1
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
2
|
Holtappels R, Becker S, Hamdan S, Freitag K, Podlech J, Lemmermann NA, Reddehase MJ. Immunotherapy of cytomegalovirus infection by low-dose adoptive transfer of antiviral CD8 T cells relies on substantial post-transfer expansion of central memory cells but not effector-memory cells. PLoS Pathog 2023; 19:e1011643. [PMID: 37972198 PMCID: PMC10688903 DOI: 10.1371/journal.ppat.1011643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sara Becker
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara Hamdan
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Gerbitz A, Gary R, Aigner M, Moosmann A, Kremer A, Schmid C, Hirschbuehl K, Wagner E, Hauptrock B, Teschner D, Roesler W, Spriewald B, Tischer J, Moi S, Balzer H, Schaffer S, Bausenwein J, Wagner A, Schmidt F, Brestrich J, Ullrich B, Maas S, Herold S, Strobel J, Zimmermann R, Weisbach V, Hansmann L, Lammoglia-Cobo F, Remberger M, Stelljes M, Ayuk F, Zeiser R, Mackensen A. Prevention of CMV/EBV reactivation by double-specific T cells in patients after allogeneic stem cell transplantation: results from the randomized phase I/IIa MULTIVIR-01 study. Front Immunol 2023; 14:1251593. [PMID: 37965339 PMCID: PMC10642256 DOI: 10.3389/fimmu.2023.1251593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population. Methods We report the results of a randomized controlled multi centre phase I/IIa study (MULTIVIR-01) using a newly developed T cell product with specificity for CMV and EBV derived from the allogeneic stem cell grafts used for transplantation. The study aimed at prevention and preemptive treatment of both viruses in patients after allogeneic stem cell transplantation targeting first infusion on day +30. Primary endpoints were acute transfusion reaction and acute-graft versus-host-disease after infusion of activated T cells. Results Thirty-three patients were screened and 9 patients were treated with a total of 25 doses of the T cell product. We show that central manufacturing can be achieved successfully under study conditions and the product can be applied without major side effects. Overall survival, transplant related mortality, cumulative incidence of graft versus host disease and number of severe adverse events were not different between treatment and control groups. Expansion of CMV/EBV specific T cells was observed in a fraction of patients, but overall there was no difference in virus reactivation. Discussion Our study results indicate peptide stimulated epitope specific T cells derived from stem cell grafts can be administered safely for prevention and preemptive treatment of reactivation without evidence for induction of acute graft versus host disease. Clinical trial registration https://clinicaltrials.gov, identifier NCT02227641.
Collapse
Affiliation(s)
- Armin Gerbitz
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
- Princess Margaret Cancer Centre, Division of Medical Oncology/Hematology, Toronto, ON, Canada
| | - Regina Gary
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Moosmann
- Department of Medicine 3, LMU University Hospital, Munich, Germany
- Helmholtz Center Munich, Institute of Virology, Munich, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Munich, Germany
| | - Anita Kremer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmid
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Klaus Hirschbuehl
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Eva Wagner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Beate Hauptrock
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Wolf Roesler
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Johanna Tischer
- Department of Medicine 3, LMU University Hospital, Munich, Germany
| | - Stephanie Moi
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Heidi Balzer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Judith Bausenwein
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anja Wagner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Franziska Schmidt
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Brestrich
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Barbara Ullrich
- Medical Center for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Susanne Herold
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Fernanda Lammoglia-Cobo
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and Clinical Research and Development Unit (KFUE), Uppsala University Hospital, Uppsala, Sweden
| | - Matthias Stelljes
- Department of Hematology/Oncology, University Hospital Muenster, Muenster, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Zeiser
- Department of Medicine 1, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Rousselière A, Charreau B. Persistent CD8 T Cell Marks Caused by the HCMV Infection in Seropositive Adults: Prevalence of HLA-E-Reactive CD8 T Cells. Cells 2023; 12:cells12060889. [PMID: 36980230 PMCID: PMC10047643 DOI: 10.3390/cells12060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the frequency and peptide specificity of long-lasting HCMV-specific CD8 T cells in a cohort of 120 cytomegalovirus seropositive (HCMV+) healthy carriers with the aim of deciphering the relative contribution of unconventional HLA-E- versus conventional HLA-A2-specific CD8 T cells to long-term T cell memory expansion in HCMV immunity. The presence of HCMV-specific CD8 T cells was investigated by flow cytometry using five MHC/peptide tetramer complexes (HLA-A2/pp65, HLA-A2/IE1 and three different HLA-E/UL40). Here, we report that 50% of HCMV+ healthy individuals possess HCMV-specific CD8 T cells, representing ≥0.1% of total blood CD8 T cells years post-infection. Around a third (30.8%) of individuals possess HLA-A2-restricted (A2pp65 or A2IE1) and an equal proportion (27.5%) possess an HLA-E/UL40 CD8 T response. Concomitant HLA-E- and HLA-A2-reactive CD8 T cells were frequently found, and VMAPRTLIL peptide was the major target. The frequency of HLA-E/VMAPRTLIL among total blood CD8 T cells was significantly higher than the frequency of HLA-A2pp65 T cells (mean values: 5.9% versus 2.3%, p = 0.0354). HLA-EUL40 CD8 T cells display lower TCR avidity but similar levels of CD3 and CD8 coreceptors. In conclusion, HLA-E-restricted CD8 T cells against the VMAPRTLIL UL40 peptide constitute a predominant subset among long-lasting anti-HCMV CD8 T cells.
Collapse
Affiliation(s)
- Amélie Rousselière
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
| | - Béatrice Charreau
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CEDEX 1, 44093 Nantes, France
- Correspondence:
| |
Collapse
|
5
|
Rousselière A, Gérard N, Delbos L, Guérif P, Giral M, Bressollette-Bodin C, Charreau B. Distinctive phenotype for HLA-E- versus HLA-A2-restricted memory CD8 αβT cells in the course of HCMV infection discloses features shared with NKG2C +CD57 +NK and δ2 -γδT cell subsets. Front Immunol 2022; 13:1063690. [PMID: 36532017 PMCID: PMC9752567 DOI: 10.3389/fimmu.2022.1063690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
The human cytomegalovirus (HCMV) triggers both innate and adaptive immune responses, including protective CD8+ αβT cells (CD8T) that contributes to the control of the infection. In addition to CD8T restricted by classical HLA class Ia molecules, HCMV also triggers CD8T recognizing peptides from the HCMV UL40 leader peptide and restricted by HLA-E molecules (HLA-EUL40 CD8T). This study investigated the frequency, phenotype and functions of HLA-EUL40 CD8T in comparison to the immunodominant HLA-A2pp65 CD8T upon acute (primary or secondary infection) or chronic infection in kidney transplant recipients (KTR) and in seropositive (HCMV+) healthy volunteer (HV) hosts. The frequency of hosts with detected HLA-EUL40 CD8T was similar after a primary infection (24%) and during viral latency in HCMV+ HV (26%) and equal to the frequency of HLA-A2pp65 CD8T cells in both conditions (29%). Both CD8T subsets vary from 0.1% to >30% of total circulating CD8T according to the host. Both HLA-EUL40 and HLA-A2pp65 CD8T display a phenotype specific of CD8+ TEMRA (CD45RA+/CCR7-) but HLA-EUL40 CD8T express distinctive level for CD3, CD8 and CD45RA. Tim3, Lag-3, 4-1BB, and to a lesser extend 2B4 are hallmarks for T cell priming post-primary infection while KLRG1 and Tigit are markers for restimulated and long lived HCMV-specific CD8T responses. These cell markers are equally expressed on HLA-EUL40 and HLA-A2pp65 CD8T. In contrast, CD56 and PD-1 are cell markers discriminating memory HLA-E- from HLA-A2-restricted CD8T. Long lived HLA-EUL40 display higher proliferation rate compared to HLA-A2pp65 CD8T consistent with elevated CD57 expression. Finally, a comparative immunoprofiling indicated that HLA-EUL40 CD8T, divergent from HLA-A2pp65 CD8T, share the expression of CD56, CD57, NKG2C, CD158 and the lack of PD-1 with NKG2C+CD57+ NK and δ2-γδT cells induced in response to HCMV and thus defines a common immunopattern for these subsets.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Nathalie Gérard
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, Nantes, France,CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France,*Correspondence: Béatrice Charreau,
| |
Collapse
|
6
|
Dasari V, Beckett K, Horsefield S, Ambalathingal G, Khanna R. A bivalent CMV vaccine formulated with human compatible TLR9 agonist CpG1018 elicits potent cellular and humoral immunity in HLA expressing mice. PLoS Pathog 2022; 18:e1010403. [PMID: 35737741 PMCID: PMC9223316 DOI: 10.1371/journal.ppat.1010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings. Human Cytomegalovirus (CMV) is a significant human pathogen. Generally, in healthy people CMV causes mild symptomatic disease, but during pregnancy CMV can transmit from mother to foetus (1 out of every 200 live births worldwide) and lead to sensorineural hearing loss, vision impairment and central nervous system damage. In transplant patients, CMV can cause serious complications leading to organ rejection and even death. Currently, there is no licensed vaccine available to prevent CMV-associated complications in pregnant women and transplant patients. Here, we have developed a novel bivalent CMV vaccine formulation consisting of recombinant CMVpoly and gB proteins in combination with human compatible adjuvant CpG1018. Preclinical immunogenicity evaluation in multiple HLA expressing mice demonstrated that bivalent CMV vaccine formulation consistently generated robust CMV-specific neutralising antibodies, CD4+ and CD8+ T cell responses. More importantly, long-term follow-up analysis showed that the CMV vaccine can induce durable CMV-specific humoral and cellular immune responses. Our results support further development of this bivalent subunit CMV vaccine to test safety, immunogenicity and efficacy in humans.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| | - Kirrilee Beckett
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| |
Collapse
|
7
|
Campisi L, Chizari S, Ho JSY, Gromova A, Arnold FJ, Mosca L, Mei X, Fstkchyan Y, Torre D, Beharry C, Garcia-Forn M, Jiménez-Alcázar M, Korobeynikov VA, Prazich J, Fayad ZA, Seldin MM, De Rubeis S, Bennett CL, Ostrow LW, Lunetta C, Squatrito M, Byun M, Shneider NA, Jiang N, La Spada AR, Marazzi I. Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature 2022; 606:945-952. [PMID: 35732742 PMCID: PMC10089623 DOI: 10.1038/s41586-022-04844-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.
Collapse
Affiliation(s)
- Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jessica S Y Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Frederick J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy Beharry
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Jiménez-Alcázar
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Jack Prazich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lyle W Ostrow
- Neuromuscular Division of the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Lunetta
- NEMO Clinical Center, Fondazione Serena Onlus, Milan, Italy
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Pyo HS, Hong CH, Choi H, Baek IC, Kim TG. Identification of Naturally Processed Epitope Region Using Artificial APC Expressing a Single HLA Class I Allotype and mRNA of HCMV pp65 Antigen Fragments. Vaccines (Basel) 2022; 10:vaccines10050787. [PMID: 35632543 PMCID: PMC9143612 DOI: 10.3390/vaccines10050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, long synthetic peptides or in silico-predicted epitope peptides have been used to identify T cell epitopes, but these approaches may not be suitable for investigating naturally processed epitopes. Here, mRNAs, including fragments or predicted epitope sequences of HCMV pp65 antigen, were generated by in vitro transcription following transcriptionally active PCR. Then, artificial antigen-presenting cells (aAPCs) expressing a single HLA allotype were transfected with mRNAs to identify epitopes in donors with T cell responses that recognize pp65 antigen restricted to HLA-A*02:01, -A*02:06, or -B*07:02. T cells restricted to a particular HLA allotype showed positive responses in some of the 10 fragment antigens. Among predicted epitopes within these positive fragments, three epitopes of HLA-A*02:01, -A*02:06, and -B*07:02 were confirmed. In addition, T cells expanded by anti-CD3 stimulation for two weeks could also be effectively used for the identification of these T cell epitopes, although there were individual differences. These results demonstrated that fragment antigens and epitopes can be rapidly generated using mRNA, and naturally processed antigenic regions can be detected using aAPCs without a T cell cloning procedure. This method will help to identify novel T cell epitopes for developing immunotherapy and vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Hong-Seon Pyo
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Cheol-Hwa Hong
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: ; Tel.: +82-2-2258-7341
| |
Collapse
|
9
|
Clement Dobbins G, Kimberlin D, Ross S. Cytomegalovirus variation among newborns treated with valganciclovir. Antiviral Res 2022; 203:105326. [DOI: 10.1016/j.antiviral.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
10
|
Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells. Pathogens 2021; 10:pathogens10080956. [PMID: 34451420 PMCID: PMC8400798 DOI: 10.3390/pathogens10080956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalovirus as a model, we provide evidence to conclude that epitope hierarchy reflects competition on the level of antigen recognition. Notably, high-avidity cells specific for non-IDEs were found to expand only when IDEs were deleted. This may be a host’s back-up strategy to avoid viral immune escape through antigenic drift caused by IDE mutations. Importantly, our results are relevant for the design of vaccines based on cytomegaloviruses as vectors to generate high-avidity CD8+ T-cell memory specific for unrelated pathogens or tumors. We propose the deletion of vector-encoded IDEs to avoid the suppression of epitopes of the vaccine target.
Collapse
|
11
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
12
|
Lee SY, Ko DH, Son MJ, Kim JA, Jung K, Kim YS. Affinity Maturation of a T-Cell Receptor-Like Antibody Specific for a Cytomegalovirus pp65-Derived Peptide Presented by HLA-A*02:01. Int J Mol Sci 2021; 22:ijms22052349. [PMID: 33652936 PMCID: PMC7956451 DOI: 10.3390/ijms22052349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) infection is widespread among adults (60–90%) and is usually undetected in healthy individuals without symptoms but can cause severe diseases in immunocompromised hosts. T-cell receptor (TCR)-like antibodies (Abs), which recognize complex antigens (peptide–MHC complex, pMHC) composed of MHC molecules with embedded short peptides derived from intracellular proteins, including pathogenic viral proteins, can serve as diagnostic and/or therapeutic agents. In this study, we aimed to engineer a TCR-like Ab specific for pMHC comprising a CMV pp65 protein-derived peptide (495NLVPMVATV503; hereafter, CMVpp65495-503) in complex with MHC-I molecule human leukocyte antigen (HLA)-A*02:01 (CMVpp65495-503/HLA-A*02:01) to increase affinity by sequential mutagenesis of complementarity-determining regions using yeast surface display technology. Compared with the parental Ab, the final generated Ab (C1-17) showed ~67-fold enhanced binding affinity (KD ≈ 5.2 nM) for the soluble pMHC, thereby detecting the cell surface-displayed CMVpp65495-503/HLA-A*02:01 complex with high sensitivity and exquisite specificity. Thus, the new high-affinity TCR-like Ab may be used for the detection and treatment of CMV infection.
Collapse
Affiliation(s)
- Se-Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (S.-Y.L.); (D.-H.K.); (M.-J.S.); (J.-A.K.)
| | - Deok-Han Ko
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (S.-Y.L.); (D.-H.K.); (M.-J.S.); (J.-A.K.)
| | - Min-Jeong Son
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (S.-Y.L.); (D.-H.K.); (M.-J.S.); (J.-A.K.)
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (S.-Y.L.); (D.-H.K.); (M.-J.S.); (J.-A.K.)
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (S.-Y.L.); (D.-H.K.); (M.-J.S.); (J.-A.K.)
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Korea;
- Correspondence: ; Tel.: +82-31-219-2662; Fax: +82-31-219-1610
| |
Collapse
|
13
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
14
|
Grassmann S, Mihatsch L, Mir J, Kazeroonian A, Rahimi R, Flommersfeld S, Schober K, Hensel I, Leube J, Pachmayr LO, Kretschmer L, Zhang Q, Jolly A, Chaudhry MZ, Schiemann M, Cicin-Sain L, Höfer T, Busch DH, Flossdorf M, Buchholz VR. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat Immunol 2020; 21:1563-1573. [DOI: 10.1038/s41590-020-00807-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
15
|
Lübke M, Spalt S, Kowalewski DJ, Zimmermann C, Bauersfeld L, Nelde A, Bichmann L, Marcu A, Peper JK, Kohlbacher O, Walz JS, Le-Trilling VTK, Hengel H, Rammensee HG, Stevanović S, Halenius A. Identification of HCMV-derived T cell epitopes in seropositive individuals through viral deletion models. J Exp Med 2020; 217:e20191164. [PMID: 31869419 PMCID: PMC7062530 DOI: 10.1084/jem.20191164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.
Collapse
Affiliation(s)
- Maren Lübke
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stefanie Spalt
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Daniel J. Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Janet Kerstin Peper
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology and Oncology, University Hospital Tübingen, Tübingen, Germany
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, Partner Site Tübingen, Tübingen, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Peripheral CD8 + T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat Med 2020; 26:193-199. [PMID: 32042196 PMCID: PMC7611047 DOI: 10.1038/s41591-019-0734-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Abstract
Immune checkpoint blockade (ICB) of PD-1 and CTLA-4 to treat metastatic melanoma (MM) has variable therapeutic benefit. To explore this in peripheral samples, we characterized CD8+ T cell gene expression across a cohort of patients with MM receiving anti-PD-1 alone (sICB) or in combination with anti-CTLA-4 (cICB). Whereas CD8+ transcriptional responses to sICB and cICB involve a shared gene set, the magnitude of cICB response is over fourfold greater, with preferential induction of mitosis- and interferon-related genes. Early samples from patients with durable clinical benefit demonstrated overexpression of T cell receptor-encoding genes. By mapping T cell receptor clonality, we find that responding patients have more large clones (those occupying >0.5% of repertoire) post-treatment than non-responding patients or controls, and this correlates with effector memory T cell percentage. Single-cell RNA-sequencing of eight post-treatment samples demonstrates that large clones overexpress genes implicated in cytotoxicity and characteristic of effector memory T cells, including CCL4, GNLY and NKG7. The 6-month clinical response to ICB in patients with MM is associated with the large CD8+ T cell clone count 21 d after treatment and agnostic to clonal specificity, suggesting that post-ICB peripheral CD8+ clonality can provide information regarding long-term treatment response and, potentially, facilitate treatment stratification.
Collapse
|
17
|
Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E, Ladell K, Hill BJ, Himelfarb D, Quinn KM, Greenaway HY, Dang THY, Seder RA, Douek DC, Hill AB, Davenport MP, Price DA, Snyder CM. Stochastic Expansions Maintain the Clonal Stability of CD8 + T Cell Populations Undergoing Memory Inflation Driven by Murine Cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2019; 204:112-121. [PMID: 31818981 PMCID: PMC6920548 DOI: 10.4049/jimmunol.1900455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Clonal stability is a feature of memory inflation. Stochastic expansions maintain clonal stability during memory inflation. Persistent clonotypes are often public in the context of memory inflation.
CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maire F Quigley
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Holly Turula
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle Himelfarb
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hui Yee Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Thurston H Y Dang
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Robert A Seder
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
18
|
Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol 2019; 208:339-347. [PMID: 30972476 DOI: 10.1007/s00430-019-00607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adoptive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany. .,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany.
| |
Collapse
|
19
|
Huth A, Liang X, Krebs S, Blum H, Moosmann A. Antigen-Specific TCR Signatures of Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:979-990. [PMID: 30587531 DOI: 10.4049/jimmunol.1801401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
CMV is a prevalent human pathogen. The virus cannot be eliminated from the body, but is kept in check by CMV-specific T cells. Patients with an insufficient T cell response, such as transplant recipients, are at high risk of developing CMV disease. However, the CMV-specific T cell repertoire is complex, and it is not yet clear which T cells protect best against virus reactivation and disease. In this study, we present a highly resolved characterization of CMV-specific human CD8+ T cells based on enrichment by specific peptide stimulation and mRNA sequencing of their TCR β-chains (TCRβ). Our analysis included recently identified T cell epitopes restricted through HLA-C, whose presentation is resistant to viral immunomodulation, and well-studied HLA-B-restricted epitopes. In eight healthy virus carriers, we identified a total of 1052 CMV-specific TCRβ sequences. HLA-C-restricted, CMV-specific TCRβ clonotypes dominated the ex vivo T cell response and contributed the highest-frequency clonotype of the entire repertoire in two of eight donors. We analyzed sharing and similarity of CMV-specific TCRβ sequences and identified 63 public or related sequences belonging to 17 public TCRβ families. In our cohort, and in an independent cohort of 352 donors, the cumulative frequency of these public TCRβ family members was a highly discriminatory indicator of carrying both CMV infection and the relevant HLA type. Based on these findings, we propose CMV-specific TCRβ signatures as a biomarker for an antiviral T cell response to identify patients in need of treatment and to guide future development of immunotherapy.
Collapse
Affiliation(s)
- Alina Huth
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany.,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| | - Xiaoling Liang
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany; .,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| |
Collapse
|
20
|
Gary R, Aigner M, Moi S, Schaffer S, Gottmann A, Maas S, Zimmermann R, Zingsem J, Strobel J, Mackensen A, Mautner J, Moosmann A, Gerbitz A. Clinical-grade generation of peptide-stimulated CMV/EBV-specific T cells from G-CSF mobilized stem cell grafts. J Transl Med 2018; 16:124. [PMID: 29743075 PMCID: PMC5941463 DOI: 10.1186/s12967-018-1498-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein–Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. Methods We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. Results CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Conclusion Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial. Electronic supplementary material The online version of this article (10.1186/s12967-018-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Gary
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Michael Aigner
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stephanie Moi
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Schaffer
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Anja Gottmann
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies CCS, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Jürgen Zingsem
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Mackensen
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Josef Mautner
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Technical University of Munich, Marchioninistr. 25, 81377, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation (HOCOVLAR), Helmholtz Zentrum München, Marchioninistr. 25, 81377, Munich, Germany
| | - Armin Gerbitz
- Department of Hematology, Oncology and Tumorimmunology, Charité Berlin, Berlin, Germany
| |
Collapse
|
21
|
Malik A, Adland E, Laker L, Kløverpris H, Fardoos R, Roider J, Severinsen MC, Chen F, Riddell L, Edwards A, Buus S, Jooste P, Matthews PC, Goulder PJR. Immunodominant cytomegalovirus-specific CD8+ T-cell responses in sub-Saharan African populations. PLoS One 2017; 12:e0189612. [PMID: 29232408 PMCID: PMC5726643 DOI: 10.1371/journal.pone.0189612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/29/2017] [Indexed: 01/14/2023] Open
Abstract
More than 90% of children in Africa are infected with cytomegalovirus (CMV) by the age of 12 months. However, the high-frequency, immunodominant CD8+ T-cell responses that control CMV infection have not been well studied in African populations. We therefore sought to define the immunodominant CMV-specific CD8+ T-cell responses within sub-Saharan African study subjects. Among 257 subjects, we determined the CD8+ T-cell responses to overlapping peptides spanning three of the most immunogenic CMV proteins, pp65, IE-1 and IE-2, using IFN-γ ELISpot assays. A bioinformatics tool was used to predict optimal epitopes within overlapping peptides whose recognition was statistically associated with expression of particular HLA class I molecules. Using this approach, we identified 16 predicted novel CMV-specific epitopes within CMV-pp65, IE-1 and IE-2. The immunodominant pp65-specific, IE-1, IE-2 responses were all either previously well characterised or were confirmed using peptide-MHC tetramers. The novel epitopes identified included an IE-2-specific epitope restricted by HLA*B*44:03 that induced high-frequency CD8+ T-cell responses (mean 3.4% of CD8+ T-cells) in 95% of HLA-B*44:03-positive subjects tested, in one individual accounting for 18.8% of all CD8+ T-cells. These predicted novel CMV-specific CD8+ T-cell epitopes identified in an African cohort will facilitate future analyses of immune responses in African populations where CMV infection is almost universal during infancy.
Collapse
Affiliation(s)
- Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Leana Laker
- Kimberley General Hospital, Kimberley, South Africa
| | - Henrik Kløverpris
- Africa Health Research Institute, AHRI, Durban, South Africa
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- University College London, Department of Infection and Immunity, London, United Kingdom
| | - Rabiah Fardoos
- Africa Health Research Institute, AHRI, Durban, South Africa
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Roider
- Africa Health Research Institute, AHRI, Durban, South Africa
| | - Mai C. Severinsen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare NHS Trust, Northampton General Hospital, Northampton, United Kingdom
| | - Anne Edwards
- Oxford Department of Genitourinary Medicine, the Churchill Hospital, Oxford, United Kingdom
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, Barnes EJ, Sharpe AH, Haining WN, Yosef N. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res 2017; 45:e148. [PMID: 28934479 PMCID: PMC5766189 DOI: 10.1093/nar/gkx615] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV.
Collapse
Affiliation(s)
- Shaked Afik
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Bi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Jernej Godec
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Ulrike Gerdemann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leo Swadling
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Paul Klenerman
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Eleanor J Barnes
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.,Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, USA.,Chan Zuckerberg Biohub
| |
Collapse
|
23
|
Highly functional T-cell receptor repertoires are abundant in stem memory T cells and highly shared among individuals. Sci Rep 2017. [PMID: 28623251 PMCID: PMC5473819 DOI: 10.1038/s41598-017-03855-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To expand our knowledge of the ontogeny of the T-cell receptor (TCR) repertoire of antigen-specific T-cell subsets, we combined next-generation deep sequencing and single-cell multiplex clonotype analysis to evaluate the diversity and frequency of paired TCRs, their functions and whether clonotypic TCRs are shared among different individuals. Using an HLA-A*02-restricted cytomegalovirus (CMV) pp65-derived immunogenic peptide, we found that the more dominant pp65-specific TCR clonotypes in the blood of healthy donors have higher binding affinities for the CMV peptide and arise from clonotypes that are highly shared among individuals. Interestingly, these highly shared HLA-A*02-restricted CMV-specific TCRs were detected in a CMV-seronegative individual as well as in HLA-A*02-negative donors albeit at lower frequency. More intriguingly, these shared TCR clonotypes were abundant in the stem memory T-cell subset, and TCR diversity of the stem memory T-cell repertoire was significantly lower than in the central memory and effector memory T-cell repertoires. These results suggest that the stem memory T-cell subset may serve as a reservoir of highly shared and highly functional memory T-cells.
Collapse
|
24
|
Chen G, Yang X, Ko A, Sun X, Gao M, Zhang Y, Shi A, Mariuzza RA, Weng NP. Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8 + TCR Repertoires to Immunodominant Viral Antigens. Cell Rep 2017; 19:569-583. [PMID: 28423320 DOI: 10.1016/j.celrep.2017.03.072] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
A diverse T cell receptor (TCR) repertoire is essential for controlling viral infections. However, information about TCR repertoires to defined viral antigens is limited. We performed a comprehensive analysis of CD8+ TCR repertoires for two dominant viral epitopes: pp65495-503 (NLV) of cytomegalovirus and M158-66 (GIL) of influenza A virus. The highly individualized repertoires (87-5,533 α or β clonotypes per subject) comprised thousands of unique TCRα and TCRβ sequences and dozens of distinct complementary determining region (CDR)3α and CDR3β motifs. However, diversity is effectively restricted by preferential V-J combinations, CDR3 lengths, and CDR3α/CDR3β pairings. Structures of two GIL-specific TCRs bound to GIL-HLA-A2 provided a potential explanation for the lower diversity of GIL-specific versus NLV-specific repertoires. These anti-viral TCRs occupied up to 3.4% of the CD8+ TCRβ repertoire, ensuring broad T cell responses to single epitopes. Our portrait of two anti-viral TCR repertoires may inform the development of predictors of immune protection.
Collapse
Affiliation(s)
- Guobing Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xinbo Yang
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Annette Ko
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoping Sun
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mingming Gao
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alvin Shi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet 2017; 49:659-665. [DOI: 10.1038/ng.3822] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
|
26
|
Toward the Clonotype Analysis of Alopecia Areata-Specific, Intralesional Human CD8+ T Lymphocytes. J Investig Dermatol Symp Proc 2016; 17:9-12. [PMID: 26551936 DOI: 10.1038/jidsymp.2015.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alopecia areata (AA) is an organ-restricted autoimmune disease that mainly affects the hair follicle (HF). Several findings support a key primary effector role of CD8+ T cells in the disease pathogenesis. Autoreactive CD8+ T cells are not only present in the characteristic peribulbar inflammatory cell infiltrate of lesional AA HFs but are also found to be infiltrating in lesional HF epithelium where they are thought to recognize major histocompatibility complex class I-presented (auto-)antigens. However, the latter still remain unidentified. Therefore, one key aim in AA research is to identify the clonotypes of autoaggressive, intralesional CD8+ T cells. Therapeutically, this is important (a) so that these lymphocytes can be selectively eliminated or inhibited, (b) to identify the-as yet elusive-key (auto-)antigens in AA, and/or (c) to induce peripheral tolerance against the latter. Therefore, we have recently embarked on a National Alopecia Areata Foundation-supported project that attempts to isolate disease-specific, intralesional CD8+ T cells from AA skin in order to determine their TCR clonotype, using two complementary strategies. The first method is based on the enzymatic skin digestion from lesional AA skin, followed by either MACS technology and single-cell picking or FACS cell sorting, while the second method on laser microdissection. The identification of disease-specific TCRs can serve as a basis for specific AA immunotherapy along the lines sketched above and may possibly also provide prognostic biomarkers. If successful, this research strategy promises to permit, at long last, the causal therapy of AA.
Collapse
|
27
|
Holtappels R, Lemmermann NAW, Podlech J, Ebert S, Reddehase MJ. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance. Front Immunol 2016; 7:232. [PMID: 27379095 PMCID: PMC4905951 DOI: 10.3389/fimmu.2016.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/30/2016] [Indexed: 12/02/2022] Open
Abstract
Successful reconstitution of cytomegalovirus (CMV)-specific CD8+ T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8+ T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8+ T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8+ T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as “immunodominant” epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a “personalized immunotherapy.” It is, therefore, an important question if IDE-specific CD8+ T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8+ T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8+ T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for human CMV, that there is no need to exclusively aim for IDE-specific immunoreconstitution.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Stefan Ebert
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
28
|
Abstract
Human cytomegalovirus (HCMV) establishes a latent infection that generally remains asymptomatic in immune-competent hosts for decades but can cause serious illness in immune-compromised individuals. The long-term control of CMV requires considerable effort from the host immune system and has a lasting impact on the profile of the immune system. One hallmark of CMV infection is the maintenance of large populations of CMV-specific memory CD8(+) T cells - a phenomenon termed memory inflation - and emerging data suggest that memory inflation is associated with impaired immunity in the elderly. In this Review, we discuss the molecular triggers that promote memory inflation, the idea that memory inflation could be considered a natural pathway of T cell maturation that could be harnessed in vaccination, and the broader implications of CMV infection and the T cell responses it elicits.
Collapse
|
29
|
Kanakry CG, Coffey DG, Towlerton AMH, Vulic A, Storer BE, Chou J, Yeung CCS, Gocke CD, Robins HS, O'Donnell PV, Luznik L, Warren EH. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight 2016; 1. [PMID: 27213183 DOI: 10.1172/jci.insight.86252] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) effectively prevents graft-versus-host disease (GVHD), but its immunologic impact is poorly understood. We assessed lymphocyte reconstitution via flow cytometry (n = 74) and antigen receptor sequencing (n = 35) in recipients of myeloablative, HLA-matched allogeneic BM transplantation using PTCy. Recovering T cells were primarily phenotypically effector memory with lower T cell receptor β (TRB) repertoire diversity than input donor repertoires. Recovering B cells were predominantly naive with immunoglobulin heavy chain locus (IGH) repertoire diversity similar to donors. Numerical T cell reconstitution and TRB diversity were strongly associated with recipient cytomegalovirus seropositivity. Global similarity between input donor and recipient posttransplant repertoires was uniformly low at 1-2 months after transplant but increased over the balance of the first posttransplant year. Blood TRB repertoires at ≥3 months after transplant were often dominated by clones present in the donor blood/marrow memory CD8+ compartment. Limited overlap was observed between the TRB repertoires of T cells infiltrating the skin or gastrointestinal tract versus the blood. Although public TRB sequences associated with herpesvirus- or alloantigen-specific CD8+ T cells were detected in some patients, posttransplant TRB and IGH repertoires were unique to each individual. These data define the immune dynamics occurring after PTCy and establish a benchmark against which immune recovery after other transplantation approaches can be compared.
Collapse
Affiliation(s)
- Christopher G Kanakry
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Ante Vulic
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Jeffrey Chou
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Cecilia C S Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher D Gocke
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harlan S Robins
- Public Health Sciences Division, FHCRC, Seattle, Washington, USA
| | - Paul V O'Donnell
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Sylwester A, Nambiar KZ, Caserta S, Klenerman P, Picker LJ, Kern F. A new perspective of the structural complexity of HCMV-specific T-cell responses. Mech Ageing Dev 2016; 158:14-22. [PMID: 26957355 DOI: 10.1016/j.mad.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND In studies exploring the effects of HCMV infection on immune system aging ('immunosenescence'), after organ transplantation or in other settings, HCMV-specific T-cell responses are often assessed with respect to purportedly 'immunodominant' protein subunits. However, the response structure in terms of recognized antigens and response hierarchies (architecture) is not well understood and actual correlates of immune protection are not known. METHODS We explored the distribution of T-cell response sizes and dominance hierarchies as well as response breadth in 33 HCMV responders with respect to >200 HCMV proteins. RESULTS At the individual responder level HCMV-specific T-cell responses were generally arranged in clear dominance hierarchies; interestingly, the number of proteins recognized by an individual correlated closely with the size of their biggest response. Target-specificity varied considerably between donors and across hierarchy levels with the presence, size, and hierarchy position of responses to purportedly 'immunodominant' targets being unpredictable. CONCLUSIONS Predicting protective immunity based on isolated HCMV subunit-specific T-cell responses is questionable in light of the complex architecture of the overall response. Our findings have important implications for T-cell monitoring, intervention strategies, as well as the application of animal models to the understanding of human infection.
Collapse
Affiliation(s)
- Andrew Sylwester
- Vaccine & Gene Therapy Institute, Oregon Health & Science University West Campus, Beaverton, OR 97006, USA
| | - Kate Z Nambiar
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom
| | - Stefano Caserta
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Louis J Picker
- Vaccine & Gene Therapy Institute, Oregon Health & Science University West Campus, Beaverton, OR 97006, USA
| | - Florian Kern
- Division of Medicine, Brighton and Sussex Medical School, Brighton BN1 9PX, United Kingdom.
| |
Collapse
|
31
|
Almanzar G, Schmalzing M, Trippen R, Höfner K, Weißbrich B, Geissinger E, Meyer T, Liese J, Tony HP, Prelog M. Significant IFNγ responses of CD8+ T cells in CMV-seropositive individuals with autoimmune arthritis. J Clin Virol 2016; 77:77-84. [PMID: 26921739 DOI: 10.1016/j.jcv.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/27/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Latent Cytomegalovirus (CMV) infection accelerates immunosenescence in elderly with reactivations reported in Rheumatoid Arthritis (RA) and abnormal responses towards CMV in Juvenile Idiopathic Arthritis (JIA). OBJECTIVES Considering the signs of premature T-cell immunosenescence in arthritis patients, the known effect of CMV latency on speeding up many of these signs in an age-dependent manner and the role of CMV on IFNγ-mediated inflammation in healthy elderly and RA, we hypothesized that latent CMV infection accelerates TCR repertoire restriction, loss of CD28, peripheral T-cell proliferation and aberrant IFNγ responses in arthritis patients. STUDY DESIGN Unspecific and CMVpp65-specific IFNγ responses were investigated in peripheral CD8+ T-cells in RA or JIA patients and healthy, age-matched controls. RESULTS Despite higher prevalence and concentrations of IgG-anti-CMV, arthritis patients showed lower unspecific IFNγ production, lower CD69-mediated activation and lower CD8+ T-cell proliferation. CMV-seropositive RA patients showed higher intracellular IFNγ production and increased proportions of CD28-CD8+ T-cells after specific CMVpp65 long-term stimulation which was not altered by in vitro blockade of TNFα or IL-6. A skewed TCR repertoire towards oligoclonality and less polyclonality was found in JIA. DISCUSSION CMVpp65-specific IFNγ production with expansion of CD28-CD8+ T-cells suggests an efficient control of latent CMV regardless of immunosuppressive therapy or in vitro blockade of TNFα or IL-6 in CMV-seropositive arthritis patients. Increased IgG-anti-CMV antibody concentrations and increased proportions of intracellular IFNγ-producing CMVpp65-specific CD8+ T-cells in long-term cultures propose a possibly role of endogenous CMV reactivations boosting antibody levels and a higher possibly CMV-driven IFNγ-mediated inflammatory potential of CD8+ T-cells in arthritis patients.
Collapse
Affiliation(s)
- Giovanni Almanzar
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
| | - Marc Schmalzing
- Department of Internal Medicine II, Rheumatology and Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Raimund Trippen
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin Höfner
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Benedikt Weißbrich
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eva Geissinger
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thomas Meyer
- Pediatric Surgery Unit, Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Liese
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Peter Tony
- Department of Internal Medicine II, Rheumatology and Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Multiplex Identification of Antigen-Specific T Cell Receptors Using a Combination of Immune Assays and Immune Receptor Sequencing. PLoS One 2015; 10:e0141561. [PMID: 26509579 PMCID: PMC4624875 DOI: 10.1371/journal.pone.0141561] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/10/2015] [Indexed: 01/05/2023] Open
Abstract
Monitoring antigen-specific T cells is critical for the study of immune responses and development of biomarkers and immunotherapeutics. We developed a novel multiplex assay that combines conventional immune monitoring techniques and immune receptor repertoire sequencing to enable identification of T cells specific to large numbers of antigens simultaneously. We multiplexed 30 different antigens and identified 427 antigen-specific clonotypes from 5 individuals with frequencies as low as 1 per million T cells. The clonotypes identified were validated several ways including repeatability, concordance with published clonotypes, and high correlation with ELISPOT. Applying this technology we have shown that the vast majority of shared antigen-specific clonotypes identified in different individuals display the same specificity. We also showed that shared antigen-specific clonotypes are simpler sequences and are present at higher frequencies compared to non-shared clonotypes specific to the same antigen. In conclusion this technology enables sensitive and quantitative monitoring of T cells specific for hundreds or thousands of antigens simultaneously allowing the study of T cell responses with an unprecedented resolution and scale.
Collapse
|
33
|
Zhang J, Zhang BC, Sun L. P247 and p523: two in vivo-expressed megalocytivirus proteins that induce protective immunity and are essential to viral infection. PLoS One 2015; 10:e0121282. [PMID: 25815484 PMCID: PMC4376877 DOI: 10.1371/journal.pone.0121282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Megalocytivirus is a DNA virus with a broad host range among teleost fish. Although the complete genome sequences of a number of megalocytivirus isolates have been reported, the functions of most of the genes of this virus are unknown. In this study, we selected two megalocytivirus immunogens, P247 and P523, which were expressed during host infection and, when in the form of DNA vaccines (pCN247 and pCN523 respectively), elicited strong protectivity against lethal megalocytivirus challenge in a turbot (Scophthalmus maximus) model. Compared to control fish, fish vaccinated with pCN247 and pCN523 exhibited drastically reduced viral loads in tissues and high levels of survival rates. Immune response analysis showed that pCN247 and pCN523 (i) induced production of specific serum antibodies, (ii) caused generation of cytotoxic immune cells and specific memory immune cells that responded to secondary antigen stimulation, and (iii) upregulated the expression of genes involved in innate and adaptive immunity. To examine the potential role of P247 and P523 in viral infection, the expression of P247 and P523 was knocked down by siRNA. Subsequent in vivo infection study showed that P247 and P523 knockdown significantly impaired viral replication. Furthermore, whole-genome transcriptome analysis revealed that P247 and P523 knockdown altered the expression profiles of 26 and 41 viral genes, respectively, putatively participating in diverse aspects of viral infection. Taken together, these results indicate that P247 and P523 induce protective immunity in teleost and play fundamental roles essential to viral replication. These observations provide the first evidence that suggests a likely link between the protectivity of viral immunogens and their biological significance in viral replication.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
34
|
A novel method for analysis of human T cell repertoires by real-time PCR. J Immunol Methods 2014; 412:24-34. [PMID: 24983878 DOI: 10.1016/j.jim.2014.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
T lymphocyte responses to challenges with multiple pathogens depend on the diversity of their T cell receptors (TcRs) that are heteroduplexes of alpha and beta chains. The regions of alpha and beta chains that define TcR specificity are encoded by rearranged variable (V) and joining (J) genes that are separated by variable numbers of nucleotides that encode the complementarity determining region 3 (CDR3). The assumption that a "healthy" T cell compartment exhibits broad TcR and CDR3 diversity has driven development of methods to evaluate diversity of TcR beta transcripts expressed by T lymphocyte populations and subpopulations in inflammatory sites and human malignancies. To that end, we have developed the BV:BJ matrix assay that uniquely generates a single statistic that describes TcR repertoire diversity and improves identification of beta transcripts expressed by expanded T cell clonotypes. The BV:BJ matrix uses rigorously selected primers specific for individual V and J genes to amplify beta transcripts in real-time PCRs driven by 533 BV:BJ primer pairs. The quantitative control of real-time PCRs produces Shannon entropy estimates of diversity that are reproducible over a range of template amounts and amenable to statistical analyses that have been difficult to perform with existing methods of repertoire analysis.
Collapse
|
35
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
36
|
Terrazzini N, Kern F. Cell-mediated immunity to human CMV infection: a brief overview. F1000PRIME REPORTS 2014; 6:28. [PMID: 24860650 PMCID: PMC4018181 DOI: 10.12703/p6-28] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cellular immune response to human cytomegalovirus (HCMV) has different components originating from both the adaptive and innate immune systems. There is a significant global interest in understanding how the immune system keeps HCMV under control, in particular with a view to situations where HCMV infection causes severe damage. Such settings include HIV infection, transplantation, and maybe most importantly perinatal medicine, HCMV being a major cause of sometimes catastrophic birth defects. The development of an active HCMV vaccine has proven very difficult but some recent successes raise hope that this might be available in the future. However, adoptive transfer of HCMV-specific T cells has been successfully used to prevent CMV disease after bone marrow transplantation for many years. In fact, the CD8 T cell response has been thought to be the most important effector response, with numerous reports focusing on specific T cell subsets recognizing select peptides in select human leukocyte antigen (HLA) contexts. However, it is becoming increasingly clear now that other cells, first and foremost CD4 T cells, but also gamma/delta (γ/δ) T cells and natural killer cells, are critically involved in the cellular immune response to HCMV. This commentary aims to provide a brief overview of the field.
Collapse
Affiliation(s)
- Nadia Terrazzini
- Pathogen Host Interaction Group (PHI), Immunology, Division of Medicine, Brighton and Sussex Medical SchoolBiology Road, Brighton, BN1 9PSUK
| | - Florian Kern
- Pathogen Host Interaction Group (PHI), Immunology, Division of Medicine, Brighton and Sussex Medical SchoolBiology Road, Brighton, BN1 9PSUK
| |
Collapse
|
37
|
Nguyen THO, Rowntree LC, Pellicci DG, Bird NL, Handel A, Kjer-Nielsen L, Kedzierska K, Kotsimbos TC, Mifsud NA. Recognition of distinct cross-reactive virus-specific CD8+ T cells reveals a unique TCR signature in a clinical setting. THE JOURNAL OF IMMUNOLOGY 2014; 192:5039-49. [PMID: 24778446 DOI: 10.4049/jimmunol.1303147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CMV still remains problematic in immunocompromised patients, particularly after solid organ transplantation. CMV primary disease and reactivation greatly increase the risks associated with incidences of chronic allograft rejection and decreased survival in transplant recipients. But whether this is due to direct viral effects, indirect viral effects including cross-reactive antiviral T cell immunopathology, or a combination of both remains undetermined. In this article, we report the novel TCR signature of cross-reactive HLA-A*02:01 (A2) CMV (NLVPMVATV [NLV])-specific CD8(+) T cells recognizing a specific array of HLA-B27 alleles using technical advancements that combine both IFN-γ secretion and multiplex nested RT-PCR for determining paired CDR3α/β sequences from a single cell. This study represents the first evidence, to our knowledge, of the same A2-restricted cross-reactive NLV-specific TCR-α/β signature (TRAV3TRAJ31_TRBV12-4TRBJ1-1) in two genetically distinct individuals. Longitudinal posttransplant monitoring of a lung transplant recipient (A2, CMV seropositive) who received a HLA-B27 bilateral lung allograft showed a dynamic expansion of the cross-reactive NLV-specific TCR repertoire before CMV reactivation. After resolution of the active viral infection, the frequency of cross-reactive NLV-specific CD8(+) T cells reduced to previremia levels, thereby demonstrating immune modulation of the T cell repertoire due to antigenic pressure. The dynamic changes in TCR repertoire, at a time when CMV reactivation was subclinical, illustrates that prospective monitoring in susceptible patients can reveal nuances in immune profiles that may be clinically relevant.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Louise C Rowntree
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - Nicola L Bird
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - Tom C Kotsimbos
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Nicole A Mifsud
- Department of Medicine, Monash University, Central Clinical School, The Alfred Centre, Melbourne, Victoria 3004, Australia; Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria 3004, Australia;
| |
Collapse
|
38
|
Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, Moosmann A. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS Pathog 2013; 9:e1003383. [PMID: 23717207 PMCID: PMC3662661 DOI: 10.1371/journal.ppat.1003383] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
| | - Josef Mautner
- DZIF – German Center for Infection Research, Munich, Germany
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Children's Hospital, Technische Universität München, Munich, Germany
| | - Fabian Schlott
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
39
|
Dössinger G, Bunse M, Bet J, Albrecht J, Paszkiewicz PJ, Weißbrich B, Schiedewitz I, Henkel L, Schiemann M, Neuenhahn M, Uckert W, Busch DH. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy. PLoS One 2013; 8:e61384. [PMID: 23637823 PMCID: PMC3637308 DOI: 10.1371/journal.pone.0061384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/07/2013] [Indexed: 02/05/2023] Open
Abstract
Adoptive therapy using T cells redirected to target tumor- or infection-associated antigens is a promising strategy that has curative potential and broad applicability. In order to accelerate the screening process for suitable antigen-specific T cell receptors (TCRs), we developed a new approach circumventing conventional in vitro expansion-based strategies. Direct isolation of paired full-length TCR sequences from non-expanded antigen-specific T cells was achieved by the establishment of a highly sensitive PCR-based T cell receptor single cell analysis method (TCR-SCAN). Using MHC multimer-labeled and single cell-sorted HCMV-specific T cells we demonstrate a high efficacy (approximately 25%) and target specificity of TCR-SCAN receptor identification. In combination with MHC-multimer based pre-enrichment steps, we were able to isolate TCRs specific for the oncogenes Her2/neu and WT1 even from very small populations (original precursor frequencies of down to 0.00005% of CD3(+) T cells) without any cell culture step involved. Genetic re-expression of isolated receptors demonstrates their functionality and target specificity. We believe that this new strategy of TCR identification may provide broad access to specific TCRs for therapeutically relevant T cell epitopes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/immunology
- Cell Culture Techniques
- Cytomegalovirus/immunology
- Epitopes
- Gene Transfer Techniques
- HEK293 Cells
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/metabolism
- Humans
- Immunotherapy
- Jurkat Cells
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/isolation & purification
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta
- Sequence Analysis, Protein
- Single-Cell Analysis
- Species Specificity
- Transgenes
Collapse
Affiliation(s)
- Georg Dössinger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Mario Bunse
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jeannette Bet
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Julia Albrecht
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Paulina J. Paszkiewicz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Isabell Schiedewitz
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Lynette Henkel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Humboldt-Universität, Berlin, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
40
|
Klarenbeek PL, Remmerswaal EBM, ten Berge IJM, Doorenspleet ME, van Schaik BDC, Esveldt REE, Koch SD, ten Brinke A, van Kampen AHC, Bemelman FJ, Tak PP, Baas F, de Vries N, van Lier RAW. Deep sequencing of antiviral T-cell responses to HCMV and EBV in humans reveals a stable repertoire that is maintained for many years. PLoS Pathog 2012; 8:e1002889. [PMID: 23028307 PMCID: PMC3460621 DOI: 10.1371/journal.ppat.1002889] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/11/2012] [Indexed: 01/17/2023] Open
Abstract
CD8+ T-cell responses against latent viruses can cover considerable portions of the CD8+ T-cell compartment for many decades, yet their initiation and maintenance remains poorly characterized in humans. A key question is whether the clonal repertoire that is raised during the initial antiviral response can be maintained over these long periods. To investigate this we combined next-generation sequencing of the T-cell receptor repertoire with tetramer-sorting to identify, quantify and longitudinally follow virus-specific clones within the CD8+ T-cell compartment. Using this approach we studied primary infections of human cytomegalovirus (hCMV) and Epstein Barr virus (EBV) in renal transplant recipients. For both viruses we found that nearly all virus-specific CD8+ T-cell clones that appeared during the early phase of infection were maintained at high frequencies during the 5-year follow-up and hardly any new anti-viral clones appeared. Both in transplant recipients and in healthy carriers the clones specific for these latent viruses were highly dominant within the CD8+ T-cell receptor Vβ repertoire. These findings suggest that the initial antiviral response in humans is maintained in a stable fashion without signs of contraction or changes of the clonal repertoire. Several viruses have found ways to evade the human immune system and cause latent infections. Examples include HIV and herpes-viruses. Most humans carry these herpes-viruses. The human immune system mounts continuous responses against these viruses to prevent them from causing disease. If this balance is disturbed, these viruses can cause extensive pathology. We do not know how the immune response against these viruses evolves over time. Understanding this response might help to understand why the immune system does not clear these viruses and might help in preventive and therapeutic strategies. Here we used a new technology that allowed us to track virus specific immune cells (CD8+ T cells) over time in a quantitative manner. When we used this technology to study the evolution of latent responses against herpes-viruses (from infection until 5 years later) we found that immune responses were very rigid and did not evolve over time. Collectively our data shows that – for these herpes-viruses – the initial immune response is maintained despite the fact that this does not result in clearance of the virus. Therefore, if a virus survives the initial response, it will not be cleared in the future. This is an important consideration in understanding latent infection and for vaccination-design.
Collapse
Affiliation(s)
- P. L. Klarenbeek
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, Amsterdam, the Netherlands
- Department of Genome Analysis, Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - E. B. M. Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
- Renal Transplant Unit, Academic Medical Center, Amsterdam, the Netherlands
| | - I. J. M. ten Berge
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
- Renal Transplant Unit, Academic Medical Center, Amsterdam, the Netherlands
| | - M. E. Doorenspleet
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, Amsterdam, the Netherlands
- Department of Genome Analysis, Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - B. D. C. van Schaik
- Bioinformatics Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - R. E. E. Esveldt
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, Amsterdam, the Netherlands
- Department of Genome Analysis, Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - S. D. Koch
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - A. ten Brinke
- Sanquin Research at CLB and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - A. H. C. van Kampen
- Bioinformatics Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - F. J. Bemelman
- Renal Transplant Unit, Academic Medical Center, Amsterdam, the Netherlands
| | - P. P. Tak
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, Amsterdam, the Netherlands
| | - F. Baas
- Department of Genome Analysis, Academic Medical Center, Amsterdam, the Netherlands
| | - N. de Vries
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, Amsterdam, the Netherlands
| | - R. A. W. van Lier
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
- Sanquin Research at CLB and Landsteiner Laboratory, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
41
|
Wang GC, Dash P, McCullers JA, Doherty PC, Thomas PG. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci Transl Med 2012; 4:128ra42. [PMID: 22491952 PMCID: PMC3593633 DOI: 10.1126/scitranslmed.3003647] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A diverse T cell receptor (TCR) repertoire capable of recognizing a broad range of antigenic peptides is thought to be central to effective pathogen-specific immunity by counteracting escape mutations, selecting high-avidity T cells, and providing T cell specificities with comprehensive functional characteristics. However, evidence that TCR diversity is important for the successful control of human infections is limited. A single-cell strategy for the clonotypic analysis of human CD8⁺ TCRαβ repertoires was used to probe the diversity and magnitude of individual human cytomegalovirus (CMV)-specific CD8⁺ T cells recovered directly ex vivo. We found that CD8⁺ TCRαβ repertoire diversity, but not the size of the CD8⁺ T cell response, was inversely related to circulating CMV-specific antibody levels, a measure that has been correlated epidemiologically with differential mortality risks and found here to be higher in persons with detectable (versus undetectable) CMV viral loads. Overall, our findings indicate that CD8⁺ T cell diversity may be more important than T cell abundance in limiting the negative consequences of CMV persistence, demonstrate high prevalence of both TCRα and TCRβ public motif usage, and suggest that a highly diverse TCRαβ repertoire may be an important benchmark and target in the success of immunotherapeutic strategies.
Collapse
Affiliation(s)
- George C Wang
- Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging Program, Johns Hopkins University School of Medicine, 5505 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
42
|
Brennan RM, Petersen J, Neller MA, Miles JJ, Burrows JM, Smith C, McCluskey J, Khanna R, Rossjohn J, Burrows SR. The Impact of a Large and Frequent Deletion in the Human TCR β Locus on Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2742-8. [DOI: 10.4049/jimmunol.1102675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Giest S, McWhinnie A, Lefranc MP, Little AM, Grace S, Mackinnon S, Madrigal JA, Travers PJ. Cytomegalovirus-specific CD8+ T cells targeting different peptide/HLA combinations demonstrate varying T-cell receptor diversity. Immunology 2012; 135:27-39. [PMID: 22044339 DOI: 10.1111/j.1365-2567.2011.03508.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytomegalovirus (CMV) infection and reactivation pose a serious threat for patients after haematopoietic stem cell transplantation. We have previously shown that CD8(+) T cells targeting different CMV epitopes correlate with protection at different threshold frequencies in those patients. To investigate if this may relate to a different quality of these cells here we analyse the T-cell receptor diversity of pp50 (245-253)/HLA-A*0101 specific CD8(+) T cells with that of CD8(+) T cells targeting various pp65 peptides. The results from this pilot study show differences in the breadth of the T-cell receptor usage of the different cell populations. We observe for the first time that the T-cell receptor Vβ CDR3 spectratypes used by CMV pp50 (245-253)/HLA-A*0101-specific CD8(+) T cells can reach higher numbers than those used by CD8(+) T cells targeting various pp65 peptides in our patient cohort. This merits further investigation into the effectiveness of the different CMV-specific T cells and their impact on immunosenescence, which is important to eventually define the most useful source of adoptive therapy and monitoring protocols for cytomegalovirus-specific immune responses.
Collapse
Affiliation(s)
- Sandra Giest
- Anthony Nolan Research Institute and University College London Medical School, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Sun B, Volk HD, Proesch S, Kern F. Comparative Study of the Influence of Proteasome Inhibitor MG132 and Ganciclovir on the Cytomegalovirus-Specific CD8+T-Cell Immune Response. Viral Immunol 2011; 24:455-61. [DOI: 10.1089/vim.2011.0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanjun Wang
- Institut für Medizinische Immunologie der Charité, Abteilung Klinische Immunologie, Humboldt-Universität zu Berlin (Charité), Campus Charité Mitte, Berlin, Germany
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, China
| | - Bin Sun
- Intervention Therapy Center of Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hans-Dieter Volk
- Institut für Medizinische Immunologie der Charité, Abteilung Klinische Immunologie, Humboldt-Universität zu Berlin (Charité), Campus Charité Mitte, Berlin, Germany
| | - Susanna Proesch
- Institut für Virologie der Charité, Campus Mitte, Berlin, Germany
| | - Florian Kern
- BSMS, University of Sussex, Falmer, Brighton, U.K
| |
Collapse
|
45
|
Miconnet I, Marrau A, Farina A, Taffé P, Vigano S, Harari A, Pantaleo G. Large TCR Diversity of Virus-Specific CD8 T Cells Provides the Mechanistic Basis for Massive TCR Renewal after Antigen Exposure. THE JOURNAL OF IMMUNOLOGY 2011; 186:7039-49. [DOI: 10.4049/jimmunol.1003309] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, Asher TE, Almeida JR, Levy S, Price DA, Davenport MP, Douek DC. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4285-94. [PMID: 21383244 DOI: 10.4049/jimmunol.1003898] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human naive T cell repertoire is the repository of a vast array of TCRs. However, the factors that shape their hierarchical distribution and relationship with the memory repertoire remain poorly understood. In this study, we used polychromatic flow cytometry to isolate highly pure memory and naive CD8(+) T cells, stringently defined with multiple phenotypic markers, and used deep sequencing to characterize corresponding portions of their respective TCR repertoires from four individuals. The extent of interindividual TCR sharing and the overlap between the memory and naive compartments within individuals were determined by TCR clonotype frequencies, such that higher-frequency clonotypes were more commonly shared between compartments and individuals. TCR clonotype frequencies were, in turn, predicted by the efficiency of their production during V(D)J recombination. Thus, convergent recombination shapes the TCR repertoire of the memory and naive T cell pools, as well as their interrelationship within and between individuals.
Collapse
MESH Headings
- Adult
- Clone Cells
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/isolation & purification
- Immunologic Memory/genetics
- Male
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic/immunology
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Young Adult
Collapse
Affiliation(s)
- Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89:375-87. [PMID: 21301479 DOI: 10.1038/icb.2010.139] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naïve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.
Collapse
Affiliation(s)
- John J Miles
- T Cell Modulation Laboratory, Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | |
Collapse
|
48
|
van Bockel DJ, Price DA, Munier ML, Venturi V, Asher TE, Ladell K, Greenaway HY, Zaunders J, Douek DC, Cooper DA, Davenport MP, Kelleher AD. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:359-71. [PMID: 21135165 DOI: 10.4049/jimmunol.1001807] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
CD8(+) T cells play a significant role in the control of HIV replication, yet the associated qualitative and quantitative factors that determine the outcome of infection remain obscure. In this study, we examined Ag-specific CD8(+) TCR repertoires longitudinally in a cohort of HLA-B*2705(+) long-term nonprogressors with chronic HIV-1 infection using a combination of molecular clonotype analysis and polychromatic flow cytometry. In each case, CD8(+) T cell populations specific for the immunodominant p24 Gag epitope KRWIILGLNK (KK10; residues 263-272) and naturally occurring variants thereof, restricted by HLA-B*2705, were studied at multiple time points; in addition, comparative data were collected for CD8(+) T cell populations specific for the CMV pp65 epitope NLVPMVATV (NV9; residues 495-503), restricted by HLA-A*0201. Dominant KK10-specific clonotypes persisted for several years and exhibited greater stability than their contemporaneous NV9-specific counterparts. Furthermore, these dominant KK10-specific clonotypes exhibited cross-reactivity with antigenic variants and expressed significantly higher levels of CD127 (IL-7Rα) and Bcl-2. Of note, we also found evidence that promiscuous TCR α-chain pairing associated with alterations in fine specificity for KK10 variants could contribute to TCR β-chain prevalence. Taken together, these data suggest that an antiapoptotic phenotype and the ability to cross-recognize variant epitopes contribute to clonotype longevity and selection within the peripheral memory T cell pool in the presence of persistent infection with a genetically unstable virus.
Collapse
Affiliation(s)
- David J van Bockel
- St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sandalova E, Laccabue D, Boni C, Tan AT, Fink K, Ooi EE, Chua R, Shafaeddin Schreve B, Ferrari C, Bertoletti A. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans. PLoS Pathog 2010; 6:e1001051. [PMID: 20808900 PMCID: PMC2924358 DOI: 10.1371/journal.ppat.1001051] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.
Collapse
Affiliation(s)
- Elena Sandalova
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Diletta Laccabue
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Anthony T. Tan
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Katja Fink
- Singapore Immunology Network, A*STAR, Singapore
| | - Eng Eong Ooi
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Robert Chua
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Bahar Shafaeddin Schreve
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
| | - Carlo Ferrari
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Bertoletti
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Emerging Viral Diseases, Duke – NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
50
|
Morice A, Charreau B, Neveu B, Brouard S, Soulillou JP, Bonneville M, Houssaint E, Degauque N. Cross-reactivity of herpesvirus-specific CD8 T cell lines toward allogeneic class I MHC molecules. PLoS One 2010; 5:e12120. [PMID: 20711433 PMCID: PMC2920819 DOI: 10.1371/journal.pone.0012120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/19/2010] [Indexed: 12/02/2022] Open
Abstract
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection.
Collapse
Affiliation(s)
- Alexis Morice
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | | | - Bérangère Neveu
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Sophie Brouard
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
| | - Jean-Paul Soulillou
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
| | - Marc Bonneville
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
| | - Elisabeth Houssaint
- UMR892, INSERM - Institut de Recherche Thérapeutique de l'Université de Nantes, Nantes, France
- Faculté des Sciences, Université de Nantes, Nantes, France
| | - Nicolas Degauque
- UMR 643, INSERM, Nantes, France
- ITUN, CHU Nantes, Nantes, France
- Faculté de Médecine, Université de Nantes, Nantes, France
- * E-mail:
| |
Collapse
|