1
|
Mohan Kumar R, Anantapur R, Peter A, H V C. Computational investigation of phytoalexins as potential antiviral RAP-1 and RAP-2 (Replication Associated Proteins) inhibitor for the management of cucumber mosaic virus (CMV): a molecular modeling, in silico docking and MM-GBSA study. J Biomol Struct Dyn 2022; 40:12165-12183. [PMID: 34463218 DOI: 10.1080/07391102.2021.1968500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Replication Associated Proteins (RAP-1 and RAP-2) encoded by CMV ORF 1a and ORF 2a are required for the different stages of the viral replication cycle; being multi-functional, they are good inhibitory targets for anti-CMV compounds. As a new perspective for sustainable crop improvement, we investigated the natural plant-based antimicrobial phytoalexins for their anti-CMV potential. Here, we modeled and predicted the functional domains of RAP-1 and RAP-2, docked with a ligand library comprising 128 phytoalexins reported with broad-spectrum activity, determined their binding energies (BEs), molecular interactions, and inhibition constant (Ki), and compared with the reference plant antiviral compounds ribavirin, ningnanmycin, and benzothiadiazole (BTH). Further, the change in Gibb's free energy of binding (ΔG) and the per residue contribution of the selected top-scored ligand molecules was assessed by the prime MM-GBSA approach. Our results revealed RAP-1 as a discontinuous two-domain and RAP-2 as a multi-domain protein. The compounds glyceollidin (9.8 kcal/mol) and moracin D (7.8 kcal/mol) topped the list for RAP-1 and RAP-2 protein targets respectively and also, the lead molecules had energetically more favorable and comparative ΔG values than the top-scored plant antiviral agent ningnanmycin. The evaluation of in vitro toxicity and agrochemical-like properties showed the least toxicity of these anti-CMV compounds. Taken together, our results provide new insights in understanding the inhibitory effects of phytoalexins towards the RAP proteins and could be employed as new promising anti-CMV candidate compounds for their application in agriculture as biopesticides to combat the CMV disease incidence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshni Mohan Kumar
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Ramachandra Anantapur
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Anitha Peter
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Chaitra H V
- Department of Plant Biotechnology, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
2
|
Hooda P, Chaudhary M, Parvez MK, Sinha N, Sehgal D. Inhibition of Hepatitis E Virus Replication by Novel Inhibitor Targeting Methyltransferase. Viruses 2022; 14:v14081778. [PMID: 36016400 PMCID: PMC9415367 DOI: 10.3390/v14081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E Virus (HEV) is a quasi-enveloped virus having a single-stranded, positive-sense RNA genome (~7.2 kb), flanked with a 5′ methylated cap and a 3′ polyadenylated tail. The HEV open reading frame 1 (ORF1) encodes a 186-kDa polyprotein speculated to get processed and produce Methyltransferase (MTase), one of the four essential replication enzymes. In this study, we report the identification of the MTase inhibitor, which may potentially deplete its enzymatic activity, thus causing the cessation of viral replication. Using in silico screening through docking, we identified ten putative compounds, which were tested for their anti-MTase activity. This resulted in the identification of 3-(4-Hydroxyphenyl)propionic acid (HPPA), with an IC50 value of 0.932 ± 0.15 μM, which could be perceived as an effective HEV inhibitor. Furthermore, the compound was tested for inhibition of HEV replication in the HEV culture system. The viral RNA copies were markedly decreased from ~3.2 × 106 in untreated cells to ~4.3 × 102.8 copies in 800 μM HPPA treated cells. Therefore, we propose HPPA as a potential drug-like inhibitor against HEV-MTase, which would need further validation through in vivo analysis using animal models and the administration of Pharmacokinetic and Pharmacodynamic (PK/PD) studies.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
| | - Meenakshi Chaudhary
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.P.); (D.S.)
| | - Neha Sinha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Gautam Budh Nagar, Greater Noida 201314, India
- Correspondence: (M.K.P.); (D.S.)
| |
Collapse
|
3
|
Structure and Sequence Requirements for RNA Capping at the Venezuelan Equine Encephalitis Virus RNA 5' End. J Virol 2021; 95:e0077721. [PMID: 34011549 DOI: 10.1128/jvi.00777-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.
Collapse
|
4
|
Porcine Epidemic Diarrhea Virus Deficient in RNA Cap Guanine-N-7 Methylation Is Attenuated and Induces Higher Type I and III Interferon Responses. J Virol 2020; 94:JVI.00447-20. [PMID: 32461321 DOI: 10.1128/jvi.00447-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.
Collapse
|
5
|
Kraft JJ, Peterson MS, Cho SK, Wang Z, Hui A, Rakotondrafara AM, Treder K, Miller CL, Miller WA. The 3' Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens 2019; 8:E28. [PMID: 30823456 PMCID: PMC6471432 DOI: 10.3390/pathogens8010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
Many plant viral RNA genomes lack a 5' cap, and instead are translated via a cap-independent translation element (CITE) in the 3' untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host's translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Mariko S Peterson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sung Ki Cho
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA.
| | - Zhaohui Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Alice Hui
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute⁻National Research Institute, 76-009 Bonin, Poland.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Cowpea chlorotic mottle bromovirus replication proteins support template-selective RNA replication in Saccharomyces cerevisiae. PLoS One 2018; 13:e0208743. [PMID: 30586378 PMCID: PMC6306254 DOI: 10.1371/journal.pone.0208743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022] Open
Abstract
Positive-strand RNA viruses generally assemble RNA replication complexes on rearranged host membranes. Alphaviruses, other members of the alpha-like virus superfamily, and many other positive-strand RNA viruses invaginate host membrane into vesicular RNA replication compartments, known as spherules, whose interior is connected to the cytoplasm. Brome mosaic virus (BMV) and its close relative, cowpea chlorotic mottle virus (CCMV), form spherules along the endoplasmic reticulum. BMV spherule formation and RNA replication can be fully reconstituted in S. cerevisiae, enabling many studies identifying host factors and viral interactions essential for these processes. To better define and understand the conserved, core pathways of bromovirus RNA replication, we tested the ability of CCMV to similarly support spherule formation and RNA replication in yeast. Paralleling BMV, we found that CCMV RNA replication protein 1a was the only viral factor necessary to induce spherule membrane rearrangements and to recruit the viral 2a polymerase (2apol) to the endoplasmic reticulum. CCMV 1a and 2apol also replicated CCMV and BMV genomic RNA2, demonstrating core functionality of CCMV 1a and 2apol in yeast. However, while BMV and CCMV 1a/2apol strongly replicate each others’ genomic RNA3 in plants, neither supported detectable CCMV RNA3 replication in yeast. Moreover, in contrast to plant cells, in yeast CCMV 1a/2apol supported only limited replication of BMV RNA3 (<5% of that by BMV 1a/2apol). In keeping with this, we found that in yeast CCMV 1a was significantly impaired in recruiting BMV or CCMV RNA3 to the replication complex. Overall, we show that many 1a and 2apol functions essential for replication complex assembly, and their ability to be reconstituted in yeast, are conserved between BMV and CCMV. However, restrictions of CCMV RNA replication in yeast reveal previously unknown 1a-linked, RNA-selective host contributions to the essential early process of recruiting viral RNA templates to the replication complex.
Collapse
|
7
|
Kaur R, Mudgal R, Narwal M, Tomar S. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res 2018; 256:209-218. [PMID: 29958924 DOI: 10.1016/j.virusres.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m7GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m7GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m7G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m7GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m7GMP-nsP1 complex by utilizing anti-m7G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg2+) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC50 values were estimated to be 2.69 μM, 5.72 μM and 1.18 mM, respectively.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
8
|
Zhang Z, He G, Han GS, Zhang J, Catanzaro N, Diaz A, Wu Z, Carman GM, Xie L, Wang X. Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis. PLoS Pathog 2018; 14:e1006988. [PMID: 29649282 PMCID: PMC5916857 DOI: 10.1371/journal.ppat.1006988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/24/2018] [Accepted: 03/24/2018] [Indexed: 11/20/2022] Open
Abstract
Replication of positive-strand RNA viruses [(+)RNA viruses] takes place in membrane-bound viral replication complexes (VRCs). Formation of VRCs requires virus-mediated manipulation of cellular lipid synthesis. Here, we report significantly enhanced brome mosaic virus (BMV) replication and much improved cell growth in yeast cells lacking PAH1 (pah1Δ), the sole yeast ortholog of human LIPIN genes. PAH1 encodes Pah1p (phosphatidic acid phosphohydrolase), which converts phosphatidate (PA) to diacylglycerol that is subsequently used for the synthesis of the storage lipid triacylglycerol. Inactivation of Pah1p leads to altered lipid composition, including high levels of PA, total phospholipids, ergosterol ester, and free fatty acids, as well as expansion of the nuclear membrane. In pah1Δ cells, BMV replication protein 1a and double-stranded RNA localized to the extended nuclear membrane, there was a significant increase in the number of VRCs formed, and BMV genomic replication increased by 2-fold compared to wild-type cells. In another yeast mutant that lacks both PAH1 and DGK1 (encodes diacylglycerol kinase converting diacylglycerol to PA), which has a normal nuclear membrane but maintains similar lipid compositional changes as in pah1Δ cells, BMV replicated as efficiently as in pah1Δ cells, suggesting that the altered lipid composition was responsible for the enhanced BMV replication. We further showed that increased levels of total phospholipids play an important role because the enhanced BMV replication required active synthesis of phosphatidylcholine, the major membrane phospholipid. Moreover, overexpression of a phosphatidylcholine synthesis gene (CHO2) promoted BMV replication. Conversely, overexpression of PAH1 or plant PAH1 orthologs inhibited BMV replication in yeast or Nicotiana benthamiana plants. Competing with its host for limited resources, BMV inhibited host growth, which was markedly alleviated in pah1Δ cells. Our work suggests that Pah1p promotes storage lipid synthesis and thus represses phospholipid synthesis, which in turn restricts both viral replication and cell growth during viral infection.
Collapse
Affiliation(s)
- Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States of America
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Nicholas Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, VA, United States of America
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - George M. Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States of America
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
9
|
Nishikiori M, Ahlquist P. Organelle luminal dependence of (+)strand RNA virus replication reveals a hidden druggable target. SCIENCE ADVANCES 2018; 4:eaap8258. [PMID: 29387794 PMCID: PMC5787378 DOI: 10.1126/sciadv.aap8258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/19/2017] [Indexed: 05/08/2023]
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bounded cytoplasmic complexes. We show that endoplasmic reticulum (ER)-linked genomic RNA replication by brome mosaic virus (BMV), a well-studied member of the alphavirus superfamily, depends on the ER luminal thiol oxidase ERO1. We further show that BMV RNA replication protein 1a, a key protein for the formation and function of vesicular BMV RNA replication compartments on ER membranes, permeabilizes these membranes to release oxidizing potential from the ER lumen. Conserved amphipathic sequences in 1a are sufficient to permeabilize liposomes, and mutations in these sequences simultaneously block membrane permeabilization, formation of a disulfide-linked, oxidized 1a multimer, 1a's RNA capping function, and productive genome replication. These results reveal new transmembrane complexities in positive-strand RNA virus replication, show that-as previously reported for certain picornaviruses and flaviviruses-some alphavirus superfamily members encode viroporins, identify roles for such viroporins in genome replication, and provide a potential new foundation for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Masaki Nishikiori
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author.
| |
Collapse
|
10
|
Meng M, Lee CC. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus. Front Microbiol 2017; 8:522. [PMID: 28400766 PMCID: PMC5368238 DOI: 10.3389/fmicb.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470-580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5' end and a poly(A) tail at the 3' end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described.
Collapse
Affiliation(s)
- Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
11
|
Borkakoti J, Ahmed G, Rai A, Kar P. Report of novel H105R, D29N, V27A mutations in the methyltransferase region of the HEV genome in patients with acute liver failure. J Clin Virol 2017; 91:1-4. [PMID: 28359977 DOI: 10.1016/j.jcv.2017.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Hepatitis E virus (HEV) has been responsible for major outbreaks in the developing countries affecting millions of people and acute sporadic hepatitis worldwide. The HEV methyltransferase is important for capping the 5'-end of the viral pregenomic RNA which is critical for viral infection. OBJECTIVES We aimed to assess the substitutional profile in the HEV methyltransferase region in patients with acute liver failure (ALF) and acute viral hepatitis (AVH) from North Indian population and associate the substitutions with the poor outcome of the disease. STUDY DESIGN HEV RNA was detected and partial region encoding the Methyltransferase domain in the HEV genome was amplified by Reverse Transcriptase(RT-PCR). Viral load of HEV was quantified utilizing Real time PCR.32 representative samples consisting of 16 AVH and 16 ALF were directly sequenced and amino acid changes were compared using Fischer's exact (two-tailed) test. RESULTS Novel mutations Valine27Alanine (V27A), Aspartate29Asparagine (D29N) and Histidine105Arginine (H105R) mutation corresponding to 107T>C, 115G>A and 341 A>G substitutions respectively were significantly (p<0.0001) obtained in 16/16(100%) ALF patients compared to none (0/16) of the AVH patients. HEV viral load and disease severity parameters corresponding to the samples with D29N and V27A mutations were significantly higher compared to the isolates lacking these mutations while the H105R mutation was associated with decreased viremia. CONCLUSION The D29N and V27A mutations had significant association with the poor outcome in ALF patients suggesting key role in enhancing HEV replication while the association of H105R mutation with decreased viremia creates interest on its antiviral aspects.
Collapse
Affiliation(s)
- Jayanta Borkakoti
- PCR Hepatitis Laboratory, Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India; Department of Biotechnology, Gauhati University, Assam, India
| | - Giasuddin Ahmed
- Department of Biotechnology, Gauhati University, Assam, India
| | - Arvind Rai
- Department of Biochemistry, National Centre for Disease Control, New Delhi, India
| | - Premashis Kar
- PCR Hepatitis Laboratory, Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India.
| |
Collapse
|
12
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
Affiliation(s)
- E J Snijder
- Leiden University Medical Center, Leiden, The Netherlands.
| | - E Decroly
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France; CNRS, AFMB UMR 7257, Marseille, France
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
13
|
Li J, Fuchs S, Zhang J, Wellford S, Schuldiner M, Wang X. An unrecognized function for COPII components in recruiting the viral replication protein BMV 1a to the perinuclear ER. J Cell Sci 2016; 129:3597-3608. [PMID: 27539921 DOI: 10.1242/jcs.190082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Positive-strand RNA viruses invariably assemble their viral replication complexes (VRCs) by remodeling host intracellular membranes. How viral replication proteins are targeted to specific organelle membranes to initiate VRC assembly remains elusive. Brome mosaic virus (BMV), whose replication can be recapitulated in Saccharomyces cerevisiae, assembles its VRCs by invaginating the outer perinuclear endoplasmic reticulum (ER) membrane. Remarkably, BMV replication protein 1a (BMV 1a) is the only viral protein required for such membrane remodeling. We show that ER-vesicle protein of 14 kD (Erv14), a cargo receptor of coat protein complex II (COPII), interacts with BMV 1a. Moreover, the perinuclear ER localization of BMV 1a is disrupted in cells lacking ERV14 or expressing dysfunctional COPII coat components (Sec13, Sec24 or Sec31). The requirement of Erv14 for the localization of BMV 1a is bypassed by addition of a Sec24-recognizable sorting signal to BMV 1a or by overexpressing Sec24, suggesting a coordinated effort by both Erv14 and Sec24 for the proper localization of BMV 1a. The COPII pathway is well known for being involved in protein secretion; our data suggest that a subset of COPII coat proteins have an unrecognized role in targeting proteins to the perinuclear ER membrane.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shai Fuchs
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Jiantao Zhang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sebastian Wellford
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Abstract
Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan ,
| | - Masayuki Ishikawa
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8602, Japan ,
| |
Collapse
|
15
|
Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc Natl Acad Sci U S A 2016; 113:E1064-73. [PMID: 26858414 DOI: 10.1073/pnas.1519730113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes.
Collapse
|
16
|
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin 2016; 31:3-11. [PMID: 26847650 PMCID: PMC7091378 DOI: 10.1007/s12250-016-3726-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The 5′-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2′-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5′-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5′-cap structure and methylation modification of viral genomic RNAs.![]()
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, Janssen GMC, Ruben M, Overkleeft HS, van Veelen PA, Samborskiy DV, Kravchenko AA, Leontovich AM, Sidorov IA, Snijder EJ, Posthuma CC, Gorbalenya AE. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 2015; 43:8416-34. [PMID: 26304538 PMCID: PMC4787807 DOI: 10.1093/nar/gkv838] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/08/2015] [Indexed: 11/13/2022] Open
Abstract
RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Anastasia Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Jessika C Zevenhoven-Dobbe
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Mark Ruben
- Leiden Institute of Chemistry, Leiden University, 2300 CC, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 CC, Leiden, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood transfusion, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Dmitry V Samborskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Alexander A Kravchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Andrey M Leontovich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Igor A Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2300 RC, Leiden, The Netherlands Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
18
|
Kitayama M, Hoover H, Middleton S, Kao CC. Brome mosaic virus Infection of Rice Results in Decreased Accumulation of RNA1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:626-632. [PMID: 26024443 DOI: 10.1094/mpmi-12-14-0389-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Brome mosaic virus (BMV) (the Russian strain) infects monocot plants and has been studied extensively in barley and wheat. Here, we report BMV can systemically infect rice (Oryza sativa var. japonica), including cultivars in which the genomes have been determined. The BMV capsid protein can be found throughout the inoculated plants. However, infection in rice exhibits delayed symptom expression or no symptoms when compared with wheat (Triticum aestivum). The sequences of BMV RNAs isolated from rice did not reveal any nucleotide changes in RNA1 or RNA2, while RNA3 had only one synonymous nucleotide change from the inoculum sequence. Preparations of purified BMV virions contained RNA1 at a significantly reduced level relative to the other two RNAs. Analysis of BMV RNA replication in rice revealed that minus-strand RNA1 was replicated at a reduced rate when compared with RNA2. Thus, rice appears to either inhibit RNA1 replication or lacks a sufficient amount of a factor needed to support efficient RNA1 replication.
Collapse
|
19
|
Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 2014; 194:90-9. [PMID: 25451065 PMCID: PMC7114481 DOI: 10.1016/j.virusres.2014.10.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 10/30/2022]
Abstract
The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world.
Collapse
Affiliation(s)
- Marion Sevajol
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Lorenzo Subissi
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Etienne Decroly
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Isabelle Imbert
- Centre National de la Recherche Scientifique, Aix-Marseille Université, UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
20
|
Diaz A, Wang X. Bromovirus-induced remodeling of host membranes during viral RNA replication. Curr Opin Virol 2014; 9:104-10. [PMID: 25462441 DOI: 10.1016/j.coviro.2014.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
With its high yield, small genome, and ability to replicate in the yeast Saccharomyces cerevisiae, Brome mosaic virus (BMV) has served as a productive model to study the general features of positive-strand RNA virus infection. BMV RNA is replicated in spherules, vesicle-like invaginations of the outer perinuclear endoplasmic reticulum membrane that remain connected to the cytoplasm via a neck-like opening. Each spherule contains the viral replicase proteins as well as genomic RNAs. Recent advances indicate that multiple interactions between the viral proteins with themselves, cellular membranes, and host factors play crucial roles in BMV-mediated spherule formation. These findings are probably applicable to other positive-strand RNA viruses and might potentially provide new targets for antiviral treatments.
Collapse
Affiliation(s)
- Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92505, United States.
| | - Xiaofeng Wang
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech University, Blacksburg, VA 24061, United States.
| |
Collapse
|
21
|
Jin X, Chen Y, Sun Y, Zeng C, Wang Y, Tao J, Wu A, Yu X, Zhang Z, Tian J, Guo D. Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP. Virus Res 2013; 176:45-52. [PMID: 23702198 PMCID: PMC7114466 DOI: 10.1016/j.virusres.2013.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 11/22/2022]
Abstract
We found SARS-CoV nsp14 could methylate GTP and dGTP. Critical residues of nsp14 essential for the activity on GTP were identified. m7GTP or nsp14 could interfere with protein translation.
Most eukaryotic viruses that replicate in the cytoplasm, including coronaviruses, have evolved strategies to cap their RNAs. In our previous work, the nonstructural protein (nsp) 14 of severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as a cap (guanine-N7)-methyltransferase (N7-MTase). In this study, we found that GTP, dGTP as well as cap analogs GpppG, GpppA and m7GpppG could be methylated by SARS-CoV nsp14. In contrast, the nsp14 could not modify ATP, CTP, UTP, dATP, dCTP, dUTP or cap analog m7GpppA. Critical residues of nsp14 essential for the methyltransferase activity on GTP were identified, which include F73, R84, W86, R310, D331, G333, P335, Y368, C414, and C416. We further showed that the methyltransferase activity of GTP was universal for nsp14 of other coronaviruses. Moreover, the accumulation of m7GTP or presence of protein nsp14 could interfere with protein translation of cellular mRNAs. Altogether, the results revealed a new enzymatic activity of coronavirus nsp14.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The genome sequence of an isolate of Indian citrus ringspot virus infecting the sweet orange in India. J Virol 2013; 86:12446-7. [PMID: 23087111 DOI: 10.1128/jvi.02084-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing of an isolate of Mandarivirus infecting the sweet orange [Citrus sinensis (L) Blanco] in the western part of India (Pune) was done. The single-stranded positive-sense RNA genome of Indian citrus ringspot virus (ICRSV) Pune has 7,560 nucleotides (nt), excluding a poly(A) tail, comprised of 27.98% (2,115 nt) A, 32.12% (2,428 nt) C, 19.68% (1,488 nt) G, and 20.22% (1,529 nt) T residues. The genome, organized into six open reading frames (ORFs), shares 97.7% sequence identity with the complete genome of the ICRSV K1 isolate (AF406744.1) infecting the kinnow (Citrus reticulate Blanco, a hybrid between King and Willow mandarins) in north India. The ICRSV Pune genome formed a complex secondary structure with a large number of unpaired cytosine-rich regions, and recombination analysis highlighted potential recombination in the ICRSV genome.
Collapse
|
23
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
24
|
Lin HY, Yu CY, Hsu YH, Meng M. Functional analysis of the conserved histidine residue of Bamboo mosaic virus capping enzyme in the activity for the formation of the covalent enzyme-m7GMP intermediate. FEBS Lett 2012; 586:2326-31. [PMID: 22641040 DOI: 10.1016/j.febslet.2012.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
The alphavirus-like mRNA capping enzyme of Bamboo mosaic virus (BaMV) exhibits an AdoMet-dependent guanylyltransferase activity by which the methyl group of AdoMet is transferred to GTP, leading to the formation of m(7)GTP, and the m(7)GMP moiety is next transferred to the 5' end of ppRNA via a covalent enzyme-m(7)GMP intermediate. The function of the conserved H68 of the BaMV capping enzyme in the intermediate formation was analyzed by mutagenesis in this study. The nature of the bond linking the enzyme and m(7)GMP was changed in the H68C mutant protein, strongly suggesting that H68 covalently binds to m(7)GMP in the intermediate.
Collapse
Affiliation(s)
- Hua-Yang Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|
25
|
Host acyl coenzyme A binding protein regulates replication complex assembly and activity of a positive-strand RNA virus. J Virol 2012; 86:5110-21. [PMID: 22345450 DOI: 10.1128/jvi.06701-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly.
Collapse
|
26
|
RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein-protein interaction. J Virol 2012; 86:4317-27. [PMID: 22318148 DOI: 10.1128/jvi.00069-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a.
Collapse
|
27
|
Bromovirus RNA replication compartment formation requires concerted action of 1a's self-interacting RNA capping and helicase domains. J Virol 2011; 86:821-34. [PMID: 22090102 DOI: 10.1128/jvi.05684-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All positive-strand RNA viruses replicate their genomes in association with rearranged intracellular membranes such as single- or double-membrane vesicles. Brome mosaic virus (BMV) RNA synthesis occurs in vesicular endoplasmic reticulum (ER) membrane invaginations, each induced by many copies of viral replication protein 1a, which has N-terminal RNA capping and C-terminal helicase domains. Although the capping domain is responsible for 1a membrane association and ER targeting, neither this domain nor the helicase domain was sufficient to induce replication vesicle formation. Moreover, despite their potential for mutual interaction, the capping and helicase domains showed no complementation when coexpressed in trans. Cross-linking showed that the capping and helicase domains each form trimers and larger multimers in vivo, and the capping domain formed extended, stacked, hexagonal lattices in vivo. Furthermore, coexpressing the capping domain blocked the ability of full-length 1a to form replication vesicles and replicate RNA and recruited full-length 1a into mixed hexagonal lattices with the capping domain. Thus, BMV replication vesicle formation and RNA replication depend on the direct linkage and concerted action of 1a's self-interacting capping and helicase domains. In particular, the capping domain's strong dominant-negative effects showed that the ability of full-length 1a to form replication vesicles was highly sensitive to disruption by non-productively titrating lattice-forming self-interactions of the capping domain. These and other findings shed light on the roles and interactions of 1a domains in replication compartment formation and support prior results suggesting that 1a induces replication vesicles by forming a capsid-like interior shell.
Collapse
|
28
|
Abstract
The 5' cap structure (m(7)GpppX-) is an essential feature of eukaryotic mRNA required for mRNA stability and efficient translation. Influenza virus furnishes its mRNA with this structure by a cap-snatching mechanism, in which the viral polymerase cleaves host mRNA endonucleolytically 10-13 nucleotides from the 5' end and utilizes the capped fragment as a primer to synthesize viral transcripts. Here we report a unique cap-snatching mechanism by which the yeast double-stranded RNA totivirus L-A furnishes its transcript with a cap structure derived from mRNA. Unlike influenza virus, L-A transfers only m(7)Gp from the cap donor to the 5' end of the viral transcript, thus preserving the 5' α- and β-phosphates of the transcript in the triphosphate linkage of the final product. This in vitro capping reaction requires His154 of the coat protein Gag, a residue essential for decapping of host mRNA and known to form m(7)Gp-His adduct. Furthermore, the synthesis of capped viral transcripts in vivo and their expression were greatly compromised by the Arg154 mutation, indicating the involvement of Gag in the cap-snatching reaction. The overall reaction and the structure around the catalytic site in Gag resemble those of guanylyltransferase, a key enzyme of cellular mRNA capping, suggesting convergent evolution. Given that Pol of L-A is confined inside the virion and unable to access host mRNA in the cytoplasm, the structural protein Gag rather than Pol catalyzing this unique cap-snatching reaction exemplifies the versatility as well as the adaptability of eukaryotic RNA viruses.
Collapse
|
29
|
Heterologous production, purification and characterization of enzymatically active Sindbis virus nonstructural protein nsP1. Protein Expr Purif 2011; 79:277-84. [PMID: 21693190 DOI: 10.1016/j.pep.2011.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/22/2022]
Abstract
Alphavirus nonstructural protein nsP1 possesses distinct methyltransferase (MTase) and guanylyltransferase (GTase) activities involved in the capping of viral RNAs. In alphaviruses, the methylation of GTP occurs before RNA transguanylation and nsP1 forms a covalent complex with m(7)GMP unlike the host mRNA guanylyltransferase which forms GMP-enzyme complex. In this study, full length SINV nsP1 was expressed in a soluble form with an N-terminal histidine tag in Escherichia coli and purified to homogeneity. The purified protein is enzymatically active and contains both MTase and GTase activity indicating that SINV nsP1 does not require membrane association for its enzymatic function. Biochemical analysis shows that detergents abolish nsP1 GTase activity, whereas nonionic detergents do not affect MTase activity. Furthermore, SINV nsP1 contains the metal-ion dependent GTase, whereas MTase does not require a metal ion. Circular dichroism spectroscopic analysis of purified protein indicate that nsP1 has a mixed α/β structure and is in the folded native conformation.
Collapse
|
30
|
Intersection of the multivesicular body pathway and lipid homeostasis in RNA replication by a positive-strand RNA virus. J Virol 2011; 85:5494-503. [PMID: 21430061 DOI: 10.1128/jvi.02031-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like many positive-strand RNA viruses, brome mosaic virus (BMV) RNA replication occurs in membrane-invaginated vesicular compartments. BMV RNA replication compartments show parallels with membrane-enveloped, budding retrovirus virions, whose release depends on the cellular multivesicular body (MVB) sorting pathway. BMV RNA replication compartments are not released from their parent membranes, but might depend on MVB functions for membrane invagination. Prior results show that BMV RNA replication is severely inhibited by deletion of the crucial MVB gene DOA4 or BRO1. We report here that involvement of DOA4 and BRO1 in BMV RNA replication is not dependent on the MVB pathway's membrane-shaping functions but rather is due to their roles in recycling ubiquitin from MVB cargos. We show that deleting DOA4 or BRO1 inhibits the ubiquitination- and proteasome-dependent activation of homologous transcription factors Mga2p and Spt23p, which regulate many lipid metabolism genes, including the fatty acid desaturase gene OLE1, which is essential for BMV RNA replication. However, Mga2p processing and BMV RNA replication are restored by supplementing free ubiquitin, which is depleted in doa4Δ and bro1Δ cells. The results identify Mga2p and Spt23p processing and lipid regulation as sensitive targets of ubiquitin depletion and correctly predict multiple effects of modulating additional host genes RFU1, UBP6, and UFD3. Our results also show that BMV RNA replication depends on additional Mga2p-regulated genes likely involved in lipid metabolism beyond OLE1. Among other points, these findings show the potential for blocking viral RNA replication by modulating lipid synthesis at multiple levels.
Collapse
|
31
|
Hu RH, Lin MC, Hsu YH, Meng M. Mutational effects of the consensus aromatic residues in the mRNA capping domain of Bamboo mosaic virus on GTP methylation and virus accumulation. Virology 2011; 411:15-24. [PMID: 21227477 DOI: 10.1016/j.virol.2010.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/29/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
RNA viruses classified in the alphavirus-like superfamily possess a distinct capping domain, catalyzing GTP methylation and subsequent transfer of the m(7)GMP moiety from m(7)GTP to the 5'-diphosphate end of viral RNA. The H68A mutation in the capping domain of Bamboo mosaic virus enhanced GTP methylation but disabled the following transguanylation, making it possible to characterize the enzyme's methyltransferase activity separately. To explore the involvement of aromatic amino acids in substrate recognition, consensus aromatic residues in the viral domain were subjected to mutational analysis in the background of H68A. Several residues, including Y126, F144, F161, Y192, Y203, Y213, and W222, were found to be critical for GTP methylation and S-adenosylmethionine (AdoMet) binding. These mutations, except for Y213, also adversely affected the GTP binding, but less extensively. In general, the mutations decreasing the activity for GTP methylation also had correspondingly detrimental effects on virus accumulation.
Collapse
Affiliation(s)
- Rei-Hsing Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, Taiwan 40227, ROC
| | | | | | | |
Collapse
|
32
|
den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 2010; 64:241-56. [PMID: 20825348 DOI: 10.1146/annurev.micro.112408.134012] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Positive-strand RNA virus genome replication is invariably associated with extensively rearranged intracellular membranes. Recent biochemical and electron microscopy analyses, including three-dimensional electron microscope tomographic imaging, have fundamentally advanced our understanding of the ultrastructure and function of organelle-like RNA replication factories. Notably, for a range of positive-strand RNA viruses embodying many major differences, independent studies have revealed multiple common principles. These principles include that RNA replication often occurs inside numerous virus-induced vesicles invaginated or otherwise elaborated from a continuous, often endoplasmic reticulum-derived membrane network. Where analyzed, each such vesicle typically contains only one or a few genome replication intermediates in conjunction with many copies of viral nonstructural proteins. In addition, these genome replication compartments often are closely associated with sites of virion assembly and budding. Our understanding of these complexes is growing, providing substantial new insights into the organization, coordination, and potential control of crucial processes in virus replication.
Collapse
Affiliation(s)
- Johan A den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
33
|
Kopek BG, Settles EW, Friesen PD, Ahlquist P. Nodavirus-induced membrane rearrangement in replication complex assembly requires replicase protein a, RNA templates, and polymerase activity. J Virol 2010; 84:12492-503. [PMID: 20943974 PMCID: PMC3004334 DOI: 10.1128/jvi.01495-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ∼50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.
Collapse
Affiliation(s)
- Benjamin G. Kopek
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Erik W. Settles
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Paul D. Friesen
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Paul Ahlquist
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|
34
|
Hema M, Murali A, Ni P, Vaughan RC, Fujisaki K, Tsvetkova I, Dragnea B, Kao CC. Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1433-1447. [PMID: 20923351 DOI: 10.1094/mpmi-05-10-0118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Many viruses that replicate in the cytoplasm compartmentalize their genome replication and transcription in organelle-like structures that enhance replication efficiency and protection from host defenses. In particular, recent studies with diverse positive-strand RNA viruses have further elucidated the ultrastructure of membrane-bound RNA replication complexes and how these complexes function in close coordination with virion assembly and budding. The structure, function, and assembly of some positive-strand RNA virus replication complexes have parallels and potential evolutionary links with the replicative cores of double-strand RNA virus and retrovirus virions and more general similarities with the replication factories of cytoplasmic DNA viruses.
Collapse
|
36
|
Beitzel BF, Bakken RR, Smith JM, Schmaljohn CS. High-resolution functional mapping of the venezuelan equine encephalitis virus genome by insertional mutagenesis and massively parallel sequencing. PLoS Pathog 2010; 6:e1001146. [PMID: 20976195 PMCID: PMC2954836 DOI: 10.1371/journal.ppat.1001146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system. Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that was first identified in Venezuela in 1938. VEEV normally circulates in rodent populations, but during outbreaks it can jump to horses and humans where it can cause debilitating and potentially fatal disease. There are currently no vaccines or antiviral agents against VEEV licensed for use in humans. In this study, we describe a technique that we have developed that allows for the rapid identification of viral mutants that can be useful for studying the basic biology of viral replication. These mutants can also be used to generate vaccines that protect against infection with wild-type virus. We demonstrate the utility of this technique by identifying over 200 mutations spread throughout VEEV genome that make the virus unable to replicate efficiently at higher temperatures (37°C or 40°C.) Furthermore, we show that two of the mutant viruses work as vaccines, and protect mice against lethal infection with VEEV. This technique can be applied to studying other viruses, and may allow for the rapid identification of numerous vaccine candidates.
Collapse
Affiliation(s)
- Brett F. Beitzel
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Russell R. Bakken
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey M. Smith
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Connie S. Schmaljohn
- The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc Natl Acad Sci U S A 2010; 107:16291-6. [PMID: 20805477 DOI: 10.1073/pnas.1011105107] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Positive-strand RNA viruses replicate their genomes on membranes with virus-induced rearrangements such as single- or double-membrane vesicles, but the mechanisms of such rearrangements, including the role of host proteins, are poorly understood. Brome mosaic virus (BMV) RNA synthesis occurs in ≈70 nm, negatively curved endoplasmic reticulum (ER) membrane invaginations induced by multifunctional BMV protein 1a. We show that BMV RNA replication is inhibited 80-90% by deleting the reticulon homology proteins (RHPs), a family of membrane-shaping proteins that normally induce and stabilize positively curved peripheral ER membrane tubules. In RHP-depleted cells, 1a localized normally to perinuclear ER membranes and recruited the BMV 2a(pol) polymerase. However, 1a failed to induce ER replication compartments or to recruit viral RNA templates. Partial RHP depletion allowed formation of functional replication vesicles but reduced their diameter by 30-50%. RHPs coimmunoprecipitated with 1a and 1a expression redirected >50% of RHPs from peripheral ER tubules to the interior of BMV-induced RNA replication compartments on perinuclear ER. Moreover, RHP-GFP fusions retained 1a interaction but shifted 1a-induced membrane rearrangements from normal vesicles to double membrane layers, a phenotype also induced by excess 1a-interacting 2a(pol). Thus, RHPs interact with 1a, are incorporated into RNA replication compartments, and are required for multiple 1a functions in replication compartment formation and function. The results suggest possible RHP roles in the bodies and necks of replication vesicles.
Collapse
|
38
|
RNA 5'-triphosphatase activity of the hepatitis E virus helicase domain. J Virol 2010; 84:9637-41. [PMID: 20592074 DOI: 10.1128/jvi.00492-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatitis E virus (HEV) has a positive-sense RNA genome with a 5'-m7G cap. HEV open reading frame 1 (ORF1) encodes a polyprotein with multiple enzyme domains required for replication. HEV helicase is a nucleoside triphosphatase (NTPase) with the ability to unwind RNA duplexes in the 5'-to-3' direction. When incubated with 5'-[gamma-(32)P]RNA and 5'-[alpha-(32)P]RNA, HEV helicase released (32)P only from 5'-[gamma-(32)P]RNA, showing specificity for the gamma-beta-triphosphate bond. Removal of gamma-phosphate from the 5' end of the primary transcripts (pppRNA to ppRNA) by RNA triphosphatase is an essential step during cap formation. It is suggested that HEV employs the helicase to mediate the first step of 5' cap synthesis.
Collapse
|
39
|
Fujimura T, Esteban R. Yeast double-stranded RNA virus L-A deliberately synthesizes RNA transcripts with 5'-diphosphate. J Biol Chem 2010; 285:22911-8. [PMID: 20511225 DOI: 10.1074/jbc.m110.138982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
L-A is a persistent double-stranded RNA virus commonly found in the yeast Saccharomyces cerevisiae. Isolated L-A virus synthesizes positive strand transcripts in vitro. We found that the 5' termini of the transcripts are diphosphorylated. The 5'-terminal nucleotide is G, and GDP was the best substrate among those examined to prime the reaction. When GTP was used, the triphosphate of GTP incorporated into the 5'-end was converted to diphosphate. This activity was not dependent on host CTL1 RNA triphosphatase. The 5'-end of the GMP-primed transcript also was converted to diphosphate, the beta-phosphate of which was derived from the gamma-phosphate of ATP present in the polymerization reaction. These results demonstrate that L-A virus commands elaborate enzymatic systems to ensure its transcript to be 5'-diphosphorylated. Transcripts of M1, a satellite RNA of L-A virus, also had diphosphate at the 5' termini. Because viral transcripts are released from the virion into the cytoplasm to be translated and encapsidated into a new viral particle, a stage most vulnerable to degradation in the virus replication cycle, our results suggest that the 5'-diphosphate status is important for transcript stability. Consistent with this, L-A transcripts made in vitro are resistant to the affinity-purified Ski1p 5'-exonuclease. We also discuss the implication of these findings on translation of viral RNA. Because the viral transcript has no conventional 5'-cap structure, this work may shed light on the metabolism of non-self-RNA in yeast.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
40
|
Cheng CW, Hsiao YY, Wu HC, Chuang CM, Chen JS, Tsai CH, Hsu YH, Wu YC, Lee CC, Meng M. Suppression of bamboo mosaic virus accumulation by a putative methyltransferase in Nicotiana benthamiana. J Virol 2009; 83:5796-805. [PMID: 19297487 PMCID: PMC2681968 DOI: 10.1128/jvi.02471-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/10/2009] [Indexed: 12/12/2022] Open
Abstract
Bamboo mosaic virus (BaMV) is a 6.4-kb positive-sense RNA virus belonging to the genus Potexvirus of the family Flexiviridae. The 155-kDa viral replicase, the product of ORF1, comprises an N-terminal S-adenosyl-l-methionine (AdoMet)-dependent guanylyltransferase, a nucleoside triphosphatase/RNA 5'-triphosphatase, and a C-terminal RNA-dependent RNA polymerase (RdRp). To search for cellular factors potentially involved in the regulation of replication and/or transcription of BaMV, the viral RdRp domain was targeted as bait to screen against a leaf cDNA library of Nicotiana benthamiana using a yeast two-hybrid system. A putative methyltransferase (PNbMTS1) of 617 amino acid residues without an established physiological function was identified. Cotransfection of N. benthamiana protoplasts with a BaMV infectious clone and the PNbMTS1-expressing plasmid showed a PNbMTS1 dosage-dependent inhibitory effect on the accumulation of BaMV coat protein. Deletion of the N-terminal 36 amino acids, deletion of a predicted signal peptide or transmembrane segment, or mutations in the putative AdoMet-binding motifs of PNbMTS1 abolished the inhibitory effect. In contrast, suppression of PNbMTS1 by virus-induced gene silencing in N. benthamiana increased accumulation of the viral coat protein as well as the viral genomic RNA. Collectively, PNbMTS1 may function as an innate defense protein against the accumulation of BaMV through an uncharacterized mechanism.
Collapse
Affiliation(s)
- Chun-Wei Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yi G, Letteney E, Kim CH, Kao CC. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element. RNA (NEW YORK, N.Y.) 2009; 15:615-26. [PMID: 19237464 PMCID: PMC2661835 DOI: 10.1261/rna.1375509] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/16/2009] [Indexed: 05/20/2023]
Abstract
Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation of the RNA replication proteins. Expression of the replication protein 2a in trans can partially rescue BMV RNA accumulation. A mutation in the CP can decrease the repression of translation. Translation repression by the CP requires a hairpin RNA motif named the B Box that contains seven loop nucleotides (nt) within the 5' untranslated regions (UTR) of BMV RNA1 and RNA2. Purified CP can bind directly to the B Box RNA with a K (d) of 450 nM. The secondary structure of the B Box RNA was determined to contain a highly flexible 7-nt loop using NMR spectroscopy, native gel analysis, and thermal denaturation studies. The B Box is also recognized by the BMV 1a protein to assemble the BMV replicase, suggesting that the BMV CP can act to regulate several viral infection processes.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843, USA
| | | | | | | |
Collapse
|
42
|
Liu L, Westler WM, den Boon JA, Wang X, Diaz A, Steinberg HA, Ahlquist P. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathog 2009; 5:e1000351. [PMID: 19325881 PMCID: PMC2654722 DOI: 10.1371/journal.ppat.1000351] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/26/2009] [Indexed: 12/13/2022] Open
Abstract
Brome mosaic virus (BMV) protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER) membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol)) and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol) accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol) accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.
Collapse
Affiliation(s)
- Ling Liu
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William M. Westler
- National Magnetic Resonance Facility, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Johan A. den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofeng Wang
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - H. Adam Steinberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Seo JK, Kwon SJ, Choi HS, Kim KH. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 2009; 383:248-60. [PMID: 19022467 DOI: 10.1016/j.virol.2008.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/30/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Cucumber mosaic virus (CMV) encodes two viral replication proteins, 1a and 2a. Accumulating evidence implies that different aspects of 1a-2a interaction in replication complex assembly are involved in the regulation of virus replication. To further investigate CMV replicase assembly and to dissect the involvement of replicase activities in negative- and positive-strand synthesis, we transiently expressed CMV RNAs and/or proteins in Nicotiana benthamiana leaves using a DNA or RNA-mediated expression system. Surprisingly, we found that, even in the absence of 1a, 2a is capable of synthesizing positive-strand RNAs, while 1a and 2a are both required for negative-strand synthesis. We also report evidence that 1a capping activities function independently of 2a. Moreover, using 1a mutants, we show that capping activities of 1a are crucial for viral translation but not for RNA transcription. These results support the concept that two or more alternate states of replicase assembly are involved in CMV replication.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
44
|
Quan S, Nelson RS, Deom CM. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea. Arch Virol 2008; 153:1505-16. [PMID: 18604602 DOI: 10.1007/s00705-008-0137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/08/2008] [Indexed: 10/21/2022]
Abstract
The type strain of cowpea chlorotic mottle virus (CCMV-T) induces a local and systemic infection in California Blackeye cowpea (Vigna unguiculata (L.) Walp. subs. unguiculata cv. California Blackeye), but accumulates to low levels in inoculated leaves and fails to accumulate systemically in the cowpea plant introduction (PI) 186465. CCMV-R, a mutant strain derived from CCMV-T, accumulates to higher levels than CCMV-T in inoculated leaves and systemically infects PI 186465 plants. The phenotypic determinant of CCMV-R was previously mapped to viral RNA1, but the location of the determinant within RNA1 was not identified. Pseudorecombinants generated from genomic cDNA clones of CCMV-T and CCMV-R indicated that the phenotypic differences on PI 186465 were independent of replication. Through the use of chimeric RNA1 cDNA clones containing portions of CCMV-T and CCMV-R and site-directed mutagenesis, two nucleotides, 299 (amino acid residue 77) and 951 (amino acid residue 294), were identified as being independently critical for the local and systemic accumulation patterns of CCMV-R in PI 186465 plants. A second independently derived CCMV-R-like mutant, identified nucleotide 216 (amino acid residue 49) as being critical for induction of the CCMV-R infection phenotype. Amino acid residues 49, 77, and 294 are within the methytransferase domain of the CCMV 1a protein, suggesting that the methytransferase domain has a role in cell-to-cell and systemic accumulation of the virus that is independent of replication.
Collapse
Affiliation(s)
- S Quan
- Department of Plant Pathology, Plant Sciences Building, The University of Georgia, Athens, GA 30602-7274, USA
| | | | | |
Collapse
|
45
|
Soulière MF, Perreault JP, Bisaillon M. Kinetic and thermodynamic characterization of the RNA guanylyltransferase reaction. Biochemistry 2008; 47:3863-74. [PMID: 18298088 DOI: 10.1021/bi702054a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.
Collapse
Affiliation(s)
- Marie F Soulière
- RNA Group/Grpe ARN, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | |
Collapse
|
46
|
Abstract
Identification of the roles of replication factors represents one of the major frontiers in current virus research. Among plant viruses, the positive-stranded (+) RNA viruses are the largest group and the most widespread. The central step in the infection cycles of (+) RNA viruses is RNA replication, which leads to rapid production of huge number of viral (+) RNA progeny in the infected plant cells. The RNA replication process is carried out by the virus-specific replicase complex consisting of viral RNA-dependent RNA polymerase, one or more auxiliary viral replication proteins, and host factors, which assemble in specialized membranous compartments in infected cells. Replication is followed by cell-to-cell and long-distance movement to invade the entire plant and/or encapsidation to facilitate transmission to new plants. This chapter provides an overview of our current understanding of the role of viral replication proteins during genome replication. The recent significant progress in this research area is based on development of powerful in vivo and in vitro approaches, including replicase assays, reverse genetic approaches, intracelular localization studies and the use of plant or yeast model hosts.
Collapse
|
47
|
cis- and trans-acting functions of brome mosaic virus protein 1a in genomic RNA1 replication. J Virol 2007; 82:3045-53. [PMID: 18160434 DOI: 10.1128/jvi.02390-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses employ a combination of mechanisms to regulate their gene expression and replication. Brome mosaic virus (BMV) is a tripartite positive-strand RNA virus used to study the requirements for virus infection. BMV genomic RNA1 encodes protein 1a, which contains a methyltransferase (MT) domain and a helicase domain that are required for replication. 1a forms a complex with the 2a RNA-dependent RNA polymerase for the replication and transcription of all BMV RNAs. RNA1 expressed with 2a from Agrobacterium-based vectors can result in RNA1 replication in Nicotiana benthamiana. A mutation in the 1a translation initiation codon significantly decreased RNA1 accumulation even when wild-type (WT) 1a and 2a were provided in trans. Therefore, efficient RNA1 replication requires 1a translation from RNA1 in cis, indicating a linkage between replication and translation. Mutation analyses showed that the full-length 1a protein was required for efficient RNA1 replication, not just the process of translation. Three RNA1s with mutations in the 1a MT domain could be partially rescued by WT 1a expressed in trans, indicating that the cis-acting function of 1a was retained. Furthermore, an RNA motif in the 5'-untranslated region of RNA1, named the B box, was required for 1a to function in cis and in trans for BMV RNA accumulation. The B box is required for the formation of the replication factory (M. Schwartz, J. Chen, M. Janda, M. Sullivan, J. den Boon, and P. Ahlquist, Mol. Cell 9:505-514, 2002). Results in this work demonstrate a linkage between BMV RNA1 translation and replication.
Collapse
|
48
|
Han YT, Tsai CS, Chen YC, Lin MK, Hsu YH, Meng M. Mutational analysis of a helicase motif-based RNA 5'-triphosphatase/NTPase from bamboo mosaic virus. Virology 2007; 367:41-50. [PMID: 17585982 PMCID: PMC7103348 DOI: 10.1016/j.virol.2007.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/06/2007] [Accepted: 05/03/2007] [Indexed: 12/15/2022]
Abstract
The helicase-like domain of BaMV replicase possesses NTPase and RNA 5′-triphosphatase activities. In this study, mutational effects of the helicase signature motifs and residue L543 on the two activities were investigated. Either activity was inactivated by K643A-S644A, D702A, D730A, R855A, or L543P mutations. On the other hand, Q826A, D858A and L543A had activities, in terms of kcat/Km, reduced by 5- to 15-fold. AMPPNP, a nonhydrolyzable ATP analogue, competitively inhibited RNA 5′-triphosphatase activity. Analogies of mutational effects on the two activities and approximation of Ki(AMPPNP) and Km(ATP) suggest that the catalytic sites of the activities are overlapped. Mutational effects on the viral accumulation in Chenopodium quinoa indicated that the activities manifested by the domain are required for BaMV survival. Results also suggest that Q826 in motif V plays an additional role in preventing tight binding to ATP, which would otherwise decrease further RNA 5′-triphosphatase, leading to demise of the virus in plant.
Collapse
|
49
|
Van Wynsberghe PM, Chen HR, Ahlquist P. Nodavirus RNA replication protein a induces membrane association of genomic RNA. J Virol 2007; 81:4633-44. [PMID: 17301137 PMCID: PMC1900146 DOI: 10.1128/jvi.02267-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Positive-strand RNA virus genome replication occurs in membrane-associated RNA replication complexes, whose assembly remains poorly understood. Here we show that prior to RNA replication, the multifunctional, transmembrane RNA replication protein A of the nodavirus flock house virus (FHV) recruits FHV genomic RNA1 to a membrane-associated state in both Drosophila melanogaster and Saccharomyces cerevisiae cells. Protein A has mitochondrial membrane-targeting, self-interaction, RNA-dependent RNA polymerase (RdRp), and RNA capping domains. In the absence of RdRp activity due to an active site mutation (A(D692E)), protein A stimulated RNA1 accumulation by increasing RNA1 stability. Protein A(D692E) stimulated RNA1 accumulation in wild-type cells and in xrn1(-) yeast defective in decapped RNA decay, showing that increased RNA1 stability was not due to protein A-mediated RNA1 recapping. Increased RNA1 stability was closely linked with protein A-induced membrane association of the stabilized RNA and was highly selective for RNA1. Substantial N- and C-proximal regions of protein A were dispensable for these activities. However, increased RNA1 accumulation was eliminated by deleting protein A amino acids (aa) 1 to 370 but was restored completely by adding back the transmembrane domain (aa 1 to 35) and partially by adding back peripheral membrane association sequences in aa 36 to 370. Moreover, although RNA polymerase activity was not required, even small deletions in or around the RdRp domain abolished increased RNA1 accumulation. These and other results show that prior to negative-strand RNA synthesis, multiple domains of mitochondrially targeted protein A cooperate to selectively recruit FHV genomic RNA to membranes where RNA replication complexes form.
Collapse
Affiliation(s)
- Priscilla M Van Wynsberghe
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706-1596, USA
| | | | | |
Collapse
|
50
|
Yi G, Gopinath K, Kao CC. Selective repression of translation by the brome mosaic virus 1a RNA replication protein. J Virol 2007; 81:1601-9. [PMID: 17108036 PMCID: PMC1797591 DOI: 10.1128/jvi.01991-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/05/2006] [Indexed: 12/23/2022] Open
Abstract
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|