthrax toxin-based ELISPOT method to assess HIV-2 cellular immune response was developed. The modified anthrax toxin-based antigen presentation process performed better than a recombinant vaccinia system and the ELISPOT method significantly enhanced the ease and simplicity of the assay. Using this method, a robust HIV-2 cellular immune response directed toward the p26 core protein was exhibited in 21 of 24 (87.5%) infected women, and all 8 seronegative subjects were negative in both assays. Cellular immune responses were associated with low HIV-2 viral load. This simple and rapid modified anthrax toxin-based ELISPOT method allowed us to demonstrate, strong cellular immune responses that may be critical determinants in the HIV-2 attenuated phenotype.
Collapse
Affiliation(s)
- A D Sarr
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Trivedi HN, Plummer FA, Anzala AO, Njagi E, Bwayo JJ, Ngugi EN, Embree JE, Hayglass KT. Resistance to HIV-1 infection among African sex workers is associated with global hyporesponsiveness in interleukin 4 production. FASEB J 2001; 15:1795-7. [PMID: 11481233 DOI: 10.1096/fj.00-0619fje] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- H N Trivedi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada R3E 0W3
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Patterson LJ, Peng B, Abimiku AG, Aldrich K, Murty L, Markham PD, Kalyanaraman VS, Alvord WG, Tartaglia J, Franchini G, Robert-Guroff M. Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. AIDS 2000; 14:2445-55. [PMID: 11101054 DOI: 10.1097/00002030-200011100-00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Immunization with attenuated poxvirus-HIV-1 recombinants followed by protein boosting had protected four of eight rhesus macaques from HIV-2SBL6669 challenge. The present study was designed to confirm this result and to conduct the reciprocal cross-protection experiment. METHODS Twenty-four macaques were primed with NYVAC (a genetically attenuated Copenhagen vaccinia strain) recombinants with HIV-1 and HIV-2 env and gag-pol or NYVAC vector alone and boosted with homologous, oligomeric gp160 proteins or adjuvant only. Binding and neutralizing antibodies, cytotoxic T-lymphocytes (CTL) and CD8 T cell antiviral activity (CD8AA) were evaluated. One half of each immunization and control group were intravenously challenged with SHIV(HXB2) the other half was challenged with HIV-2SBL6669,. Protective outcome was assessed by monitoring virus isolation, proviral DNA and plasma viral RNA. RESULTS Both immunization groups developed homologous binding antibodies; however, homologous neutralizing antibodies were only observed in NYVAC-HIV-2-immunized macaques. While no cross-reactive neutralizing antibodies were detected, both immunization groups displayed cross-reactive CTL. Significant CD8AA was observed for only one NYVAC-HIV-2-immunized macaque. Virological assessments verified that both NYVAC-HIV-1 and NYVAC-HIV-2 immunization significantly reduced viral burdens and partially protected against HIV-2 challenge, although cross-protection was not at the level that had been previously reported. Humoral antibody and/or CTL and CD8AA were associated with protection against homologous HIV-2 challenge, while cellular immune responses seemed more important for cross-protection. No significant protection was observed in the SHIV-challenged macaques, although NYVAC-HIV-1 immunization resulted in significantly lower viral burdens compared with controls. CONCLUSIONS Further delineation of cross-reactive mechanisms may aid in the development of a broadly protective vaccine.
Collapse
Affiliation(s)
- L J Patterson
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nkengasong JN, Kestens L, Ghys PD, Koblavi-Dème S, Otten RA, Bilé C, Maurice C, Kalou M, Laga M, Wiktor SZ, Greenberg AE. Dual infection with human immunodeficiency virus type 1 and type 2: impact on HIV type 1 viral load and immune activation markers in HIV-seropositive female sex workers in Abidjan, Ivory Coast. AIDS Res Hum Retroviruses 2000; 16:1371-8. [PMID: 11018856 DOI: 10.1089/08892220050140919] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine the impact of dual infection with HIV-1 and HIV-2 on HIV-1 viral load and markers of immune activation among HIV-seropositive FSWs in Abidjan, we analyzed blood samples obtained from consenting HIV-seropositive FSWs attending a confidential clinic between September 1996 and June 1997 in Abidjan. Among HIV-1 and HIV-2 dually seropositive FSWs, polymerase chain reaction (PCR) testing with HIV-1 and HIV-2 primers was used to differentiate between FSWs who were PCR positive only for HIV-1 and those positive for both HIV-1 and HIV-2 (dually infected). Of the 203 FSWs, 151 (74%) were HIV-1 seropositive only (median age, 26 years), 4 (2%) were HIV-2 seropositive, and 48 (24%) were dually seropositive (median age, 30 years). Of the 48 dually seropositive FSWs, 33 (69%) were dually infected and 15 (31%) were dually seropositive. Median CD4+ T cell counts per microliter were not significantly different among the three groups (525 for HIV-1 positive only, 502 for dually infected, and 416 for dually seropositive) (p = 0.14). Median viral load (log10 copies/ml) was not significantly different among the HIV-1-only FSWs (4.8 log10 copies/ml) compared with the 32 dually infected FSWs (4.6 log10 copies/ml) and 14 dually seropositive FSWs (4.7 log10 copies/ml; p = 0.95). Median levels of HLA-DR immune activation were increased in both CD4+ and CD8+ T cells for the dually infected (n = 27) FSWs compared with those infected with HIV-1 only (n = 123) (p = 0.019 and p = 0.01, respectively). Dual infection does not appear to influence levels of HIV-1 viral load in vivo. However, levels of HLA-DR are higher among FSWs dually infected with HIV-1 and HIV-2 than among those infected with HIV-1 only.
Collapse
Affiliation(s)
- J N Nkengasong
- Laboratory of Virology, Project RETRO-CI, Abidjan, Ivory Coast.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kokkotou EG, Sankale JL, Mani I, Gueye-Ndiaye A, Schwartz D, Essex ME, Mboup S, Kanki PJ. In vitro correlates of HIV-2-mediated HIV-1 protection. Proc Natl Acad Sci U S A 2000; 97:6797-802. [PMID: 10841574 PMCID: PMC18743 DOI: 10.1073/pnas.97.12.6797] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Indexed: 01/29/2023] Open
Abstract
A prospective study of high-risk commercial sex workers in Senegal has shown that HIV-2 infection may reduce the risk of subsequent HIV-1 infection; these findings have been confirmed and extended, now with 13 years of observation. While exploring the biological mechanisms behind this natural protection, we found that a significant proportion of peripheral blood mononuclear cells obtained from HIV-2-infected subjects resisted in vitro challenge with CCR5-dependent HIV-1 viruses but not CXCR4-dependent viruses. High levels of beta-chemokines, the natural ligands of the CCR5 coreceptor, were correlated with low levels of viral replication, and resistance was abrogated by antibodies to beta-chemokines. Our results suggest that beta-chemokine-mediated resistance may be an important correlate of HIV protection against HIV-1 infection and relevant to HIV vaccine design.
Collapse
Affiliation(s)
- E G Kokkotou
- Harvard AIDS Institute, Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Esteves A, Parreira R, Piedade J, Venenno T, Canas-Ferreira WF. Genetic characterization of HIV type 1 and type 2 from Bissau, Guinea-Bissau (West Africa). Virus Res 2000; 68:51-61. [PMID: 10930662 DOI: 10.1016/s0168-1702(00)00151-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies from Guinea-Bissau (West Africa) have demonstrated a unique epidemiology with respect to both HIV-1 and HIV-2 infection. In order to evaluate the prevalence and dynamics of HIV-1 and HIV-2 subtypes in Bissau, the capital city of Guinea-Bissau, a cross-sectional study was set up using serological and molecular techniques. Plasma samples from 103 individuals were screened for HIV-1 and HIV-2 antibodies by ELISA and Western-blot. Seropositive results were confirmed by PCR amplification of proviral sequences in primary peripheral blood mononuclear cells (PBMC) with env and LTR primer sets for HIV-2 and env, LTR and pol primers for HIV-1. A total of 38/103 individuals were HIV-seroreactive (four HIV-1, 15 HIV-2, 19 HIV-1/HIV-2). A total of eight out of 19 dually seropositive specimens showed double PCR amplification of HIV-1 and HIV-2 proviral sequences, accounting for 21% of the infected individuals. In the remaining 11 individuals either HIV-2 or HIV-1 sequences were detected, the majority (n=9) amplifying only HIV-2. These screening data demonstrate a high discrepancy between serology and PCR results for dually seroreactive samples, Western-blot giving an overestimation of double infection. Additionally, HIV-1 strains were subtyped by heteroduplex mobility assay (HMA) on the basis of gp120 sequences. Subtyping of HIV-2 was carried out by DNA sequencing and phylogenetic analysis of env V3 molecular clones. For both HIV-1 and HIV-2 strains circulating in Bissau, our results indicate dominance of subtype A.
Collapse
Affiliation(s)
- A Esteves
- Unidade de Virologia/UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, P-1349-008, Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
45
|
Del Porto P, Puntoriero G, Scottà C, Nicosia A, Piccolella E. High prevalence of hypervariable region 1-specific and -cross-reactive CD4(+) T cells in HCV-infected individuals responsive to IFN-alpha treatment. Virology 2000; 269:313-24. [PMID: 10753710 DOI: 10.1006/viro.2000.0238] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hypervariable region 1 (HVR1) of the putative envelope 2 protein of the hepatitis C virus (HCV) is the most variable part of the whole HCV polyprotein. Anti-HVR1 antibodies have been shown to protect against HCV infection, indicating that this region contains an important neutralization determinant. Recently we and others have demonstrated that HVR1 is also a T cell determinant able to activate helper T cell responses during HCV infection. In order to investigate the role of the immune response against HVR1 during HCV infection we have evaluated the humoral and lymphoproliferative responses to a panel of HVR1 peptides in HCV-infected patients with different outcomes of the disease following interferon-alpha (IFN-alpha) treatment. We observed that the frequency of anti-HVR1 T cell responses was significantly higher in patients who recovered after IFN-alpha therapy than in those who did not, while no differences in the anti-HVR1 antibody reactivities were detected. In addition, by generating HVR1-specific T cell lines and clones we identified human leukocyte-associated antigens DR4 restricted T cell epitopes in the carboxy-terminus of HVR1 and we demonstrated that broadly cross-reactive HVR1 T cells are elicited by HVR1.
Collapse
Affiliation(s)
- P Del Porto
- Department of Cellular and Developmental Biology, University of Rome, "La Sapienza,", Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
zur Megede J, Chen MC, Doe B, Schaefer M, Greer CE, Selby M, Otten GR, Barnett SW. Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J Virol 2000; 74:2628-35. [PMID: 10684277 PMCID: PMC111751 DOI: 10.1128/jvi.74.6.2628-2635.2000] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for the next generation of human immunodeficiency virus (HIV) vaccines is the induction of potent, broad, and durable cellular immune responses. The structural protein Gag is highly conserved among the HIV type 1 (HIV-1) gene products and is believed to be an important target for the host cell-mediated immune control of the virus during natural infection. Expression of Gag proteins for vaccines has been hampered by the fact that its expression is dependent on the HIV Rev protein and the Rev-responsive element, the latter located on the env transcript. Moreover, the HIV genome employs suboptimal codon usage, which further contributes to the low expression efficiency of viral proteins. In order to achieve high-level Rev-independent expression of the Gag protein, the sequences encoding HIV-1(SF2) p55(Gag) were modified extensively. First, the viral codons were changed to conform to the codon usage of highly expressed human genes, and second, the residual inhibitory sequences were removed. The resulting modified gag gene showed increases in p55(Gag) protein expression to levels that ranged from 322- to 966-fold greater than that for the native gene after transient expression of 293 cells. Additional constructs that contained the modified gag in combination with modified protease coding sequences were made, and these showed high-level Rev-independent expression of p55(Gag) and its cleavage products. Density gradient analysis and electron microscopy further demonstrated that the modified gag and gag protease genes efficiently expressed particles with the density and morphology expected for HIV virus-like particles. Mice immunized with DNA plasmids containing the modified gag showed Gag-specific antibody and CD8(+) cytotoxic T-lymphocyte (CTL) responses that were inducible at doses of input DNA 100-fold lower than those associated with plasmids containing the native gag gene. Most importantly, four of four rhesus monkeys that received two or three immunizations with modified gag plasmid DNA demonstrated substantial Gag-specific CTL responses. These results highlight the useful application of modified gag expression cassettes for increasing the potency of DNA and other gene delivery vaccine approaches against HIV.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- COS Cells
- Cell Line, Transformed
- DNA, Viral/immunology
- Female
- Gene Expression
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV Antibodies/blood
- HIV Antibodies/immunology
- HIV Protease/genetics
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Virion
Collapse
Affiliation(s)
- J zur Megede
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sarr AD, Sankalé JL, Guèye-Ndiaye A, Essex M, Mboup S, Kanki PJ. Genetic analysis of HIV type 2 in monotypic and dual HIV infections. AIDS Res Hum Retroviruses 2000; 16:295-8. [PMID: 10710218 DOI: 10.1089/088922200309395] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A significant level of genetic variation among HIV-1 and HIV-2 has been described. The interaction of specific HIV-2 subtypes with HIV-1 may serve to identify potential biological properties associated with dual infection. To genetically characterize the HIV-2 strains circulating in Senegal and their relationship to coinfection with HIV-1, we sequenced the HIV-2 envelope C2-C3 region of 12 subjects coinfected with HIV-1 and HIV-2 and 9 subjects singly infected with HIV-2. The phylogenetic analysis showed that all subjects were infected with HIV-2 subtype A, confirming its predominance in West Africa. We did not observe specific sequences or genetic clustering based on coinfection status.
Collapse
Affiliation(s)
- A D Sarr
- Department of Immunology and Infectious Diseases and the Harvard AIDS Institute, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S Wain-Hobson
- Unité de Rétrovirologie Moléculaire, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris, France.
| | | |
Collapse
|
49
|
Brander C, Walker BD. T lymphocyte responses in HIV-1 infection: implications for vaccine development. Curr Opin Immunol 1999; 11:451-9. [PMID: 10448136 DOI: 10.1016/s0952-7915(99)80076-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Substantial progress has been made over the past year in understanding the cellular immune response in HIV pathogenesis. Cytotoxic T lymphocytes play a critical role in establishing the level of viremia and virus-specific Th cell responses appear to affect the in vivo efficacy of cytotoxic T lymphocytes. Together, these new data provide important insights to refocus efforts aimed at immunotherapeutic interventions and vaccine development.
Collapse
Affiliation(s)
- C Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, MGH-East, 5th floor, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
50
|
Jubier-Maurin V, Saragosti S, Perret JL, Mpoudi E, Esu-Williams E, Mulanga C, Liegeois F, Ekwalanga M, Delaporte E, Peeters M. Genetic characterization of the nef gene from human immunodeficiency virus type 1 group M strains representing genetic subtypes A, B, C, E, F, G, and H. AIDS Res Hum Retroviruses 1999; 15:23-32. [PMID: 10024049 DOI: 10.1089/088922299311673] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most efforts to characterize sequence variation of HIV isolates has been directed toward the structural envelope gene. Few studies have evaluated the sequence variability of auxiliary genes such as nef. In this study 41 new HIV-1 strains, representing the majority of the described envelope subtypes of HIV-1 (A to H), were genetically characterized in the nef region. Phylogenetic analysis showed that 34 strains could be classified in the same subtype in nef and env, and 7 (19%) of the 41 new viruses were recombinants. For two of the seven strains, recombination occurred upstream of the nef gene, whereas for five of the seven strains recombination occurred within the nef gene with a crossover close to the 5' end of the LTR (long terminal repeat). The low intersubtype distance between subtype B and D in the nef gene confirms previous observations in the pol, env, and gag genes, which suggest a common ancestor for these subtypes. The majority of all the previously described functional domains in the nef gene were relatively conserved among the different subtypes, with only minor differences being observed. The myristoylation signal among the different subtypes, with only minor differences being observed. The myristoylation signal was less conserved for subtype C, with one or more amino acid changes being observed at positions 3, 4, and 5. The highly conserved acidic region (positions 62 to 65), critical for the enhancement of viral synthesis with an increased virus growth rate, was less conserved among the subtype G strains from our study. At least three epitopic regions of the nef gene have been defined and each can be recognized by CTLs under a variety of HLA restrictions; all were also relatively well conserved between the different genetic subtypes. Despite the relatively important genetic variation in nef sequences obtained among the different genetic subtypes, functional domains and CTL epitopes were relatively well conserved. In vitro and/or in vivo studies are necessary to study the relevance of the observed differences.
Collapse
|