1
|
Schwer B, Innokentev A, Sanchez AM, Garg A, Shuman S. Suppression of inositol pyrophosphate toxicosis and hyper-repression of the fission yeast PHO regulon by loss-of-function mutations in chromatin remodelers Snf22 and Sol1. mBio 2024; 15:e0125224. [PMID: 38899862 PMCID: PMC11253589 DOI: 10.1128/mbio.01252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Inositol pyrophosphates are signaling molecules that regulate cellular phosphate homeostasis in eukaryal taxa. In fission yeast, where the phosphate regulon (comprising phosphate acquisition genes pho1, pho84, and tgp1) is repressed under phosphate-replete conditions by lncRNA-mediated transcriptional interference, mutations of inositol pyrophosphatases that increase IP8 levels derepress the PHO regulon by eliciting precocious termination of lncRNA transcription. Asp1 pyrophosphatase mutations resulting in too much IP8 are cytotoxic in YES medium owing to overexpression of glycerophosphodiester transporter Tgp1. IP8 toxicosis is ameliorated by mutations in cleavage/polyadenylation and termination factors, perturbations of the Pol2 CTD code, and mutations in SPX domain proteins that act as inositol pyrophosphate sensors. Here, we show that IP8 toxicity is alleviated by deletion of snf22+, the gene encoding the ATPase subunit of the SWI/SNF chromatin remodeling complex, by an ATPase-inactivating snf22-(D996A-E997A) allele, and by deletion of the gene encoding SWI/SNF subunit Sol1. Deletion of snf22+ hyper-repressed pho1 expression in phosphate-replete cells; suppressed the pho1 derepression elicited by mutations in Pol2 CTD, termination factor Seb1, Asp1 pyrophosphatase, and 14-3-3 protein Rad24 (that favor precocious prt lncRNA termination); and delayed pho1 induction during phosphate starvation. RNA analysis and lack of mutational synergies suggest that Snf22 is not impacting 3'-processing/termination. Using reporter assays, we find that Snf22 is important for the activity of the tgp1 and pho1 promoters, but not for the promoters that drive the synthesis of the PHO-repressive lncRNAs. Transcription profiling of snf22∆ and snf22-(D996A-E997A) cells identified an additional set of 66 protein-coding genes that were downregulated in both mutants.IMPORTANCERepression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to inositol pyrophosphate dynamics. Cytotoxic asp1-STF alleles derepress the PHO genes via the action of IP8 as an agonist of precocious lncRNA 3'-processing/termination. IP8 toxicosis is alleviated by mutations of the Pol2 CTD and the 3'-processing/termination machinery that dampen the impact of toxic IP8 levels on termination. In this study, a forward genetic screen revealed that IP8 toxicity is suppressed by mutations of the Snf22 and Sol1 subunits of the SWI/SNF chromatin remodeling complex. Genetic and biochemical evidence indicates that the SWI/SNF is not affecting 3'-processing/termination or lncRNA promoter activity. Rather, SWI/SNF is critical for firing the PHO mRNA promoters. Our results implicate the ATP-dependent nucleosome remodeling activity of SWI/SNF as necessary to ensure full access of PHO-activating transcription factor Pho7 to its binding sites in the PHO mRNA promoters.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Aleksei Innokentev
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Hindman R, Gollnick P. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5' to 3' Translocase in Transcription Termination of Vaccinia Early Genes. J Biol Chem 2016; 291:14826-38. [PMID: 27189950 DOI: 10.1074/jbc.m116.730135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5' to 3' translocase on single-stranded DNA.
Collapse
Affiliation(s)
- Ryan Hindman
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| |
Collapse
|
3
|
The DExH box helicase domain of spindle-E is necessary for retrotransposon silencing and axial patterning during Drosophila oogenesis. G3-GENES GENOMES GENETICS 2014; 4:2247-57. [PMID: 25239103 PMCID: PMC4232550 DOI: 10.1534/g3.114.014332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transposable selfish genetic elements have the potential to cause debilitating mutations as they replicate and reinsert within the genome. Therefore, it is critical to keep the cellular levels of these elements low. This is especially true in the germline where these mutations could affect the viability of the next generation. A class of small noncoding RNAs, the Piwi-associated RNAs, is responsible for silencing transposable elements in the germline of most organisms. Several proteins have been identified as playing essential roles in piRNA generation and transposon silencing. However, for the most part their function in piRNA generation is currently unknown. One of these proteins is the Drosophila melanogaster DExH box/Tudor domain protein Spindle-E, whose activity is necessary for the generation of most germline piRNAs. In this study we molecularly and phenotypically characterized 14 previously identified spindle-E alleles. Of the alleles that express detectable Spindle-E protein, we found that five had mutations in the DExH box domain. Additionally, we found that processes that depend on piRNA function, including Aubergine localization, Dynein motor movement, and retrotransposon silencing, were severely disrupted in alleles with DExH box domain mutations. The phenotype of many of these alleles is as severe as the strongest spindle-E phenotype, whereas alleles with mutations in other regions of Spindle-E did not affect these processes as much. From these data we conclude that the DExH box domain of Spindle-E is necessary for its function in the piRNA pathway and retrotransposon silencing.
Collapse
|
4
|
Lin FY, Chan KW, Wang CY, Wong ML, Hsu WL. Purification and functional motifs of the recombinant ATPase of orf virus. Protein Expr Purif 2011; 79:210-6. [PMID: 21540113 DOI: 10.1016/j.pep.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/25/2022]
Abstract
Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity.
Collapse
Affiliation(s)
- Fong-Yuan Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Yoshida H, Imaizumi T, Lee SJ, Tanji K, Sakaki H, Matsumiya T, Ishikawa A, Taima K, Yuzawa E, Mori F, Wakabayashi K, Kimura H, Satoh K. Retinoic acid-inducible gene-I mediates RANTES/CCL5 expression in U373MG human astrocytoma cells stimulated with double-stranded RNA. Neurosci Res 2007; 58:199-206. [PMID: 17395328 DOI: 10.1016/j.neures.2007.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/16/2007] [Accepted: 02/26/2007] [Indexed: 12/13/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) mediates part of the cell signaling in response to viral infection. Polyinosinic-polycytidilic acid (poly IC) is a synthetic double-stranded RNA (dsRNA) and mimics viral infection when applied to cell cultures. The CC chemokine, RANTES (regulated on activation, normal T-cell expressed and secreted), is a potent attractant for inflammatory cells such as memory T-lymphocytes, monocytes and eosinophils. In the present study, we demonstrated that poly IC enhances the expression of RIG-I in U373MG human astrocytoma cells. The RNA interference of RIG-I resulted in the suppression of the poly IC-induced RANTES expression. Pretreatment of the cells with SB203580, an inhibitor of p38 mitogen-activated protein kinase, and dexamethasone inhibited the poly IC-induced expression of RIG-I. Furthermore, poly IC upregulated RIG-I in normal human astrocytes in culture and the in vivo injection of poly IC into the striatum of the mouse brain induced the expression of RIG-I in astrocytes. We conclude that RIG-I may be involved in immune reactions against viral infection, at least in part, through the regulation of RANTES expression in astrocytes.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cui XF, Imaizumi T, Yoshida H, Borden EC, Satoh K. Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells. Biochem Cell Biol 2004; 82:401-5. [PMID: 15181474 DOI: 10.1139/o04-041] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH box family proteins, which have diverse roles in regulation of gene expression and cellular functions. We found RIG-I mRNA and protein were expressed in MCF-7 human breast cancer cells stimulated with interferon-gamma (IFN-gamma). This effect of IFN-gamma was observed in concentration- and time-dependent manners, and IFN-gamma also induced promoter activity of RIG-I. Transfection of GFP-RIG-I cDNA into MCF-7 cells resulted in the expression of RIG-I protein in cytoplasm. Overexpression of RIG-I induced the upregulation of IFN-gamma stimulated gene 15, which has the potential to amplify the immunomodulatory effects. We conclude that IFN-gamma induces the expression of RIG-I, which may play a role in the immunological effects of IFN-gamma.
Collapse
Affiliation(s)
- Xue-Fan Cui
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | | | | | | | | |
Collapse
|
7
|
Imaizumi T, Hatakeyama M, Yamashita K, Yoshida H, Ishikawa A, Taima K, Satoh K, Mori F, Wakabayashi K. Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2004; 11:169-73. [PMID: 15370293 DOI: 10.1080/10623320490512156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interferon-gamma (IFN-gamma) induces expression of multiple genes in endothelial cells. Retinoic acid-inducible gene-I (RIG-I) encodes a protein belonging to the DExH-box family, but details of its physiological function are not clear. RIG-I is induced in leukemia cells by retinoic acid and in endothelial cells by lipopolysaccharide. In the present study, the authors found that IFN-gamma also induces the expression of RIG-I in human umbilical vein endothelial cells. Induction of RIG-I mRNA by IFN-gamma was not altered by the treatment with cycloheximide or interleukin-4. Fluorescent immunostaining and Western blot analysis revealed cytoplasmic distribution of RIG-I. The in situ endothelium in a normal lung tissue was also found to express RIG-I protein. Although the physiological function of RIG-I is still unknown, induction of RIG-I by IFN-gamma may play an important role in inflammatory or immunological reactions in endothelial cells.
Collapse
Affiliation(s)
- T Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tanaka T, Taniyama C, Arai KI, Masai H. ATPase/helicase motif mutants of Escherichia coli PriA protein essential for recombination-dependent DNA replication. Genes Cells 2003; 8:251-61. [PMID: 12622722 DOI: 10.1046/j.1365-2443.2003.00630.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND PriA protein, a DEXH-type helicase with C2C2 zinc-finger motifs, plays essential roles in RecA-dependent modes of Escherichia coli chromosomal DNA replication, namely inducible and constitutive stable DNA replication (iSDR and cSDR respectively, which may be initiated from a D-loop or R-loop structure), and in repair of double-stranded DNA breaks generated by various genotoxic agents or spontaneously during the course of DNA replication. However, the roles of ATPase/DNA helicase activities in functions of PriA are not well understood. RESULTS We have generated and characterized mutants of PriA protein carrying amino acid substitutions in its conserved ATPase/DNA helicase motifs, namely the Walker A, B and QXXGRXGR motifs. All these mutants were deficient in ATP hydrolysis and DNA helicase activities, but showed wild-type levels of D-loop DNA binding, except for the Walker B mutant which showed reduced DNA binding activity, suggesting that the helicase motifs are not directly involved in the DNA binding activity of PriA protein. They also rescued the low viability and UV-sensitivity of priA null cells. However, they did not rescue iSDR or cSDR-alternative modes of chromosomal DNA replication of the E. coli genome dependent on recombination functions-to the full extent. CONCLUSIONS ATPase/DNA helicase activities of PriA protein are required for full-level DNA synthesis in recombination-dependent modes of DNA replication in E. coli.
Collapse
Affiliation(s)
- Taku Tanaka
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
9
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
10
|
Schneider S, Hotz HR, Schwer B. Characterization of dominant-negative mutants of the DEAH-box splicing factors Prp22 and Prp16. J Biol Chem 2002; 277:15452-8. [PMID: 11856747 DOI: 10.1074/jbc.m112473200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Prp22 and Prp16 are RNA-dependent ATPases required for pre-mRNA splicing. Both proteins are members of the DEXH-box family of nucleic acid-dependent NTPases. Prior mutational analysis of Prp22 and Prp16 identified residues within conserved motifs I (GXGKT), II (DEAH), and VI (QRXGRXGR) that are required for their biological activity. Nonfunctional Prp22 and Prp16 mutants exerted a dominant negative effect on cell growth. Here we show that overexpression of lethal Prp22 mutants leads to accumulation of unspliced pre-mRNAs and excised introns in vivo. The biochemical basis for the lethality and inhibition of splicing in vivo was determined by purifying and characterizing recombinant mutant proteins. The lethal Prp22 mutants D603A and E604A in motif II and Q804A and R808A in motif VI were defective for ATP hydrolysis and mRNA release from the spliceosome, but were active in promoting step 2 transesterification. Lethal Prp16 mutants G378A and K379A in motif I; D473A and E474A in motif II; and Q685A, G688A, R689A, and R692A in motif VI were defective for ATP hydrolysis and step 2 transesterification chemistry. The ATPase-defective mutants of Prp16 and Prp22 bound to spliceosomes in vitro and blocked the function of the respective wild-type proteins in trans. Comparing the mutational effects in Prp16 and Prp22 highlights common as well as distinct structural requirements for the ATP-dependent steps in pre-mRNA splicing.
Collapse
Affiliation(s)
- Susanne Schneider
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
11
|
Imaizumi T, Aratani S, Nakajima T, Carlson M, Matsumiya T, Tanji K, Ookawa K, Yoshida H, Tsuchida S, McIntyre TM, Prescott SM, Zimmerman GA, Satoh K. Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2. Biochem Biophys Res Commun 2002; 292:274-9. [PMID: 11890704 DOI: 10.1006/bbrc.2002.6650] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial lipopolysaccharides (LPS) induce expression of multiple genes in endothelial cells, which are critical cellular effectors in various pathologic syndromes. Using subtractive hybridization to identify genes that are differentially induced in human endothelial cells treated with LPS, we found that retinoic acid-inducible gene I (RIG-I) is induced in endothelial cells stimulated with LPS. RIG-I encodes a protein belonging to the DExH-box family which has diverse roles in regulation of gene expression and cellular functions. Cyclooxygenase-2 (COX-2) is also induced in endothelial cells by LPS. Overexpression of RIG-I selectively upregulated expression of COX-2 and also induced COX-2 promoter activity. RIG-I is an inducible gene in stimulated endothelial cells that may have important roles in vascular pathology by virtue of its ability to regulate expression of the COX-2 gene product.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Campodonico E, Schwer B. ATP-dependent remodeling of the spliceosome: intragenic suppressors of release-defective mutants of Saccharomyces cerevisiae Prp22. Genetics 2002; 160:407-15. [PMID: 11861548 PMCID: PMC1461984 DOI: 10.1093/genetics/160.2.407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The essential splicing factor Prp22 is a DEAH-box helicase that catalyzes the release of mRNA from the spliceosome. ATP hydrolysis by Prp22 is necessary but not sufficient for spliceosome disassembly. Previous work showed that mutations in motif III (635SAT637) of Prp22 that uncouple ATP hydrolysis from spliceosome disassembly lead to severe cold-sensitive (cs) growth defects and to impaired RNA unwinding activity in vitro. The cs phenotype of S635A (635AAT) can be suppressed by intragenic mutations that restore RNA unwinding. We now report the isolation and characterization of new intragenic mutations that suppress the cold-sensitive growth phenotypes of the T637A motif III mutation (SAA), the H606A mutation in the DEAH-box (DEAA), and the R805A mutation in motif VI (804QAKGRAGR811). Whereas the T637A and H606A proteins are deficient in releasing mRNA from the spliceosome at nonpermissive temperature in vitro, the suppressor proteins have recovered mRNA release activity. To address the mechanisms of suppression, we tested ATPase and helicase activities of Prp22 suppressor mutant proteins and found that the ability to unwind a 25-bp RNA duplex was not restored in every case. This finding suggests that release of mRNA from the spliceosome is less demanding than unwinding of a 25-bp duplex RNA; the latter reaction presumably reflects the result of several successive cycles of ATP binding, hydrolysis, and unwinding. Increasing the reaction temperature allows H606A and T637A to effect mRNA release in vitro, but does not restore RNA unwinding by T637A.
Collapse
Affiliation(s)
- Eva Campodonico
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Abstract
T4 polynucleotide kinase (Pnk) is the founding member of a family of 5'-kinase/3'-phosphatase enzymes that heal broken termini in RNA or DNA by converting 3'-PO(4)/5'-OH ends into 3'-OH/5'-PO(4) ends, which are then suitable for sealing by RNA or DNA ligases. Here we employed site-directed mutagenesis and biochemical methods to dissect the domain structure of the homotetrameric T4 Pnk protein and to localize essential constituents of the apparently separate active sites for the 5'-kinase and 3'-phosphatase activities. We characterized deletion mutants Pnk(42-301) and Pnk(1-181), which correspond to domains defined by proteolysis with chymotrypsin. Pnk(1-181) is a monomer with no 3'-phosphatase and low residual 5'-kinase activity. Pnk(42-301) is a dimer with no 5'-kinase and low residual 3'-phosphatase activity. Four classes of missense mutational effects were observed. (i) Mutations K15A, S16A, and D35A inactivated the 5'-kinase but did not affect the 3'-phosphatase or the tetrameric quaternary structure of T4 Pnk. 5'-kinase activity was ablated by the conservative mutations K15R, K15Q, and D35N; however, kinase activity was restored by the S16T change. (ii) Mutation D167A inactivated the 3'-phosphatase without affecting the 5'-kinase or tetramerization. (iii) Mutation D85A caused a severe decrement in 5'-kinase activity and only a modest effect on the 3'-phosphatase; the nearby N87A mutation resulted in a significantly reduced 3'-phosphatase activity and slightly reduced 5'-kinase activity. D85A and N87A both affected the quaternary structure, resulting in a mixed population of tetramer and dimer species. (iv) Alanine mutations at 11 other conserved positions had no significant effect on either 5'-kinase or 3'-phosphatase activity.
Collapse
Affiliation(s)
- L K Wang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Abstract
The essential Saccharomyces cerevisiae PRP22 gene encodes a 1145-amino acid DEXH box RNA helicase. Prp22p plays two roles during pre-mRNA splicing as follows: it is required for the second transesterification step and for the release of mature mRNA from the spliceosome. Whereas the step 2 function of Prp22p does not require ATP hydrolysis, spliceosome disassembly is dependent on the ATPase and helicase activities. Here we delineate a minimal functional domain, Prp22(262-1145), that suffices for the activity of Prp22p in vivo when expressed under the natural PRP22 promoter and for pre-mRNA splicing activity in vitro. The biologically active domain lacks an S1 motif (residues 177-256) that had been proposed to play a role in RNA binding by Prp22p. The deletion mutant Prp22(351-1145) can function in vivo when provided at a high gene dosage. We suggest that the segment from residues 262 to 350 enhances Prp22p function in vivo, presumably by targeting Prp22p to the spliceosome. We characterize an even smaller catalytic domain, Prp22(466-1145) that suffices for ATP hydrolysis, RNA binding, and RNA unwinding in vitro and for nuclear localization in vivo but cannot by itself support cell growth. However, the ATPase/helicase domain can function in vivo if the N-terminal region Prp22(1-480) is co-expressed in trans.
Collapse
Affiliation(s)
- S Schneider
- Department of Microbiology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
15
|
Abstract
The DExH-box NTPase/helicase Prp22p plays two important roles in pre-mRNA splicing. It promotes the second transesterification reaction and then catalyzes the ATP-dependent release of mature mRNA from the spliceosome. Evidence that helicase activity is important emerged from the analysis of Prp22p motif III (SAT) mutations that uncouple the NTPase and helicase activities. We find that S635A and T637A hydrolyse ATP, but are defective in unwinding duplex RNA and releasing mRNA from the spliceosome. The S635A mutation is lethal in vivo at </=30 degrees C and results in slow growth at 34-37 degrees C. Further insights into helicase action during splicing were gleaned by isolating and characterizing intragenic suppressors of prp22-S635A. Biochemical analysis of the S27 suppressor protein showed that a second mutation of Val539 to Ile in motif Ia revived the helicase activity of the S635A mutant together with the ability to catalyze mRNA release. These findings underscore the tight correlation of RNA unwinding and spliceosome disassembly and demonstrate how suppressor analysis can be used to dissect the subtle internal domain dynamics of helicase action.
Collapse
Affiliation(s)
- B Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|