1
|
Sizemore RJ, Seeger-Armbruster S, Hughes SM, Parr-Brownlie LC. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. J Neurophysiol 2016; 115:2124-46. [PMID: 26888111 PMCID: PMC4869490 DOI: 10.1152/jn.01131.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/16/2016] [Indexed: 01/07/2023] Open
Abstract
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Sonja Seeger-Armbruster
- Department of Physiology, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; and
| | - Stephanie M Hughes
- Department of Biochemistry, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand;
| |
Collapse
|
2
|
KIM SOY, KANG SUJIN, SONG JAEJ, KIM JOOHANG. The effectiveness of the oncolytic activity induced by Ad5/F35 adenoviral vector is dependent on the cumulative cellular conditions of survival and autophagy. Int J Oncol 2013; 42:1337-48. [DOI: 10.3892/ijo.2013.1812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/22/2013] [Indexed: 11/05/2022] Open
|
3
|
Montesinos MS, Chen Z, Young SM. pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS. J Neurophysiol 2011; 106:3230-44. [PMID: 21957229 DOI: 10.1152/jn.00713.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast onset and high-level neurospecific transgene expression in vivo is of importance for many areas in neuroscience, from basic to translational, and can significantly reduce the amount of vector load required to maintain transgene expression in vivo. In this study, we tested various cis elements to optimize transgene expression at transcriptional, posttranscriptional, and posttranslational levels and combined them together to create the high-level neuronal transgene expression cassette pUNISHER. Using a second-generation adenoviral vector system in combination with the pUNISHER cassette, we characterized its rate of onset of detectable expression and levels of expression compared with a neurospecific expression cassette driven by the 470-bp human synapsin promoter in vitro and in vivo. Our results demonstrate in primary neurons that the pUNISHER cassette, in a recombinant adenovirus type 5 background, led to a faster rate of onset of detectable transgene expression and higher level of transgene expression. More importantly, this cassette led to highly correlated neuronal expression in vivo and to stable transgene expression up to 30 days in the auditory brain stem with no toxicity on the characteristics of synaptic transmission and plasticity at the calyx of Held synapse. Thus the pUNISHER cassette is an ideal high-level neuronal expression cassette for use in vivo for neuroscience applications.
Collapse
Affiliation(s)
- Monica S Montesinos
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute, 5353 Parkside Drive MC19-RE, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
4
|
Katayama K, Furuki R, Yokoyama H, Kaneko M, Tachibana M, Yoshida I, Nagase H, Tanaka K, Sakurai F, Mizuguchi H, Nakagawa S, Nakanishi T. Enhanced in vivo gene transfer into the placenta using RGD fiber-mutant adenovirus vector. Biomaterials 2011; 32:4185-93. [PMID: 21411139 DOI: 10.1016/j.biomaterials.2011.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/19/2011] [Indexed: 11/19/2022]
Abstract
Among viral vectors, the fiber-mutant adenovirus vector carrying the Arg-Gly-Asp (RGD) peptide sequence (Ad-RGD) seems to have potential for both clinical gene therapy and basic research. As a part of a thorough evaluation of Ad-RGD in preclinical studies, we designed an experiment to investigate in detail the distribution of Ad-RGD compared with conventional adenovirus vector (WT-Ad) in pregnant mice. Surprisingly, Ad-RGD had substantial placental tropism, at 10-100 times that of WT-Ad. Transgene expression was sustained for at least 7 days, and Ad-RGD expressing firefly luciferase or red fluorescent protein has so far caused no placental dysfunction leading to fetal death. Ad-RGD showed high levels of transduction efficiency in in vitro-differentiated trophoblast stem cells, in which higher expression of αvβ3 integrin than in undifferentiated cells was observed. Our results suggest that the use of Ad-RGD or another RGD-mediated targeting strategy holds promise for drug delivery to the placenta.
Collapse
Affiliation(s)
- Kazufumi Katayama
- Department of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Matsui H, Sakurai F, Katayama K, Mizuguchi H. [Development of improved adenovirus vectors and transduction into neural cells]. Nihon Yakurigaku Zasshi 2011; 137:70-4. [PMID: 21321454 DOI: 10.1254/fpj.137.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tutykhina IL, Shmarov MM, Logunov DY, Naroditsky BS, Gintsburg AL. Recombinant adenoviral nanostructures: Construction and prospects of use in medicine. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1995078009110032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C. The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 2009; 542:5-54. [PMID: 19565894 DOI: 10.1007/978-1-59745-561-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the last 4 decades, gene therapy has moved from preclinical to clinical studies for many diseases ranging from monogenic recessive disorders such as hemophilia to more complex diseases such as cancer, cardiovascular disorders, and human immunodeficiency virus (HIV). To date, more than 1,340 gene therapy clinical trials have been completed, are ongoing, or have been approved in 28 countries, using more than 100 genes. Most of those clinical trials (66.5%) were aimed at the treatment of cancer. Early hype, failures, and tragic events have now largely been replaced by the necessary stepwise progress needed to realize clinical benefits. We now understand better the strengths and weaknesses of various gene transfer vectors; this facilitates the choice of appropriate vectors for individual diseases. Continuous advances in our understanding of tumor biology have allowed the development of elegant, more efficient, and less toxic treatment strategies. In this introductory chapter, we review the history of gene therapy since the early 1960s and present in detail two major recurring themes in gene therapy: (1) the development of vector and delivery systems and (2) the design of strategies to fight or cure particular diseases. The field of cancer gene therapy experienced an "awkward adolescence." Although this field has certainly not yet reached maturity, it still holds the potential of alleviating the suffering of many individuals with cancer.
Collapse
Affiliation(s)
- Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
8
|
Wohlfahrt ME, Beard BC, Lieber A, Kiem HP. A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res 2007; 67:8783-90. [PMID: 17875719 DOI: 10.1158/0008-5472.can-07-0357] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, and patients rarely survive for more than 2 years. Gene therapy may offer new treatment options and improve the prognosis for patients with GBM. Adenovirus-mediated gene therapy strategies for brain tumors have been limited by inefficient gene transfer due to low expression of the adenovirus serotype 5 (Ad5) receptor. We have used an adenovirus vector that specifically replicates in tumor cells and uses an Ad5 capsid and the adenovirus serotype (Ad35) fiber for efficient infection of malignant tumor cells. This vector also expresses adenovirus E1A and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a tumor-specific manner. Here, we show that this oncolytic vector (Ad5/Ad35.IR-E1A/TRAIL) efficiently infects the GBM tumor cell lines SF767, T98G, and U-87 MG. Tumor cell killing was markedly enhanced with Ad5/Ad35.IR-E1A/TRAIL compared with wild-type Ad5 and Ad35 virus or Ad5/Ad35.IR-E1A- vectors without TRAIL expression in vitro. In vivo experiments using s.c. xenografted U-87 MG cells in NOD/SCID mice showed a significant growth delay of tumors after i.t. injection of Ad5/Ad35.IR-E1A/TRAIL, whereas adenovirus wild-type injections showed only marginal or no effect. Our findings indicate that the use of a capsid-modified adenoviral vector, in combination with TRAIL expression, is a promising novel approach for gene therapy of glioblastoma.
Collapse
Affiliation(s)
- Martin E Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
9
|
Cashman SM, McCullough L, Kumar-Singh R. Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Mol Ther 2007; 15:1640-6. [PMID: 17505470 DOI: 10.1038/sj.mt.6300203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adenovirus (Ad) vectors can be injected into human ocular tissues without producing adverse events and are therefore a promising means of gene transfer to the retina. However, when administered subretinally, Ad vectors primarily transduce the retinal pigment epithelium (RPE), whereas the majority of mutant gene products that cause photoreceptor (PR) degeneration are expressed exclusively in the PR cells. While it has been shown previously that pseudotyping of Ad can partially overcome the limited PR transduction by Ad5, we found that pseudotyping of Ad is not necessary for transduction of PR cells. We determined that, in the context of Ad, the cytomegalovirus (CMV) promoter is not significantly active in PRs. We compared expression levels from CMV and chicken beta actin (CBA) promoters in neural retina and found that CBA has a 173-fold greater potency than CMV. We also investigated the nature of the Ad-RPE interaction in murine retina and determined that the RGD domain in Ad penton plays a key role in RPE tropism. Deletion of the RGD domain coupled with use of the CBA promoter permitted transgene expression in neural retina approximately 667 times more efficiently than with Ad5 vectors. The use of these vectors in combination with a 4.7 kilobase (kb) rhodopsin promoter enabled transgene expression exclusively in PR cells in vivo.
Collapse
Affiliation(s)
- Siobhan M Cashman
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
10
|
Hajitou A, Pasqualini R, Arap W. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 2006; 16:80-8. [PMID: 16546688 PMCID: PMC7172921 DOI: 10.1016/j.tcm.2006.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 01/23/2023]
Abstract
The ability to deliver therapeutics site—specifically in vivo—remains a major challenge for the treatment of malignant, inflammatory, cardiovascular, and degenerative diseases. The need to target agents safely, efficiently, and selectively has become increasingly evident because of progress in vascular targeting. The vascular endothelium is a central target for intervention, given its multiple roles in the physiology (in health) and pathophysiology (in disease) and its direct accessibility to circulating ligands. In cancer, the expression of specific molecules on the surface of vascular endothelial and perivascular cells might enable direct therapeutic targeting. The use of in vivo phage display has significantly contributed to the identification of such targets, which have been successfully used for directed vascular targeting in preclinical animal models. Several animal studies have been performed by using fused molecules between tumor endothelium-directed molecules and immunomodulatory, procoagulant, or cytotoxic molecules. In addition to delivery of therapeutic agents, vascular targeted gene therapies based on both ligand-directed delivery of gene vectors to tumor endothelium and transcriptional targeting have also emerged. In this review, we discuss ligand-directed vascular targeting strategies with an emphasis on recent developments related to phage-display-based screenings.
Collapse
Affiliation(s)
| | - Renata Pasqualini
- Address correspondence to: Renata Pasqualini and Wadih Arap, Departments of Genitourinary Medical Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Wadih Arap
- Address correspondence to: Renata Pasqualini and Wadih Arap, Departments of Genitourinary Medical Oncology and Cancer Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Kawabata K, Sakurai F, Koizumi N, Hayakawa T, Mizuguchi H. Adenovirus vector-mediated gene transfer into stem cells. Mol Pharm 2006; 3:95-103. [PMID: 16579638 DOI: 10.1021/mp0500925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stem cells, including embryonic stem (ES) cells, mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs), are defined by their capacity for self-renewal and multilineage differentiation. Efficient gene transfer into stem cells is essential for the basic research in developmental biology and for therapeutic applications in gene-modified regenerative medicine. Adenovirus (Ad) vectors, based on Ad type 5, can efficiently and transiently introduce the exogenous gene into many cell types via the primary receptor, coxsackievirus, and adenovirus receptor (CAR). However, some kinds of stem cells, such as MSCs and HSCs, cannot be efficiently transduced with conventional Ad vectors based on Ad serotype 5 (Ad5), because of the lack of CAR expression. To overcome this problem, fiber-modified Ad vectors and an Ad vector based on another serotype of Ad have been developed. Here, we review the advances in the development of Ad vectors suitable for stem cells and discuss their application in basic biology and clinical medicine.
Collapse
Affiliation(s)
- Kenji Kawabata
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | | | | | | | | |
Collapse
|
12
|
Shinozaki K, Suominen E, Carrick F, Sauter B, Kähäri VM, Lieber A, Woo SLC, Savontaus M. Efficient infection of tumor endothelial cells by a capsid-modified adenovirus. Gene Ther 2006; 13:52-9. [PMID: 16107861 DOI: 10.1038/sj.gt.3302598] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Targeted antiangiogenic gene therapy is an attractive approach to treat metastatic cancer. However, the relative paucity of the receptors of the commonly used adenovirus serotype 5 in endothelial cells as compared with liver cells undermines the use of this vector for targeting the endothelial cells in tumors. To overcome this problem, we analyzed the ability of a hybrid Ad5/35 virus, where the serotype 5 fiber has been replaced with the fiber from serotype 35, to target tumor vasculature. Infection of human umbilical vein endothelial cells (HUVECs) with Ad5/35 at MOI 120 infected 100% of cells. In contrast, infection with Ad5 at the same MOI infected only 10% HUVECs. Ad5/35 was even more effective in transducing human aortic endothelial cells (HAECs), as infection with Ad5/35 at MOI 3.6 was sufficient to transduce 95% of cells. Gene expression analyses demonstrated that infection of HUVECs and HAECs with Ad5/35 resulted in between 1 and 3 orders of magnitude higher gene expression than infection with Ad5. Furthermore, various liver-derived cells were less infectable with Ad5/35 than Ad5, indicating a favorable toxicity profile for this virus. In a rat colon carcinoma tumor model, Ad5 was located mainly in the liver parenchyma after hepatic artery administration. In contrast, Ad5/35 was found only in the angiogenesis-rich border region of the tumor. Double immunostaining revealed that Ad5/35 colocalized with CD31 and Flk-1 positive endothelial cells. These results indicate that Ad5/35 may be useful in anticancer strategies targeting tumor endothelial cells.
Collapse
Affiliation(s)
- K Shinozaki
- Carl C. Icahn Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Majhen D, Ambriović-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119:121-33. [PMID: 16533542 DOI: 10.1016/j.virusres.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 01/02/2023]
Abstract
Gene therapy is most often described as a technique for introducing the foreign genetic material into cells with a correction of a dysfunctional gene as its final goal. Today, it is well known that cancer is one of the leading causes of mortality in the world. Besides classical methods for cancer treatment new strategies against cancer are needed. Although originally being designed as a treatment for monogenetic illness, soon after, gene therapy appeared as a potential new strategy in cancer therapy. One of the widely used vectors for cancer gene therapy is adenovirus. In this review we have described molecular biology of adenoviruses and basis for construction of adenoviral vectors. We have also described concepts for cancer gene therapy including their in vitro and in vivo application. Special attention is drawn toward retargeting of adenovirus as a new approach in vector design for cancer gene therapy, in order to restrict transgene expression in tumor tissue. This approach uses biophysical as well as genetic characteristics of tumor itself and its supporting tissue, allowing new "bypass" in cancer gene therapy.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
14
|
Glasgow JN, Everts M, Curiel DT. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13:830-44. [PMID: 16439993 PMCID: PMC1781516 DOI: 10.1038/sj.cgt.7700928] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions.
Collapse
Affiliation(s)
- JN Glasgow
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
| | - M Everts
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Mizuguchi H, Xu ZL, Sakurai F, Kawabata K, Yamaguchi T, Hayakawa T. Efficient regulation of gene expression using self-contained fiber-modified adenovirus vectors containing the tet-off system. J Control Release 2005; 110:202-11. [PMID: 16278030 DOI: 10.1016/j.jconrel.2005.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/16/2005] [Accepted: 09/21/2005] [Indexed: 11/30/2022]
Abstract
Previously, we developed single adenovirus (Ad) vectors that contained the gene of interest in the E1 deletion region and the transactivator gene for the tetracycline-controllable expression system in the E3 deletion region. In the present study, we improved the Ad vector-mediated tetracycline-controllable expression system by the fiber modification of Ad. We developed fiber-modified Ad vectors containing the tet-off system, which are effective in overcoming the limitations of conventional Ad vectors, specifically their inefficient gene transfer into cells lacking the primary receptor, the coxsackievirus and adenovirus receptor (CAR). Ad vectors containing the tet-off system with an Arg-Gly-Asp (RGD) peptide in the HI loop of the fiber knob or the Ad type 35 fiber greatly improved transduction efficiency (more than 1-2-log orders) into the cells lacking CAR expression but expressing alphav integrin or CD46, respectively. They exhibited vastly higher regulation of gene expression by doxycycline. The combination of fiber-modified Ad vectors and the tetracycline-controllable expression system should offer a powerful tool for gene therapy and gene transfer experiment.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Saito, Ibaraki, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Broadly defined, the concept of gene therapy involves the transfer of genetic material into a cell, tissue, or whole organ, with the goal of curing a disease or at least improving the clinical status of a patient. A key factor in the success of gene therapy is the development of delivery systems that are capable of efficient gene transfer in a variety of tissues, without causing any associated pathogenic effects. Vectors based upon many different viral systems, including retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses, currently offer the best choice for efficient gene delivery. Their performance and pathogenicity has been evaluated in animal models, and encouraging results form the basis for clinical trials to treat genetic disorders and acquired diseases. Despite some initial success in these trials, vector development remains a seminal concern for improved gene therapy technologies.
Collapse
Affiliation(s)
- Inder M Verma
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Mizuguchi H, Sasaki T, Kawabata K, Sakurai F, Hayakawa T. Fiber-modified adenovirus vectors mediate efficient gene transfer into undifferentiated and adipogenic-differentiated human mesenchymal stem cells. Biochem Biophys Res Commun 2005; 332:1101-6. [PMID: 15922299 DOI: 10.1016/j.bbrc.2005.05.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/11/2005] [Indexed: 11/18/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are considered a source of cells for regenerative medicine, and cell and gene therapy. Efficient gene transfer into hMSCs is essential for basic investigations into cellular differentiation and developmental biology, and for therapeutic applications in gene-modified regenerative medicine. In the present study, we optimized the transduction of hMSCs by means of fiber-modified adenovirus (Ad) vectors. Among the various types of Ad vectors tested, the polylysine modification of the C-terminal of the fiber knob most markedly improved the efficiency of hMSC transduction. At 300 vector particles per cell of polylysine-modified Ad vectors, more than 95% of the hMSCs expressed transgene. In this condition, polylysine-modified Ad vectors mediated 460-fold more transgene activity than the conventional Ad vectors. Ad vectors containing the Ad type 35 fiber or an Arg-Gly-Asp (RGD) peptide in the fiber knob mediated 130 or 16 times, respectively, the transgene activity mediated by the conventional Ad vectors. We also examined the efficiency of transduction into adipogenic-differentiated hMSCs. In this latter case, only Ad vectors containing the Ad type 35 fiber showed efficient gene expression. These results showed that fiber-modified Ad vectors could become a potent tool for basic research into, and the therapeutic application of, hMSCs and adipogenic-differentiated hMSCs.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
| | | | | | | | | |
Collapse
|
18
|
Gene therapy. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Abstract
Recombinant adenovirus (Ad) vectors continue to be the preferred vectors for gene therapy and the study of gene function because they are relatively easy to construct, can be produced at high titer, and have high transduction efficiency. However, in some applications gene transfer with Ad vectors is less efficient because the target cells lack expression of the primary receptor, coxsackievirus and adenovirus receptor (CAR). Another problem is the wide biodistribution of vector in tissue following in vivo gene transfer because of the relatively broad tissue expression of CAR. To overcome these limitations, various approaches have been developed to modify Ad tropism. In one approach, the capsid proteins of Ad are modified, such as with the addition of foreign ligands or the substitution of the fiber with other types of Ad fiber, in combination with the ablation of native tropism. In other approaches, Ad vectors are conjugated with adaptor molecules, such as antibody and fusion protein containing an anti-Ad single-chain antibody (scFv) or the extracellular domain of CAR with the targeting ligands, or chemically modified with polymers containing the targeting ligands. In this paper, we review advances in the development of targeted Ad vectors.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Project III, National Institute of Health Sciences, Osaka Branch, Fundamental Research Laboratories for Development of Medicine, Osaka 567-0085, Japan.
| | | |
Collapse
|
20
|
Abstract
Recent work demonstrates that RNA interference (RNAi) can coordinate protein expression. Inhibitory RNAs are expressed naturally in cells as microRNAs (miRNAs) or introduced into cells as small interfering RNAs (siRNAs). Both types of small RNAs can be used at the bench to silence mRNA expression. For many researchers, transfection of siRNAs synthesized in vitro or purchased from commercial sources is impractical for the cellular system under study. As an alternative to transfection-based methods, we provide a practical approach to accomplish siRNA-mediated gene silencing through the generation and introduction of recombinant viral vectors expressing short hairpin RNAs (shRNAs). shRNAs are subsequently processed to siRNAs in vivo, leading to efficient, and, in some cases, long-term silencing.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, Neurology, Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, 52242, USA
| | | |
Collapse
|
21
|
Abstract
Clinical gene therapy for cardiovascular disease remains achievable. To date, however, preclinical studies and clinical trials have highlighted shortfalls in viral gene delivery to vascular cells. These include poor efficiency, poor target tissue selectivity, the presence of pre-existing neutralizing antibodies and immunogenicity generated by the host to vectors such as adenovirus. These important issues require careful consideration when applying viral vectors for gene therapy. Each delivery vector requires precise optimization and tailoring for each disease application since parameters relating to vector : tissue exposure time, route of delivery and target cell type vary considerably. Optimization can be achieved through modification of the structure of the virus capsid proteins and expression cassette to generate vectors that are highly selective and efficient for target cell binding and entry as well as instilling transcriptional control and/or longevity on transgene expression. This ultimately will improve the efficacy and toxicity profiles of gene delivery vectors and has become a very important area in gene therapy. Here, we review recent advances in the targeting of viral gene delivery vectors to the vasculature.
Collapse
Affiliation(s)
- Andrew H Baker
- British Heart Foundation Cardiovascular Research Centre, Division of Caridovascular and Medical Sciences, University of Glasgow, Church Street, Glasgow G11 6NT, UK.
| | | | | | | |
Collapse
|
22
|
Li ZY, Ni S, Yang X, Kiviat N, Lieber A. Xenograft models for liver metastasis: Relationship between tumor morphology and adenovirus vector transduction. Mol Ther 2004; 9:650-7. [PMID: 15120325 DOI: 10.1016/j.ymthe.2004.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 01/30/2004] [Indexed: 12/28/2022] Open
Abstract
The improvement of initial tumor cell transduction with viral vectors is a major task in tumor gene therapy. We have developed mouse tumor models with hepatic metastases to study transduction of tumor cells after systemic adenovirus vector application. The tumor models were established by intraportal transplantation of human tumor cell lines into immunodeficient mice. Liver metastases derived from cervix, colon, breast, and liver cancer lines were analyzed for distribution of extracellular matrix, vascularization, and transgene expression after tail vein injection of adenovirus vectors. Overall, xenografts resembled the morphology of corresponding tumors in cancer patients. Adenovirus-mediated gene delivery depended on tumor vascularization and direct contact between blood vessels and tumor cells. These models represent important tools for studying and improving tumor gene therapy approaches.
Collapse
Affiliation(s)
- Zong-Yi Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
23
|
Duale H, Kasparov S, Paton JFR, Teschemacher AG. Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 2004; 90:71-8. [PMID: 15542614 DOI: 10.1113/expphysiol.2004.029173] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral vectors (AVVs) and lentiviral vectors (LVVs) are highly useful research tools which can be used to investigate the function of specific cell phenotypes in the brain. The transductional tropism of viral vectors has a critical impact upon the transgene expression in different brain areas. This largely depends on the properties of the viral particles, which for AVVs are most commonly analogous to the serotype 5 adenovirus and, in the case of LVVs, are determined by the envelope used for pseudotyping, for example the vesicular stomatitis virus coat (VSVG). We have created a matching set of shuttle plasmids that allow a one-step transfer of an entire expression cassette between the backbones of AVVs and LVVs. This has permitted a fair assessment of the impact of the vector type on tropism for both AVVs and LVVs. Thus, the aims of this study were twofold: (i) to develop and demonstrate the validity of a transgene 'swap' system between AVVs and LVVs; and (ii) using this system, to assess the tropism of AVVs and LVVs for neuronal versus glial cell types. We have constructed AVVs and VSVG-coated LVVs to express monomeric red fluorescent protein (mRFP) driven by the human cytomegalovirus promoter (hCMV). Transgene expression in neurones and glia in the hypoglossal and dorsal vagal motor nuclei of the rat brainstem was compared by determining the colocalization with immunostaining for the neuronal marker NeuN (neuronal nuclear antigen) and the glial marker GFAP (glial fibrillatory acidic protein). We found that 55% of mRFP-expressing cells transduced with AVVs were immunopositive for GFAP, while only 38% were NeuN-immunoreactive. In contrast, when the same expression cassette was delivered by VSVG-coated LVVs, the neurone/glia ratio of mRFP expression was reversed with 56% of mRFP-positive cells identified as neurones and 26% as glia. Thus, the present study provides compelling evidence that VSVG-coated LVVs significantly shift transgene expression towards neurones while transduction with AVVs favours glia.
Collapse
Affiliation(s)
- Hanad Duale
- Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
24
|
Denby L, Work LM, Graham D, Hsu C, von Seggern DJ, Nicklin SA, Baker AH. Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified TropismIn VitroandIn Vivo. Hum Gene Ther 2004; 15:1054-64. [PMID: 15610606 DOI: 10.1089/hum.2004.15.1054] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenovirus (Ad5) serotype 5 vectors are commonly used for gene transfer. Preclinical studies have shown that their application to systemic gene delivery, however, is limited by their highly efficient uptake in the liver, principally mediated by receptor-binding sites on the fiber shaft and knob domain. Using Ad to target other sites in vivo requires vectors that lack hepatic tropism. We therefore sought to exploit Ad family diversity to isolate vectors that possessed poor hepatic tropism. We pseudotyped the fibers from Ad16 (subgroup B; Ad5/16), Ad19p (subgroup D; Ad5/19p), and Ad37 (subgroup D; Ad5/37) onto Ad5 capsids and assessed infectivity profiles in vitro in multiple cell types and in vivo in rats. In rat, mouse, and human hepatocytes, Ad5/19p and Ad5/37 both possessed a striking lack of hepatic cell infectivity compared with Ad5. Both vectors were, however, able to transduce human vascular endothelial and smooth muscle cells with efficiencies equal to or greater than that of nonmodified Ad5. We evaluated liver uptake in 12-week-old male rats after intravenous injection. In contrast to a vector with the wild-type Ad5 fiber, Ad5, both Ad5/19p and Ad5/37 produced significantly less virion accumulation (measured at 1 hr and 5 days) and transgene expression in the liver. Thus, Ad5/19p and Ad5/37 may be useful platforms for the development of targeted Ad vectors.
Collapse
Affiliation(s)
- Laura Denby
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G11 6NT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Mizuguchi H, Hayakawa T. Targeted Adenovirus Vectors. Hum Gene Ther 2004. [DOI: 10.1089/hum.2004.15.ft-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Denby L, Work LM, Graham D, Hsu C, Von Seggern DJ, Nicklin SA, Baker AH. Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified Tropism In Vitro and In Vivo. Hum Gene Ther 2004. [DOI: 10.1089/hum.2004.0.ft-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Kovács GM, Davison AJ, Zakhartchouk AN, Harrach B. Analysis of the first complete genome sequence of an Old World monkey adenovirus reveals a lineage distinct from the six human adenovirus species. J Gen Virol 2004; 85:2799-2807. [PMID: 15448340 DOI: 10.1099/vir.0.80225-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Simian adenovirus 3 (SAdV-3) is one of several adenoviruses that were isolated decades ago from Old World monkeys. Determination of the complete DNA sequence of SAdV-3 permitted the first full genomic comparison of a monkey adenovirus with adenoviruses of humans (HAdVs) and chimpanzees, which are recognized formally as constituting six of the species (HAdV-A to HAdV-F) within the genus Mastadenovirus. The SAdV-3 genome is 34 246 bp in size and has a G+C content of 55.3 mol%. It contains all the genes that are characteristic of the genus Mastadenovirus and has a single VA-RNA gene and six genes in each of the E3 and E4 regions. The genetic organization is the same as that of HAdV-12, a member of the HAdV-A species. Phylogenetic analyses showed that although SAdV-3 is related marginally more closely to HAdV-A and HAdV-F than to other species, it represents a unique lineage that branched at an early stage of primate adenovirus divergence. The results imply that the genetic layout in SAdV-3 and HAdV-12 may also have characterized the common ancestor of all sequenced primate adenoviruses.
Collapse
Affiliation(s)
- Gábor M Kovács
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Alexender N Zakhartchouk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary
| |
Collapse
|
28
|
Skog J, Edlund K, Widegren B, Salford LG, Wadell G, Mei YF. Efficient internalization into low-passage glioma cell lines using adenoviruses other than type 5: an approach for improvement of gene delivery to brain tumours. J Gen Virol 2004; 85:2627-2638. [PMID: 15302956 DOI: 10.1099/vir.0.80084-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a need for improvement of the commonly used adenovirus vectors based on serotype 5. This study was performed on three adenovirus serotypes with a CAR-binding motif (Ad4p, Ad5p and Ad17p) and three non-CAR-binding serotypes (Ad11p, Ad16p and Ad21p). The capacity of these alternative adenovirus vector candidates to deliver DNA into low-passage glioma cell lines from seven different donors was evaluated. The non-CAR-binding serotype Ad16p was the most efficient serotype with regard to import of its DNA, as well as initiation of hexon protein expression. Ad16p established hexon expression in 60–80 % of the cell population in gliomas from all donors tested. The other non-CAR-binding serotypes, Ad11p and Ad21p, showed hexon expression in 25–60 and 40–80 % of cells, respectively. The corresponding figure for the best CAR-binding serotype, Ad5p, was only 25–65 %, indicating greater variability between cells from different donors than serotype Ad16p had. The other CAR-binding serotypes, Ad4p and Ad17p, were refractory to some of the gliomas, giving a maximum of only 45 and 40 % hexon expression, respectively, in the most permissive cells. Interestingly, the transduction capacity of the CAR-binding serotypes was not correlated to the level of CAR expression on the cells.
Collapse
Affiliation(s)
- Johan Skog
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | - Karin Edlund
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | - Bengt Widegren
- Department of Cell and Molecular Biology, Lund University, SE-223 62 Lund, Sweden
| | - Leif G Salford
- Department of Neurosurgery, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Göran Wadell
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | - Ya-Fang Mei
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
29
|
Balamotis MA, Huang K, Mitani K. Efficient delivery and stable gene expression in a hematopoietic cell line using a chimeric serotype 35 fiber pseudotyped helper-dependent adenoviral vector. Virology 2004; 324:229-37. [PMID: 15183069 DOI: 10.1016/j.virol.2004.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 02/10/2004] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Certain human cell populations have remained difficult to infect with human adenovirus (Ad) serotype 5 because of their lack of coxsackievirus B-adenovirus receptor (CAR). Native adenovirus fiber compositions, although diverse, cannot infect all tissue types. Recently, a chimeric Ad5/35 fiber was created, which displays an altered tropism from Ad5. We incorporated this chimeric fiber into a helper-dependent (HD) adenovirus vector system and compared HD to E1-deleted (E1Delta) vectors by transgene expression, cell transduction efficiency, and cytotoxicity. K562 cells were infected approximately 50 times more efficiently with the chimeric Ad5/35 fiber compared with the Ad5 fiber. Short-term transgene expression was sustained longer from HD Ad5/35 than E1Delta Ad5/35 vector after in vitro infection of actively dividing K562 cells. Rapid loss of transgene expression from E1Delta Ad5/35 infection was not due to the loss of vector genomes, as determined by quantitative real-time PCR (QRT-PCR), or cytotoxicity, but rather through a putative silencing mechanism.
Collapse
Affiliation(s)
- Michael Andrew Balamotis
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095-1747, USA
| | | | | |
Collapse
|
30
|
Renaut L, Colin M, Leite JPG, Benko M, D'Halluin JC. Abolition of hCAR-dependent cell tropism using fiber knobs of Atadenovirus serotypes. Virology 2004; 321:189-204. [PMID: 15051380 DOI: 10.1016/j.virol.2003.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 10/31/2003] [Accepted: 12/29/2003] [Indexed: 01/19/2023]
Abstract
Most adenoviral vectors use in gene therapy protocols derive from species C. However, expression of the primary receptor (human Coxsackievirus and Adenovirus receptor, hCAR) for these AdV is variable on cancer cells. In vivo targeting of a therapeutic gene to specific cells has then become a major issue in gene therapy. The Ad fiber protein largely determines viral tropism through interaction with specific receptors. Hereto, we constructed a set of HAdV5 vectors carrying chimeric fibers with knob domains from nonhuman AdV, namely from the FAdV-1 (Aviadenovirus), DAdV-1, and BAdV-4 (Atadenovirus). Correspondents viruses were produced using an established new HEK293 cell line, which express the HAdV2 fiber. Recombinant HAdV harboring chimeric fibers constituted of the N-terminal domain of HAdV2, and knob domain of bovine adenovirus type 4 (BAdV-4) demonstrated the greatest reduction in fiber-mediated gene transfer into human cells expressing the hCAR. Moreover, this vector infects with a better efficiency than vector with wild-type fiber, the Chinese Hamster Ovarian (CHO) and SKOV3 cell lines, both from ovarian origin, hamster and human, respectively. These studies support the concept that changing the fiber knob domain to ablate hCAR interaction should result in a de- or retargeted adenoviral vector. The adenoviral vector with the chimeric HAdV2/BAdV-4 fiber lacking hCAR interaction and with an ovarian cell tropism could be a nice candidate to elaborate vectors for ovarian tumor therapy.
Collapse
Affiliation(s)
- Laurence Renaut
- Inserm UR524, Institut de Recherche sur le Cancer de Lille, 59045 Lille cedex, France
| | | | | | | | | |
Collapse
|
31
|
Stewart PL, Dermody TS, Nemerow GR. Structural basis of nonenveloped virus cell entry. ADVANCES IN PROTEIN CHEMISTRY 2004; 64:455-91. [PMID: 13677056 DOI: 10.1016/s0065-3233(03)01013-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Phoebe L Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
32
|
Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:279-99. [PMID: 14769440 DOI: 10.1016/j.pbiomolbio.2003.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.
Collapse
Affiliation(s)
- Andrew H Baker
- Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
33
|
Kasparov S, Teschemacher AG, Hwang DY, Kim KS, Lonergan T, Paton JFR. Viral vectors as tools for studies of central cardiovascular control. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:251-77. [PMID: 14769439 DOI: 10.1016/j.pbiomolbio.2003.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the last few years physiological genomics has been the most rapidly developing area of physiology. Given the current ease of obtaining information about nucleotide sequences found in genomes and the vast amount of readily available clones, one of the most pertinent tasks is to find out about the roles of the individual genes and their families under normal and pathological conditions. Viral gene delivery into the brain is a powerful tool, which can be used to address a wide range of questions posed by physiological genomics including central nervous mechanisms regulating the cardio-vascular system. In this paper, we will give a short overview of current data obtained in this field using viral vectors and then look critically at the technology of viral gene transfer.
Collapse
Affiliation(s)
- S Kasparov
- Department of Physiology, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a 'leader-exon structure', which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Mária Benkő
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, Hungary
| |
Collapse
|
35
|
Abstract
In spite of its broad host range, adenovirus type 5 (Ad5) transduces a number of clinically relevant tissues and cell types inefficiently, mostly because of low expression of the coxsackievirus-adenovirus receptor (CAR). To improve gene transfer to such cells, we modified the Ad5 fiber knob to recognize novel receptors. We expressed a functional Ad5 fiber knob domain on the capsid of phage lambda and employed this display system to construct a large collection of ligands in the HI loop of the Ad5 knob. Panning this library on the CAR-negative mouse fibroblast cell line NIH 3T3 resulted in the identification of three clones with increased binding to these cells. Adenoviruses incorporating these ligands in the fiber gene transduced NIH 3T3 cells 2 or 3 orders of magnitude better than the parent vector. The same nonnative tropism was revealed in other cell types, independently of CAR expression. These Ad5 derivatives proved capable of transducing mouse and human primary immature dendritic cells with up to 100-fold increased efficiency.
Collapse
Affiliation(s)
- Laura Fontana
- Department of Molecular & Cell Biology, I.R.B.M. P. Angeletti, Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
36
|
Gao W, Robbins PD, Gambotto A. Human adenovirus type 35: nucleotide sequence and vector development. Gene Ther 2003; 10:1941-9. [PMID: 14528318 DOI: 10.1038/sj.gt.3302097] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this report, we describe the complete 34,794 base pair genomic sequence of the human adenovirus serotype 35 (Ad35) Holden strain. The viral genome exhibits a compact organization similar to other adenoviral serotypes, with overlapping genes on both strands. In all, 47 open reading frames (ORFs) were identified, including early (E1, 2, 3, 4) and late (L1, 2, 3, 4, 5) regions conserved among the adenoviridae family. In addition, 14 ORFs were identified that do not encode known adenoviral genes. Comparison of the predicted translational products of the conserved genes with those of other adenoviruses revealed that Ad35 has high homology to Ad7, Ad3, Ad21, Ad17, and simian Ads25. Based on the complete Ad35 DNA sequence, E3-, E1-, and E1/E3-deleted Ad35-based vector systems were developed. An HEK293-derived cell line was established for the propagation of the E1-deleted Ad35 vector, avoiding the emergence of replication-competent adenovirus. Moreover, production of the E1-deleted recombinant Ad35 vector was achieved by transient transduction of a plasmid encoding the Ad35 E1B gene in HEK293 cells. Testing showed that the Ad35-based vector efficiently infects both human and rhesus macaque dendritic cells. Our novel Ad35-based vectors and their corresponding packaging cell lines will provide a versatile and powerful system for DNA-based vaccine development and gene therapy applications.
Collapse
Affiliation(s)
- W Gao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
37
|
Abstract
A key factor in the success of gene therapy is the development of gene delivery systems that are capable of efficient gene transfer in a broad variety of tissues, without causing any pathogenic effect. Currently, viral vectors based on many different viruses have been developed, and their performance and pathogenicity has been evaluated in animal models. The results of these studies form the basis for the first clinical trials for correcting genetic disorders using retroviral, adenoviral, and adeno-associated viral vectors. Even though the results of these trials are encouraging, vector development is still required to improve and refine future treatment of hereditary disorders.
Collapse
Affiliation(s)
- Neeltje A Kootstra
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037-1099, USA.
| | | |
Collapse
|
38
|
Nagel H, Maag S, Tassis A, Nestlé FO, Greber UF, Hemmi S. The alphavbeta5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Ther 2003; 10:1643-53. [PMID: 12923563 DOI: 10.1038/sj.gt.3302058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial and endothelial cells expressing the primary Coxsackie virus B adenovirus (Ad) receptor (CAR) and integrin coreceptors are natural targets of human Ad infections. The fiber knob of species A, C, D, E and F Ad serotypes binds CAR by mimicking the CAR-homodimer interface, and the penton base containing arginine-glycine-aspartate (RGD) motifs binds with low affinity to alphav integrins inducing cell activation. Here, we generated seven different genetically modified Ad vectors with RGD sequences inserted into the HI loop of fiber knob. All mutants bound and infected CAR and alphav integrin-positive epithelial cells with equal efficiencies. However, the Ads containing two additional cysteines, both N and C terminals of the RGD sequence (RGD-4C), were uniquely capable of transducing CAR-less hematopoietic and nonhematopoietic human tumor cell lines and primary melanoma cells. Both binding and transduction of RGD-4C Ad were blocked by soluble RGD peptides. Flow cytometry of cell surface integrins and virus binding to CAR-less cells in the presence of function-blocking anti-integrin antibodies indicated that the alphavbeta5 integrin, but not alphavbeta3, alphaIIbbeta3 or beta1,alpha5 or alpha6-containing integrins served as a functional transduction receptor of the RGD-4C Ads. However, in cells with low levels of alphavbeta5 integrin, the function-blocking anti-alphavbeta5 antibodies were not effective, unlike soluble RGD peptides. Collectively, our data demonstrate that the alphavbeta5 integrin is a functional transduction receptor of RGD-4C Ads in the absence of CAR, and that additional RGD receptors are targets of these viruses. The RGD-4C vectors further extend the tropism of Ads towards potential human therapies.
Collapse
Affiliation(s)
- H Nagel
- Institute of Molecular Biology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Work LM, Nicklin SA, Baker AH. Targeting gene therapy vectors to the vascular endothelium. Curr Atheroscler Rep 2003; 5:163-70. [PMID: 12667427 DOI: 10.1007/s11883-003-0019-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to deliver genes, and hence therapeutic gene over-expression site-specifically in vivo remains the major challenge for research in the field. The obligate need to target transgene expression safely, efficiently, and selectively has become increasingly evident as a result of recent events in the clinical setting. The endothelium represents an important target for gene delivery given its fundamental role in the physiology and pathophysiology of many diseases. Recently, studies demonstrating the ability to target viral vectors to the endothelium have been reported. In this review, we discuss progress to date and highlight those areas still requiring further investigation and validation.
Collapse
Affiliation(s)
- Lorraine M Work
- Glasgow Cardiovascular Research Centre, University of Glasgow, Western Infirmary, 44 Church Street, Glasgow G11 6NT, UK.
| | | | | |
Collapse
|
40
|
Koizumi N, Mizuguchi H, Utoguchi N, Watanabe Y, Hayakawa T. Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med 2003; 5:267-76. [PMID: 12692861 DOI: 10.1002/jgm.348] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fiber-modified adenovirus (Ad) vectors can be effective in overcoming the limitations of conventional Ad vectors, specifically their inefficient gene transfer into cells lacking the primary receptor, the coxsackievirus and adenovirus receptor (CAR). Several types of fiber-modified Ad vectors have been developed. In this study, we evaluated the functionality of several fiber-modified Ad vectors. METHODS We developed a simple method based on in vitro ligation to construct Ad vectors containing heterologous foreign peptides in both the HI loop and C terminus of the fiber knob. A functional comparison of Ad vectors containing RGD and/or K7 (KKKKKKK) peptide in the HI loop or C terminus of the fiber knob was performed in several types of human, mouse, and rat cells, including CAR-positive and -negative cells, and tumor cells in mice in vivo. RESULTS In the case of the in vitro experiment, Ad vectors containing RGD peptide in the HI loop of the fiber knob showed a higher level of gene transfer than vectors containing RGD peptide at the C terminus of the fiber knob. Ad vectors containing K7 peptide at the C terminus of the fiber knob showed levels of gene transfer similar to those of Ad vectors containing RGD peptide in the HI loop of the fiber knob, depending on the cell type. Ad vectors containing both peptides in the HI loop or C terminus of the fiber knob showed the highest levels of gene transfer and a broader tropism. For gene transfer into tumor cells in vivo, the Ad vectors containing RGD peptide were the most efficient. CONCLUSIONS In the experiment using cultured cells, Ad vectors containing both RGD and K7 peptides were the most efficient with a broader tropism. In contrast, in the experiment in vivo, Ad vectors containing RGD peptide in the HI loop of the fiber knob were more efficient than the vectors containing K7 peptide (including double-modified vectors containing both the RGD and K7 peptides). These comparative analyses could provide a systemic reference for the use of fiber-modified Ad vectors. Our simple method, in which the peptide of interest can be expressed in Ad vectors in either the HI loop or the C terminus of the fiber knob, or both, could be a powerful tool for gene transfer into mammalian cells in studies of gene function as well as in gene therapy.
Collapse
Affiliation(s)
- Naoya Koizumi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | |
Collapse
|
41
|
Nakamura T, Sato K, Hamada H. Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J Virol 2003; 77:2512-21. [PMID: 12551989 PMCID: PMC141073 DOI: 10.1128/jvi.77.4.2512-2521.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial recognition and binding of adenovirus vector to the host cell surface is mediated by interaction between the adenovirus fiber knob protein and its receptor, the coxsackievirus and adenovirus receptor (CAR). This natural tropism of adenovirus vector needs to be ablated in order to achieve targeted gene transfer. To this end, we noted that adenovirus serotype 40 (Ad40) contains two distinct long and short fibers; the short fiber is unable to recognize CAR, while the long fiber binds CAR. We generated adenovirus serotype 5-based mutants with chimeric Ad40-derived fibers, which were composed of either long or short shafts together with CAR binding or nonbinding knobs. The capacity of these adenovirus mutants for in vitro and in vivo gene transfer to liver cells was examined. In the case of primary human hepatocytes displaying a high expression level of CAR and alphav integrin, both CAR binding ability and fiber shaft length played important roles in efficient transduction. Most significantly, the high transduction efficiency observed in the liver and spleen following intravenous administration of adenovirus vector was dramatically reduced by both ablation of fiber-CAR interaction and the use of replaceable short fiber. In other tissues displaying a low level of transduction, no significant differences in transduction efficiency were observed among adenovirus vector mutants. Furthermore, incorporation of a 7-lysine-residue motif at the C-terminal end of CAR-nonbinding short fiber efficiently achieved transduction of target cells via the heparan-containing receptor. Our results demonstrated that the natural tropism of adenovirus in vivo is influenced not only by fiber-CAR interaction but also by fiber shaft length. Furthermore, our strategy may be useful for retargeting adenovirus to particular tumors and tissue types with specific receptors.
Collapse
Affiliation(s)
- Takafumi Nakamura
- Department of Molecular Medicine, Sapporo Medical University, S1 W17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | |
Collapse
|
42
|
Nicklin SA, Baker AH. Development of targeted viral vectors for cardiovascular gene therapy. GENETIC ENGINEERING 2003; 25:15-49. [PMID: 15260232 DOI: 10.1007/978-1-4615-0073-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Stuart A Nicklin
- British Heart Foundation Blood Pressure Group, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK
| | | |
Collapse
|
43
|
Von Seggern DJ, Aguilar E, Kinder K, Fleck SK, Gonzalez Armas JC, Stevenson SC, Ghazal P, Nemerow GR, Friedlander M. In vivo transduction of photoreceptors or ciliary body by intravitreal injection of pseudotyped adenoviral vectors. Mol Ther 2003; 7:27-34. [PMID: 12573615 DOI: 10.1016/s1525-0016(02)00030-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Strategies for retargeting adenoviral (Ad) vectors have been developed, but their in vivo efficacy remains to be demonstrated. Gene delivery to specific ocular cell types represents an approach to treating many diseases that cause irreversible blindness. One of these cell types, the photoreceptor (PR), is not infected by standard Ad5-based vectors. We evaluated gene delivery after intraocular injection of Ads pseudotyped with three different fiber proteins and found three distinct patterns of infection. An intravitreally injected Ad5 vector readily infected the iris, corneal endothelium, and ciliary body, while few cells in the retina expressed transgene product. In contrast, an Ad3-pseudotyped virus selectively transduced ciliary body, of interest for treating diseases such as glaucoma. A vector pseudotyped with the fiber protein of Ad37 transduced PRs as well as ciliary body. This finding has potential application to the treatment of retinal degenerative or neovascular diseases. These studies demonstrate cell type-selective gene delivery in vivo with retargeted Ads, provide information about the cellular tropisms of several Ad serotypes, and should lead to improved strategies for preserving vision.
Collapse
Affiliation(s)
- Dan J Von Seggern
- Department of Immunology The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
DOUGLAS JOANNET. Targeted adenoviral vectors. Mol Phys 2002. [DOI: 10.1080/00268970210130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Avvakumov N, Wheeler R, D'Halluin JC, Mymryk JS. Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J Virol 2002; 76:7968-75. [PMID: 12134001 PMCID: PMC155151 DOI: 10.1128/jvi.76.16.7968-7975.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Accepted: 05/07/2002] [Indexed: 11/20/2022] Open
Abstract
The early region 1A (E1A) gene is the first gene expressed after infection with adenovirus and has been most extensively characterized in human adenovirus type 5 (hAd5). The E1A proteins interact with numerous cellular regulatory proteins, influencing a variety of transcriptional and cell cycle events. For this reason, these multifunctional proteins have been useful as tools for dissecting pathways regulating cell growth and gene expression. Despite the large number of studies using hAd5 E1A, relatively little is known about the function of the E1A proteins of other adenoviruses. In 1985, a comparison of E1A sequences from three human and one simian adenovirus identified three regions with higher overall levels of sequence conservation designated conserved regions (CR) 1, 2, and 3. As expected, these regions are critical for a variety of E1A functions. Since that time, the sequences of several other human and simian adenovirus E1A proteins have been determined. Using these, and two additional sequences that we determined, we report here a detailed comparison of the sequences of 15 E1A proteins representing each of the six hAd subgroups and several simian adenoviruses. These analyses refine the positioning of CR1, 2, and 3; define a fourth CR located near the carboxyl terminus of E1A; and suggest several new functions for E1A.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Department of Microbiology and Immunology, London Regional Cancer Centre, The University of Western Ontario, London, Canada N6A 4L6
| | | | | | | |
Collapse
|
46
|
Rubio N, Martin-Clemente B. Binding of adenovirus to its receptors in mouse astrocytes induces c-fos proto-oncogene and apoptosis. Virology 2002; 297:211-9. [PMID: 12083820 DOI: 10.1006/viro.2002.1426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have demonstrated that Ad.betaGal, a broadly used adenoviral vector of serotype 5, binds and induces proto-oncogene c-fos expression in quiescent cultures of mouse brain astrocytes. As observed in Northern blots, the expression of this immediate early gene is induced by viral infection in a dose-dependent manner, peaking at a multiplicity of infection (m.o.i.) of 100. The expression of c-fos is transient, being maximal after 30 min and disappearing 2 h after infection. A previously reported method was used to study the presence of receptors for adenovirus in the cellular membrane of murine astrocytes. After absorption of the virus, rabbit antibodies and 125I-protein A were used to form a sandwich on the cellular surface, and 9000 adenovirus-specific receptors were demonstrated on each astrocytic cell. Binding was temperature dependent and reached a plateau after 60 min. The specificity of c-fos induction is demonstrated by its neutralization by anti-adenovirus-specific antibodies. Although clear apoptosis cannot be demonstrated in vitro by DNA laddering, maybe due to a lack of sensitivity of the method, a statistically significant increase in caspase-3 activity is demonstrated in astrocyte cultures infected at a m.o.i. of 100 by adenovirus. Furthermore, a perfect colocalization is shown in vivo between cells infected with the Ad.betaGal vector and apoptotic astrocytes, as demonstrated by TdT-mediated dUTP nick end labeling (TUNEL) staining. The purpose of our study was to ascertain the potential for adenovirus as a gene therapy vector for neural disorders caused by astrocyte dysfunctions.
Collapse
Affiliation(s)
- Nazario Rubio
- Department of NeuroImmunology, Instituto Cajal, C.S.I.C., Dr. Arce Avenue 37, Madrid, Spain.
| | | |
Collapse
|
47
|
Skog J, Mei YF, Wadell G. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin. J Gen Virol 2002; 83:1299-1309. [PMID: 12029144 DOI: 10.1099/0022-1317-83-6-1299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
Collapse
Affiliation(s)
- Johan Skog
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| | - Ya-Fang Mei
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| | - Göran Wadell
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden1
| |
Collapse
|
48
|
Abstract
Replication-defective vectors based on human adenovirus serotypes 2 and 5 (Ad2 and Ad5) possess a number of attributes which favor their use as gene delivery vehicles in gene therapy applications. However, the widespread distribution of the primary cellular receptor for Ad, the coxsackievirus and adenovirus receptor (CAR), allows Ad vectors to infect a broad range of cells in the host. Conversely, a number of tissues which represent important targets for gene therapy, such as the airway epithelium and cancer cells, are refractory to Ad infection due a paucity of CAR. Thus, there is a strong rationale for the development of CAR-independent Ad vectors capable of enhanced specificity and efficiency of gene transfer to target cells. In this article we review the approaches which have been employed to generate tropism-modified Ad vectors. These targeting strategies have led to improvements in the safety and efficacy of Ad vectors and have the potential to yield an increased therapeutic benefit in the human clinical context.
Collapse
Affiliation(s)
- Brian G Barnett
- Department of Medicine, Division of Human Gene Therapy and Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
49
|
Mizuguchi H, Hayakawa T. Adenovirus vectors containing chimeric type 5 and type 35 fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes. Gene 2002; 285:69-77. [PMID: 12039033 DOI: 10.1016/s0378-1119(02)00410-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenovirus (Ad) fiber proteins are responsible for the initial attachment of the virion to the cell membrane. Most Ad vectors currently in use are based on the Ad type 5 (Ad5), which belong to subgroup C, and use the coxsackievirus and adenovirus receptors (CAR) as the initial receptor. Ad35, which belongs to subgroup B, recognizes unknown receptor(s) other than CAR. In this study, the feasibility of the Ad vector containing Ad5/35 chimeric fiber protein was examined in a wide variety of cell types, such as CAR-positive or -negative human tumor cells, rodent cells, and blood cells (a total of 20 cell types), and in mice in vivo. Transduction data suggested that the Ad vectors containing the Ad5/35 chimeric fiber protein exhibited altered and expanded tropism when compared with the Ad5-based vector. The chimeric vector also allows the packaging of larger foreign DNAs than the conventional Ad5-based vector, which can package approximately 8.1-8.2 kb of foreign DNA. The chimeric vector containing approximately 8.8 kb of foreign DNA was generated without affecting the viral growth rate and titer. These results suggested that inclusion of the Ad35 fiber protein into the Ad5-based vector could lead to an improved efficiency in gene therapy and in gene transfer experiments, especially for the cells lacking in sufficient CAR expression.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | |
Collapse
|
50
|
Youil R, Toner TJ, Su Q, Chen M, Tang A, Bett AJ, Casimiro D. Hexon gene switch strategy for the generation of chimeric recombinant adenovirus. Hum Gene Ther 2002; 13:311-20. [PMID: 11812286 DOI: 10.1089/10430340252769824] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of adenovirus as a vehicle for transgene delivery is limited greatly by the induction of neutralizing anti-adenoviral immunity following the initial administration, thereby resulting in shorter-term and reduced levels of transgene expression. In this paper, we outline a strategy for the generation of recombinant Ad5-based adenovectors that have undergone a complete hexon exchange in an effort to circumvent pre-existing anti-vector humoral immunity. Eighteen different chimeric adenoviral vectors (from subgroups A, B, C, D, and E) have been constructed using a combination of direct cloning and bacterial homologous recombination methods. However, only chimeric Ad5-based constructs in which the hexons from Ad1, Ad2, Ad6, and Ad12 are incorporated in place of the Ad5 hexon were successfully rescued into viruses. Despite several attempts, the remaining fourteen chimeric adenovectors were not rescuable. In vivo rodent studies using transgenes for human immunodeficiency virus type 1 (HIV-1) gag and secreted human alkaline phosphatase (SEAP) suggest that the Ad5/Ad6-gag chimera (wherein Ad5 hexon was replaced with that of Ad6) is able to evade neutralizing antibodies generated against Ad5 vector efficiently. However, it appears that cross-reactive cytotoxic T lymphocytes (CTL) may also play a role in controlling in vivo infectivity of Ad5/Ad6-gag chimera. The Ad5/Ad12 chimera was found to be extremely ineffective in the i.m. delivery and expression of HIV-1 gag in mice compared to the Ad5/Ad6 construct. Implications of these results will be discussed.
Collapse
Affiliation(s)
- Rima Youil
- Virus and Cell Biology, Merck & Co., Inc., West Point, PA, 19486, USA.
| | | | | | | | | | | | | |
Collapse
|