1
|
Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. J Virol 2023; 97:e0187022. [PMID: 37991365 PMCID: PMC10734542 DOI: 10.1128/jvi.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/28/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Collapse
Affiliation(s)
- Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kinjal Majumder
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yee T. Ong
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Marc C. Johnson
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
4
|
Raugi DN, Gottlieb GS, Sow PS, Toure M, Sall F, Gaye A, N’doye I, Kiviat NB, Hawes SE. HIV-1 outcompetes HIV-2 in dually infected Senegalese individuals with low CD4⁺ cell counts. AIDS 2013; 27:2441-50. [PMID: 23665777 PMCID: PMC4043222 DOI: 10.1097/qad.0b013e328362e856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Dual infection with HIV-1 and HIV-2, which is not uncommon in West Africa, has implications for transmission, progression, and antiretroviral therapy (ART). Few studies have examined viral dynamics in this setting. Our objective was to directly compare HIV-1 and HIV-2 viral loads and to examine whether this relationship is associated with CD4⁺ cell count. STUDY DESIGN This is a retrospective analysis of data from observational cohort studies. METHODS We compared HIV-1 and HIV-2 viral loads from 65 dually infected, ART-naive Senegalese individuals. Participants provided blood, oral fluid, and cervicovaginal lavage (CVL) or semen samples for virologic and immunologic testing. We assessed relationships between HIV-1 and HIV-2 levels using linear regression with generalized estimating equations to account for multiple study visits. RESULTS After adjusting for CD4⁺ cell count, age, sex, and commercial sex work, HIV-1 RNA levels were significantly higher than HIV-2 levels in semen, CVL, and oral fluids. Despite similar peripheral blood mononuclear cell DNA levels among individuals with CD4⁺ cell counts above 500 cells/μl, individuals with CD4⁺ cell counts below 500 cells/μl had higher HIV-1 and lower HIV-2 DNA levels. Individuals with high CD4⁺ cell counts had higher mean HIV-1 plasma RNA viral loads than HIV-2, with HIV-1 levels significantly higher and HIV-2 levels trending toward lower mean viral loads among individuals with low CD4⁺ cell counts. CONCLUSION Our data are consistent with the hypothesis that with disease progression, HIV-1 outcompetes HIV-2 in dually infected individuals. This finding helps explain differences in prevalence and outcomes between HIV-1, HIV-2, and HIV-dual infection.
Collapse
Affiliation(s)
- Dana N. Raugi
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Geoffrey S. Gottlieb
- Department of Medicine, Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Papa S. Sow
- Clinique des Maladies Infectieuses Ibrahima DIOP Mar, Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Macoumba Toure
- Clinique des Maladies Infectieuses Ibrahima DIOP Mar, Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Fatima Sall
- Clinique des Maladies Infectieuses Ibrahima DIOP Mar, Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Awa Gaye
- Department of Dentistry, Centre Hospitalier Universitaire de Fann, Universite Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Nancy B. Kiviat
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen E. Hawes
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Vlachakis D, Tsiliki G, Pavlopoulou A, Roubelakis MG, Tsaniras SC, Kossida S. Antiviral Stratagems Against HIV-1 Using RNA Interference (RNAi) Technology. Evol Bioinform Online 2013; 9:203-13. [PMID: 23761954 PMCID: PMC3662398 DOI: 10.4137/ebo.s11412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The versatility of human immunodeficiency virus (HIV)-1 and its evolutionary potential to elude antiretroviral agents by mutating may be its most invincible weapon. Viruses, including HIV, in order to adapt and survive in their environment evolve at extremely fast rates. Given that conventional approaches which have been applied against HIV have failed, novel and more promising approaches must be employed. Recent studies advocate RNA interference (RNAi) as a promising therapeutic tool against HIV. In this regard, targeting multiple HIV sites in the context of a combinatorial RNAi-based approach may efficiently stop viral propagation at an early stage. Moreover, large high-throughput RNAi screens are widely used in the fields of drug development and reverse genetics. Computer-based algorithms, bioinformatics, and biostatistical approaches have been employed in traditional medicinal chemistry discovery protocols for low molecular weight compounds. However, the diversity and complexity of RNAi screens cannot be efficiently addressed by these outdated approaches. Herein, a series of novel workflows for both wet- and dry-lab strategies are presented in an effort to provide an updated review of state-of-the-art RNAi technologies, which may enable adequate progress in the fight against the HIV-1 virus.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics and Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Gu Y, Hou W, Xu C, Li S, Shih JWK, Xia N. The enhancement of RNAi against HIV in vitro and in vivo using H-2K(k) protein as a sorting method. J Virol Methods 2012; 182:9-17. [PMID: 22401802 DOI: 10.1016/j.jviromet.2012.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/19/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Gene therapy offers a potentially an effective treatment for many human diseases, including HIV/AIDS. One of the most studied gene delivery systems is the use of lentivirus based vectors, which can deliver genes into both dividing and nondividing cells. However, low infection efficiency represents an obstacle for proper evaluation of their biological function. In this study, a recombinant lentiviral vector which expressed short hairpin RNAs (shRNAs) targeted against the HIV-1 vif/pol was transduced into various cells. An MHC class I molecule, H-2K(k), was used as a marker to accumulate the virally transduced cells through immunomagnetic sorting. In vitro testing of transduced cells showed 85% suppression of HIV in post-sorted PBMCs compared to 30% in pre-sorted PBMCs. In additional, using a mouse xenotransplantation model with the same treatment protocol for cell enrichment, a >95% decrease in HIV activity in post-sorted cells was achieved, as compared to nearly none in the pre-sorted cells. These studies offer a practical method to accumulate virally transduced cells, which can be applied to evaluate the performance of various shRNAs constructs.
Collapse
Affiliation(s)
- Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | |
Collapse
|
7
|
Hwang SY, Sun HY, Lee KH, Oh BH, Cha YJ, Kim BH, Yoo JY. 5'-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acids Res 2012; 40:2724-33. [PMID: 22127865 PMCID: PMC3315321 DOI: 10.1093/nar/gkr1098] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/04/2011] [Accepted: 11/04/2011] [Indexed: 12/25/2022] Open
Abstract
RIG-I is a cytosolic receptor for non-self RNA that mediates immune responses against viral infections through IFNα/β production. In an attempt to identify novel tools that modulate IFNα/β production, we used SELEX technology to screen RNA aptamers that specifically target RIG-I protein. Most of the selected RIG-I aptamers contained polyU motifs in the second half regions that played critical roles in the activation of RIG-I-mediated IFNβ production. Unlike other known ligands, RIG-I aptamer bound and activated RIG-I in a 5'-triphosphate-independent manner. The helicase and RD domain of RIG-I were used for aptamer binding, but intact RIG-I protein was required to exert aptamer-mediated signaling activation. Furthermore, replication of NDV, VSV and influenza virus in infected host cells was efficiently blocked by pre- or post-treatment with RIG-I aptamer. Based on these data, we propose that RIG-I aptamer has strong potential to be an antiviral agent that specifically boosts the RIG-I-dependent signaling cascade.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hwa-Young Sun
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kwang-Hoon Lee
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Byung-Ha Oh
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yu Jin Cha
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Byeang Hyean Kim
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Department of Life Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
8
|
|
9
|
|
10
|
Spiridonova VA. Molecular recognition elements: DNA/RNA-aptamers to proteins. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010; 4:138-149. [PMID: 32288940 PMCID: PMC7101625 DOI: 10.1134/s1990750810020046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Indexed: 11/23/2022]
Abstract
The review summarizes data on DNA/RNA aptamers, a novel class of molecular recognition elements. Special attention is paid to the aptamers to proteins involved into pathogenesis of wide spread human diseases. These include aptamers to serine proteases, cytokines, influenza viral proteins, immune deficiency virus protein and nucleic acid binding proteins. High affinity and specific binding of aptamers to particular protein targets make them attractive as direct protein inhibitors. They can inhibit pathogenic proteins and data presented here demonstrate that the idea that nucleic acid aptamers can regulate (inhibit) activity of protein targets has been transformed from the stage of basic developments into the stage of realization of practical tasks.
Collapse
Affiliation(s)
- V A Spiridonova
- A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Vorobievy Gory, 1, bld. 40, Moscow, 119992 Russia
| |
Collapse
|
11
|
Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 2009; 19:209-22. [PMID: 19653880 DOI: 10.1089/oli.2009.0199] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structured single-stranded nucleic acids, or aptamers, bind target molecules with high affinity and specificity, which translates into unique therapeutic possibilities. Currently, aptamers can be identified to most proteins, including blood-clotting factors, cell-surface receptors, and transcription factors. Chemical modifications to the oligonucleotides enhance their pharmacokinetics and pharmacodynamics, thus extending their therapeutic potential. Several aptamers have entered the clinical pipeline for applications and diseases such as macular degeneration, coronary artery bypass graft surgery, and various types of cancer. Furthermore, the functional repertoire of aptamers has expanded with the descriptions of multivalent agonistic aptamers and aptamers-siRNA chimeras. This review highlights those aptamers and aptamer-based approaches with particular likelihood of achieving therapeutic application.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
12
|
Motomura K. [Analysis of genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2]. KANSENSHOGAKU ZASSHI. THE JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES 2009; 83:81-93. [PMID: 19364034 DOI: 10.11150/kansenshogakuzasshi.83.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is estimated that one million people are dually infected with Human Immunodeficiency Virus type-I (HIV-1) and type-II (HIV-2) in West Africa and parts of India. HIV-1 and HIV-2 use the same receptor and coreceptors for entry into cells, and thus target the same cell populations in the host. Additionally, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. Therefore these properties suggest that in the dually infected population, it is likely that some cells can be infected by both HIV-1 and HIV-2, thereby providing opportunities for these two viruses to interact with each other. We constructed recombination assay system for measurement recombination frequencies and analyzed recombination rate between HIV-1 and HIV-2. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect copackaging of HIV-1 and HIV-2 RNAs. In this study, approximately 0.2% of infection events generated the GFP phenotype. Therefore, the appearance of the GFP+ phenotype in the current system is approximately 35-fold lower than that between two homologous HIV-1 or HIV-2 viruses. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns including those only had crossovers in gfp. The most common hybrid genomes had heterologous LTRs. Although infrequent, crossovers were also identified in the viral sequences. Such chimeric HIV-1 and HIV-2 viruses have yet to be observed in the infected population. It is unclear whether the lack of observed chimeras is due to the divergence between HIV-1 and HIV-2 being too great for such an event to occur, or whether such events could occur but have not yet been observed. Given the number of coinfected people, the potential for interactions between HIV-1 and HIV-2 should not be ignored.
Collapse
Affiliation(s)
- Kazushi Motomura
- HIV Drug Resistance Program, National Cancer Institute-Frederick, NIH, U.S.A
| |
Collapse
|
13
|
Warsinke A. Electrochemical biochips for protein analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 109:155-93. [PMID: 17928973 DOI: 10.1007/10_2007_079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Proteins bear important functions for most life processes. It is estimated that the human proteome comprises more than 250,000 proteins. Over the last years, highly sophisticated and powerful instruments have been developed that allow their detection and characterization with great precision and sensitivity. However, these instruments need well-equipped laboratories and a well-trained staff. For the determination of proteins in a hospital, in a doctor's office, or at home, low-budget protein analysis methods are needed that are easy to perform. In addition, for a proteomic approach, highly parallel measurements with small sample sizes are required. Biochips are considered as promising tools for such applications. The following chapter describes electrochemical biochips for protein analysis that use antibodies or aptamers as recognition elements.
Collapse
Affiliation(s)
- Axel Warsinke
- University of Potsdam, Institute of Biochemistry and Biology, iPOC Research Group, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany.
| |
Collapse
|
14
|
Genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2, two distinct human lentiviruses. J Virol 2007; 82:1923-33. [PMID: 18057256 DOI: 10.1128/jvi.01937-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP(+)) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP(+) single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.
Collapse
|
15
|
Brule F, Khatissian E, Benani A, Bodeux A, Montagnier L, Piette J, Lauret E, Ravet E. Inhibition of HIV replication: A powerful antiviral strategy by IFN-β gene delivery in CD4+ cells. Biochem Pharmacol 2007; 74:898-910. [PMID: 17662695 DOI: 10.1016/j.bcp.2007.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 12/30/2022]
Abstract
In this study, we demonstrated the efficiency and feasibility of a gene therapy protocol against HIV infection using the antiviral effects of IFN-beta expression. Lentiviral vectors containing the human or the simian IFN-beta sequences under the influence of the murine moderate H2-kb promoter were constructed. To examine the capacity of IFN-beta to inhibit the replication of HIV in human CD4(+) cells, a transduction protocol permitting to efficiently transduce CD4(+) cells or PBMC (85+/-12% of CD4(+)-transduced cells) with a moderate expression of IFN-beta was developed. Results indicate that enforced expression of IFN-beta has no negative effects in terms of apoptosis and proliferation. In human CD4(+) cells, it drastically inhibits (up to 99.9%) replication after challenging with different strains of HIV-1. The expression of exogenous IFN-beta leads to an amplification of the CD4(+) cells (11-fold) and to a drastic decrease of the p24 protein. Micro-array analyses indicated that antiviral effect of IFN-beta could be due to a major regulation of the inflammatory response. These results are encouraging for the development of a clinical study of gene therapy against AIDS using IFN-beta.
Collapse
Affiliation(s)
- Fabienne Brule
- Laboratory of Virology & Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Boyko V, Leavitt M, Gorelick R, Fu W, Nikolaitchik O, Pathak VK, Nagashima K, Hu WS. Coassembly and complementation of Gag proteins from HIV-1 and HIV-2, two distinct human pathogens. Mol Cell 2006; 23:281-7. [PMID: 16857594 DOI: 10.1016/j.molcel.2006.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 03/24/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Approximately one million people in the world are dually infected with both HIV-1 and HIV-2. To identify potential interactions between these two human pathogens, we examined whether HIV-1 and HIV-2 Gag proteins can coassemble and functionally complement each other. We generated HIV-1- and HIV-2-based vectors with mutations in Gag; compared with wild-type vectors, these mutants had drastically decreased viral titers. Coexpression of the mutant HIV-1 and HIV-2 Gag could generate infectious viruses; furthermore, heterologous complementation in certain combinations showed efficiency similar to homologous complementation. Additionally, we used bimolecular fluorescence complementation analysis to directly demonstrate that HIV-1 and HIV-2 Gag can interact and coassemble. Taken together, our results indicate that HIV-1 and HIV-2 Gag polyproteins can coassemble and functionally complement each other during virus replication; to our knowledge, this is the first demonstration of its kind. These studies have important implications for AIDS treatment and the evolution of primate lentiviruses.
Collapse
Affiliation(s)
- Vitaly Boyko
- HIV Drug Resistance Program, National Cancer Institute, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Numerous nucleic acid ligands, also termed decoys or aptamers, have been developed during the past 15 years that can inhibit the activity of many pathogenic proteins. Two of them, Macugen and E2F decoy, are in phase III clinical trials. Several properties of aptamers make them an attractive class of therapeutic compounds. Their affinity and specificity for a given protein make it possible to isolate a ligand to virtually any target, and adjusting their bioavailability expands their clinical utility. The ability to develop aptamers that retain activity in multiple organisms facilitates preclinical development. Antidote control of aptamer activity enables safe, tightly controlled therapeutics. Aptamers may prove useful in the treatment of a wide variety of human maladies, including infectious diseases, cancer, and cardiovascular disease. We review the observations that facilitated the development of this emerging class of therapeutics, summarize progress to date, and speculate on the eventual utility of such agents in the clinic.
Collapse
Affiliation(s)
- Shahid M Nimjee
- University Program of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
19
|
Nielsen MH, Pedersen FS, Kjems J. Molecular strategies to inhibit HIV-1 replication. Retrovirology 2005; 2:10. [PMID: 15715913 PMCID: PMC553987 DOI: 10.1186/1742-4690-2-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/16/2005] [Indexed: 11/10/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the primary cause of the acquired immunodeficiency syndrome (AIDS), which is a slow, progressive and degenerative disease of the human immune system. The pathogenesis of HIV-1 is complex and characterized by the interplay of both viral and host factors. An intense global research effort into understanding the individual steps of the viral replication cycle and the dynamics during an infection has inspired researchers in the development of a wide spectrum of antiviral strategies. Practically every stage in the viral life cycle and every viral gene product is a potential target. In addition, several strategies are targeting host proteins that play an essential role in the viral life cycle. This review summarizes the main genetic approaches taken in such antiviral strategies.
Collapse
Affiliation(s)
- Morten Hjuler Nielsen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, Room 404, DK-8000 Aarhus C, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, Room 404, DK-8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, Room 404, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Roisin A, Robin JP, Dereuddre-Bosquet N, Vitte AL, Dormont D, Clayette P, Jalinot P. Inhibition of HIV-1 Replication by Cell-penetrating Peptides Binding Rev. J Biol Chem 2004; 279:9208-14. [PMID: 14668323 DOI: 10.1074/jbc.m311594200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New therapeutic agents able to block HIV-1 replication are eagerly sought after to increase the possibilities of treatment of resistant viral strains. In this report, we describe a rational strategy to identify small peptide sequences owning the dual property of penetrating within lymphocytes and of binding to a protein target. Such sequences were identified for two important HIV-1 regulatory proteins, Tat and Rev. Their association to a stabilizing domain consisting of human small ubiquitin-related modifier-1 (SUMO-1) allowed the generation of small proteins named SUMO-1 heptapeptide protein transduction domain for binding Tat (SHPT) and SUMO-1 heptapeptide protein transduction domain for binding Rev (SHPR), which are stable and efficiently penetrate within primary lymphocytes. Analysis of the antiviral activity of these proteins showed that one SHPR is active in both primary lymphocytes and macrophages, whereas one SHPT is active only in the latter cells. These proteins may represent prototypes of new therapeutic agents targeting the crucial functions exerted by both viral regulatory factors.
Collapse
Affiliation(s)
- Armelle Roisin
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5161, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
21
|
D'Costa J, Harvey-White J, Qasba P, Limaye A, Kaneski CR, Davis-Warren A, Brady RO, Bankiewicz KS, Major EO, Arya SK. HIV-2 derived lentiviral vectors: gene transfer in Parkinson's and Fabry disease models in vitro. J Med Virol 2003; 71:173-82. [PMID: 12938190 DOI: 10.1002/jmv.10467] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lentiviral vectors are prime candidate vectors for gene transfer into dividing and non-dividing cells, including neuronal cells and stem cells. For safety, HIV-2 lentiviral vectors may be better suited for gene transfer in humans than HIV-1 lentiviral vectors. HIV-2 vectors cross-packaged in HIV-1 cores may be even safer. Demonstration of the efficacy of these vectors in disease models will validate their usefulness. Parkinson's disease and Fabry disease provide excellent models for validation. Parkinson's disease is a focal degeneration of dopaminergic neurons in the brain with progressive loss of ability to produce the neurotransmitter dopamine. Current treatment entails administration of increasing doses of L-dopa, with attendant toxicity. We explore here the hypothesis that gene transfer of aromatic acid decarboxylase (AADC), a key enzyme in the pathway, will make neuronal cells more efficiently convert L-dopa into dopamine. Fabry disease on the other hand is a monogenic inherited disease, characterized by alpha-galactosidase A (AGA) deficiency, resulting in glycolipid accumulation in several cell types, including fibroblasts. Animal models for preclinical investigations of both of these diseases are available. We have designed monocistronic HIV-1 and HIV-2 vectors with the AADC transgene and monocistronic and bicistronic HIV-2 vectors with the AGA and puromycin resistance transgenes. They were packaged with either HIV-2 cores or HIV-1 cores (hybrid vectors). Gene transfer of AADC gene in neuronal cells imparted the ability on the transduced cells to efficiently convert L-dopa into dopamine. Similarly, the AGA vectors induced Fabry fibroblasts to produce high levels of AGA enzyme and caused rapid clearance of the glycolipids from the cells. Both monocistronic and bicistronic vectors were effective. Thus, the insertion of a second gene downstream in the bicistronic vector was not deleterious. In addition, both the self-packaged vectors and the cross-packaged hybrid vectors were effective in gene transfer.
Collapse
Affiliation(s)
- Jenice D'Costa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paul CP, Good PD, Li SXL, Kleihauer A, Rossi JJ, Engelke DR. Localized expression of small RNA inhibitors in human cells. Mol Ther 2003; 7:237-47. [PMID: 12597912 DOI: 10.1016/s1525-0016(02)00038-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Several types of small RNAs have been proposed as gene expression repressors with great potential for use in gene therapy. RNA polymerase III (pol III) provides an ideal means of expressing small RNAs in cells because its normal products are small, highly structured RNAs that are found in a variety of subcellular compartments. We have designed cassettes that use human pol III promoters for the high-level expression of small RNAs in the cytoplasm, nucleoplasm, and nucleolus. The levels and subcellular destinations of the transcripts are compared for transcripts expressed using the U6 small nuclear RNA (snRNA), 5S ribosomal RNA (rRNA), and the 7SL RNA component of the signal recognition particle. The most effective location for a particular inhibitory RNA is not necessarily predictable; thus these cassettes allow testing of the same RNA insert in multiple subcellular locations. Several small interfering RNA (siRNA) inserts were tested for efficacy. An siRNA insert that reduces lamin expression when transcribed from the U6 snRNA promoter in the nucleus has no effect on lamin expression when transcribed from 5S rRNA and 7SL RNA-based cassettes and found in the nucleolus and cytoplasm. To test further the generality of U6-driven siRNA inhibitors, siRNAs targeting HIV were tested by co-transfection with provirus in cell culture. Although the degree of HIV-1 inhibition varied among inserts, results show that the U6 cassette provides a means of expressing an siRNA-like inhibitor of HIV gene expression.
Collapse
Affiliation(s)
- Cynthia P Paul
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
23
|
Michienzi A, Li S, Zaia JA, Rossi JJ. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci U S A 2002; 99:14047-52. [PMID: 12376617 PMCID: PMC137834 DOI: 10.1073/pnas.212229599] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tat is a critical regulatory factor in HIV-1 gene expression. It mediates the transactivation of transcription from the HIV-1 LTR by binding to the transactivation response (TAR) element in a complex with cyclin T1. Because of its critical and early role in HIV gene expression, Tat and its interaction with the TAR element constitute important therapeutic targets for the treatment of HIV-1 infection. Based on the known nucleolar localization properties of Tat, we constructed a chimeric small nucleolar RNA-TAR decoy that localizes to the nucleoli of human cells and colocalizes in the nucleolus with a Tat-enhanced GFP fusion protein. When the chimeric RNA was stably expressed in human T lymphoblastoid CEM cells it potently inhibited HIV-1 replication. These results demonstrate that the nucleolar trafficking of Tat is critical for HIV-1 replication and suggests a role for the nucleolus in HIV-1 viral replication.
Collapse
Affiliation(s)
- Alessandro Michienzi
- Divisions of Molecular Biology and Virology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010-3011, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Jacqueline D Reeves
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| | - Robert W Doms
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| |
Collapse
|
25
|
Affiliation(s)
- P J Bock
- Department of Internal Medicine, Division of Infectious Diseases, Graduate Program in Cellular and Molecular Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
26
|
Mautino MR, Morgan RA. Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 2002; 16:11-26. [PMID: 11839215 DOI: 10.1089/108729102753429361] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of vectors based on primate lentiviruses for gene therapy of human immunodeficiency virus type 1 (HIV-1) infection has many potential advantages over the previous murine retroviral vectors used for delivery of genes that inhibit replication of HIV-1. First, lentiviral vectors have the ability to transduce dividing and nondividing cells that constitute the targets of HIV-1 infection such as resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Second, these vectors could be potentially mobilized in vivo by the wild-type virus to secondary target cells, thus expanding the protection to previously untransduced cells. And finally, lentiviral vector backbones have the ability to block HIV-1 replication by several mechanisms that include sequestration of the regulatory proteins Tat and Rev, competition for packaging into virions, and by inhibition of reverse transcription in heterodimeric virions with possible generation of nonfunctional recombinants between the vector and viral genomes. The inhibitory ability of lentiviral vectors can be further increased by expression of anti-HIV-1 genes. In this case, the lentiviral vector packaging system has to be modified to become resistant to the anti-HIV-1 genes expressed by the vector in order to avoid self-inhibition of the vector packaging system during vector production. This review focuses on the use of lentiviral vectors as the main agents to mediate inhibition of HIV-1 replication and discusses the different genetic intervention strategies for gene therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- N Dorman
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
28
|
D'Costa J, Brown HM, Kundra P, Davis-Warren A, Arya SK. Human immunodeficiency virus type 2 lentiviral vectors: packaging signal and splice donor in expression and encapsidation. J Gen Virol 2001; 82:425-434. [PMID: 11161282 DOI: 10.1099/0022-1317-82-2-425] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviral vectors provide the means for gene transfer with long-term expression. The lentivirus subgroup of retroviruses, such as human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), possesses a number of regulatory and accessory genes and other special elements. These features can be exploited to design vectors for transducing non-dividing as well as dividing cells with the potential for regulated transgene expression. Encapsidation of the transgene RNA in lentiviral vectors is determined by the leader sequence-based multipartite packaging signal. Embedded in the packaging signal is a major splice donor site that, this study shows, is not by itself essential for transgene expression or encapsidation. We designed HIV-2 vectors that contained all the sequence elements thought to be necessary and sufficient for vector RNA encapsidation. Unexpectedly, despite abundant expression, only a small fraction of the transgene RNA was encapsidated and the titre of the vector was low. Redesign of the vector with a mutant splice donor resulted in increased vector RNA encapsidation and yielded vectors with high titre. Inefficient encapsidation by the conventionally designed vector was not due to suboptimal Rev responsive element (RRE)-Rev function. Varying the length of RRE in the vector did not change vector RNA encapsidation, nor did the introduction of a synthetic intron into the mutant vector. The vector RNA with the intact splice donor may have been excessively spliced, decreasing the amount of packageable RNA. A titre of 10(5) transducing units (TU)/ml was readily obtained for vectors with the neo or GFP transgene, and the vector could be concentrated to a titre of 1-5x10(7) TU/ml.
Collapse
Affiliation(s)
- Jenice D'Costa
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5E10, National Institutes of Health, Bethesda, MD 20892, USA1
| | - Heidi M Brown
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5E10, National Institutes of Health, Bethesda, MD 20892, USA1
| | - Priya Kundra
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5E10, National Institutes of Health, Bethesda, MD 20892, USA1
| | - Alberta Davis-Warren
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5E10, National Institutes of Health, Bethesda, MD 20892, USA1
| | - Suresh K Arya
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5E10, National Institutes of Health, Bethesda, MD 20892, USA1
| |
Collapse
|
29
|
Mayhood T, Kaushik N, Pandey PK, Kashanchi F, Deng L, Pandey VN. Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 2000; 39:11532-9. [PMID: 10995220 DOI: 10.1021/bi000708q] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tat, an essential human immunodeficiency virus type 1 protein interacts with the transactivation response element (TAR) and stimulates transcription from the viral long-terminal repeat (LTR). Blockage of Tat-TAR interaction halts viral transcription and hence replication. We have found that polyamide nucleic acid (PNA), targeted to the TAR sequences of viral RNA genome is able to prevent Tat-TAR interaction by efficient sequestration of the TAR. Anti-TAR PNA competes for TAR and prevents Tat-mediated stimulation of HIV-1 LTR transcription in vitro but has no influence on the basal level of transcription in the absence of Tat. Using a reporter gene construct pHIV LTR-CAT and pCMV-Tat in cell culture, we have further shown that anti-TAR PNA is able to block Tat-mediated transactivation of HIV-1 LTR transcription in vivo as judged by the extent of LTR driven CAT gene expression in the absence and presence of anti-TAR PNA. Supplementation of 100 nM of anti-TAR PNA into the culture medium further enhances the suppression of transactivation. Nonspecific scrambled PNA had no influence on Tat-TAR interaction and LTR-driven CAT gene expression in cell culture. These results suggest that PNA targeted to the TAR sequence of the viral genome may be a potential inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- T Mayhood
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nkengasong JN, Kestens L, Ghys PD, Koblavi-Dème S, Otten RA, Bilé C, Maurice C, Kalou M, Laga M, Wiktor SZ, Greenberg AE. Dual infection with human immunodeficiency virus type 1 and type 2: impact on HIV type 1 viral load and immune activation markers in HIV-seropositive female sex workers in Abidjan, Ivory Coast. AIDS Res Hum Retroviruses 2000; 16:1371-8. [PMID: 11018856 DOI: 10.1089/08892220050140919] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine the impact of dual infection with HIV-1 and HIV-2 on HIV-1 viral load and markers of immune activation among HIV-seropositive FSWs in Abidjan, we analyzed blood samples obtained from consenting HIV-seropositive FSWs attending a confidential clinic between September 1996 and June 1997 in Abidjan. Among HIV-1 and HIV-2 dually seropositive FSWs, polymerase chain reaction (PCR) testing with HIV-1 and HIV-2 primers was used to differentiate between FSWs who were PCR positive only for HIV-1 and those positive for both HIV-1 and HIV-2 (dually infected). Of the 203 FSWs, 151 (74%) were HIV-1 seropositive only (median age, 26 years), 4 (2%) were HIV-2 seropositive, and 48 (24%) were dually seropositive (median age, 30 years). Of the 48 dually seropositive FSWs, 33 (69%) were dually infected and 15 (31%) were dually seropositive. Median CD4+ T cell counts per microliter were not significantly different among the three groups (525 for HIV-1 positive only, 502 for dually infected, and 416 for dually seropositive) (p = 0.14). Median viral load (log10 copies/ml) was not significantly different among the HIV-1-only FSWs (4.8 log10 copies/ml) compared with the 32 dually infected FSWs (4.6 log10 copies/ml) and 14 dually seropositive FSWs (4.7 log10 copies/ml; p = 0.95). Median levels of HLA-DR immune activation were increased in both CD4+ and CD8+ T cells for the dually infected (n = 27) FSWs compared with those infected with HIV-1 only (n = 123) (p = 0.019 and p = 0.01, respectively). Dual infection does not appear to influence levels of HIV-1 viral load in vivo. However, levels of HLA-DR are higher among FSWs dually infected with HIV-1 and HIV-2 than among those infected with HIV-1 only.
Collapse
Affiliation(s)
- J N Nkengasong
- Laboratory of Virology, Project RETRO-CI, Abidjan, Ivory Coast.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marthinet E, Divita G, Bernaud J, Rigal D, Baggetto LG. Modulation of the typical multidrug resistance phenotype by targeting the MED-1 region of human MDR1 promoter. Gene Ther 2000; 7:1224-33. [PMID: 10918491 DOI: 10.1038/sj.gt.3301231] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multidrug resistance of cancer (MDR) is the major cause of failure of chemotherapy. The typical MDR phenotype is due to the overexpression of membrane proteins among which the main representative is P-glycoprotein (Pgp) encoded by the MDR1 gene. Many attempts to modulate MDR by chemosensitizers have been unsuccessful in human therapy due to their intrinsic toxic effects. In an effort to modulate the MDR phenotype efficiently we designed an antisense and a transcriptional decoy strategy targeting the TATA-less human MDR1 gene promoter. The choice of the start point of transcription in a multiple start site window is related to an upstream MED-1 cis-element, the sequence and configuration of which are specific to human MDR1 gene expressed in Pgp-overproducing cancer cells. A 12mer antisense oligodeoxynucleotide (ODN) and a 12mer double-stranded ODN, both containing the MED-1 sequence, were designed and efficiently vectorized into the nucleus with the chimerical MPG peptide. A synthetic cellular model (NIH-EGFP) and highly resistant human CEM/VLB0.45 leukemia cells, significantly responded to transfection with the ODN/MPG complex. The level of EGFP fluorescence in NIH-EGFP cells decreased, and thus its production, and viability of CEM/VLB0.45 cells decreased by 63% in the presence of vinblastine, revealing that their resistance to the anticancer drug was reversed. These results open new insights into transcriptional decoy and anti-gene therapies of MDR cancers that overproduce Pgp. Gene Therapy (2000) 7, 1224-1233.
Collapse
|
32
|
Kokkotou EG, Sankale JL, Mani I, Gueye-Ndiaye A, Schwartz D, Essex ME, Mboup S, Kanki PJ. In vitro correlates of HIV-2-mediated HIV-1 protection. Proc Natl Acad Sci U S A 2000; 97:6797-802. [PMID: 10841574 PMCID: PMC18743 DOI: 10.1073/pnas.97.12.6797] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Indexed: 01/29/2023] Open
Abstract
A prospective study of high-risk commercial sex workers in Senegal has shown that HIV-2 infection may reduce the risk of subsequent HIV-1 infection; these findings have been confirmed and extended, now with 13 years of observation. While exploring the biological mechanisms behind this natural protection, we found that a significant proportion of peripheral blood mononuclear cells obtained from HIV-2-infected subjects resisted in vitro challenge with CCR5-dependent HIV-1 viruses but not CXCR4-dependent viruses. High levels of beta-chemokines, the natural ligands of the CCR5 coreceptor, were correlated with low levels of viral replication, and resistance was abrogated by antibodies to beta-chemokines. Our results suggest that beta-chemokine-mediated resistance may be an important correlate of HIV protection against HIV-1 infection and relevant to HIV vaccine design.
Collapse
Affiliation(s)
- E G Kokkotou
- Harvard AIDS Institute, Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|