1
|
Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali AJ, Chow DC, Shikuma CM, Park J. Platelet and HIV Interactions and Their Contribution to Non-AIDS Comorbidities. Biomolecules 2023; 13:1608. [PMID: 38002289 PMCID: PMC10669125 DOI: 10.3390/biom13111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Platelets are anucleate cytoplasmic cell fragments that circulate in the blood, where they are involved in regulating hemostasis. Beyond their normal physiologic role, platelets have emerged as versatile effectors of immune response. During an infection, cell surface receptors enable platelets to recognize viruses, resulting in their activation. Activated platelets release biologically active molecules that further trigger host immune responses to protect the body against infection. Their impact on the immune response is also associated with the recruitment of circulating leukocytes to the site of infection. They can also aggregate with leukocytes, including lymphocytes, monocytes, and neutrophils, to immobilize pathogens and prevent viral dissemination. Despite their host protective role, platelets have also been shown to be associated with various pathophysiological processes. In this review, we will summarize platelet and HIV interactions during infection. We will also highlight and discuss platelet and platelet-derived mediators, how they interact with immune cells, and the multifaceted responsibilities of platelets in HIV infection. Furthermore, we will give an overview of non-AIDS comorbidities linked to platelet dysfunction and the impact of antiretroviral therapy on platelet function.
Collapse
Affiliation(s)
- Thomas Awamura
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Elizabeth S. Nakasone
- University of Hawai‘i Cancer Center, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
| | - Louie Mar Gangcuangco
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Natalie T. Subia
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Aeron-Justin Bali
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
| | - Dominic C. Chow
- Department of Medicine, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA;
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Cecilia M. Shikuma
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (T.A.); (N.T.S.); (A.-J.B.)
- Hawai‘i Center for AIDS, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA; (L.M.G.); (C.M.S.)
| |
Collapse
|
2
|
Zhang C, Lan Y, Li L, He R, Meng Y, Li J, Chen W. HIV-1 tropism in low-level viral load HIV-1 infections during HAART in Guangdong, China. Front Microbiol 2023; 14:1159763. [PMID: 37152735 PMCID: PMC10158941 DOI: 10.3389/fmicb.2023.1159763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Background Since only a few studies have been conducted on the factors associated with different HIV-1 tropisms in low-level viral load HIV-1 infections in China, we investigated the sequences of HIV-1 V3 loop in prevalent HIV-1 subtypes and factors related to HIV-1 tropism and immune recovery in HIV-1 infections after 6 months of highly active antiretroviral therapy (HAART) in Guangdong, China. Methods Plasma samples with HIV-1 RNA of 400-999 copies/mL were collected. We analyzed the amino acid sequence of the V3 loop by in silico prediction algorithms. Mann-Whitney and Chi-square tests were used for statistical comparison. Furthermore, logistic regression and multiple linear regression were used, respectively, for factors associated with 351 HIV-1 tropism and immune recovery of 67 cases with continued CD4+ T cell count during HAART. Results There was a lower percentage of HIV-1 R5-tropic virus in CRF01_AE (66.3%) (p < 0.0001) and CRF55_01B (52.6%) (p < 0.0001) compared with both CRF07_BC (96.1%) and CRF08_BC (97.4%), respectively. Compared with the R5-tropic virus, higher proportions of IIe8/Val8, Arg11/Lys11, and Arg18/His18/Lys18 were observed in the X4-tropic virus of CRF01_AE and CRF07_BC (p < 0.0001). The baseline CD4+ T cell count (p < 0.0001) and baseline CD4+ T/CD8+ T ratio (p = 0.0006) of all R5-tropic infections were higher than those in the X4-tropic infection. The baseline CD4+ T cell count (odds ratio [OR] 0.9963, p = 0.0097), CRF07_BC (OR 0.1283, p = 0.0002), and CRF08_BC (OR 0.1124, p = 0.0381) were associated with less HIV-1 X4-tropism. The baseline CD4+ T cell count was a positive factor (p < 0.0001) in the recovery of CD4+ T cell count during HAART. Conclusion R5-tropism represented the majority in low-level viral load HIV-1 infections receiving HAART for more than 6 months in Guangdong, China. The baseline immune level in the HIV-1 R5-tropic infections was higher than that in the X4-tropic infections. The amino acids of the 8th, 11th, and 18th of the HIV-1 V3 loop were more variable in the X4-tropic HIV-1. CRF01_AE, CRF55_01B, and lower baseline CD4+ T cell count were associated with more HIV-1 X4-tropism. The immune recovery during HAART was positively related to baseline CD4+ T cell count.
Collapse
Affiliation(s)
- Chuyu Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiying He
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Meng
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weilie Chen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Weilie Chen,
| |
Collapse
|
3
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
5
|
Ríos SC, Colón Sáez JO, Quesada O, Figueroa KQ, Lasalde Dominicci JA. Disruption of the cholinergic anti-inflammatory response by R5-tropic HIV-1 protein gp120 JRFL. J Biol Chem 2021; 296:100618. [PMID: 33811859 PMCID: PMC8102909 DOI: 10.1016/j.jbc.2021.100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
Despite current pharmacological intervention strategies, patients with HIV still suffer from chronic inflammation. The nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the nervous and immune systems. In macrophages, activation of alpha7-nAChR (α7-nAChR) controls inflammatory processes through the cholinergic anti-inflammatory response (CAR). Given that this innate immune response controls inflammation and α7-nAChR plays a critical role in the regulation of systemic inflammation, we investigated the effects of an R5-tropic HIV soluble component, gp120JRFL, on the CAR functioning. We previously demonstrated that X4-tropic HIV-1 gp120IIIB disrupts the CAR as well as inducing upregulation of the α7-nAChR in vitro in monocyte-derived macrophages (MDMs), which correlates with the upregulation observed in monocytes, T-lymphocytes, and MDMs recovered from HIV-infected people. We demonstrate here using imaging and molecular assays that the R5-tropic HIV-1 glycoprotein gp120JRFL upregulates the α7-nAChR in MDMs dependent on CD4 and/or CCR5 activation. This upregulation was also dependent on MEK1 since its inhibition attenuates the upregulation of α7-nAChR induced by gp120JRFL and was concomitant with an increase in basal calcium levels, which did not result in apoptosis. Moreover, the CAR was determined to be disrupted, since α7-nAChR activation in MDMs did not reduce the production of the proinflammatory cytokines IL-6, GRO-α, or I-309. Furthermore, a partial antagonist of α7-nAChR, bupropion, rescued IL-6 but not GRO-α or I-309 production. Together, these results demonstrate that gp120JRFL disrupts the CAR in MDMs. Other medications targeting the α7-nAChR need to be tested to reactivate the CAR to ameliorate inflammation in HIV-infected subjects.
Collapse
Affiliation(s)
- Sonnieliz Cotto Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | - José O Colón Sáez
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA
| | | | - José A Lasalde Dominicci
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, USA; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA.
| |
Collapse
|
6
|
Matume ND, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Bessong PO. Next generation sequencing reveals a high frequency of CXCR4 utilizing viruses in HIV-1 chronically infected drug experienced individuals in South Africa. J Clin Virol 2018; 103:81-87. [PMID: 29661652 DOI: 10.1016/j.jcv.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Entry inhibitors, such as Maraviroc, bind to CCR5 inhibiting entry of CCR5 utilizing viruses (R5 viruses). In the course of HIV infection, CXCR4 utilizing viruses (X4 viruses) may emerge and outgrow R5 viruses, and potentially limit the effectiveness of Maraviroc. The use of Maraviroc is reserved for salvage therapy in South Africa. OBJECTIVE In this study, we examined the frequency of R5 and X4 viruses, using next generation sequencing, in patients under treatment to draw inferences on the utility of Maraviroc in a South African population. STUDY DESIGN Proviral DNA was isolated from peripheral blood mononuclear cells (PBMC) of 72 chronically HIV infected patients on antiretroviral treatment. HIV V3 loop gene was amplified and sequenced on an Illumina MiniSeq platform. Viral subtypes were determined by the jumping profile Hidden Markov Model (jpHMM) and REGA genotyping tools. De Novo consensus sequences were derived for the majority and minority populations for each patient using Geneious® software version 8.1.5. HIV-1 tropism was inferred using PSSMsinsi, Geno2pheno and Phenoseq-C web-based tools. RESULTS Quality V3 loop sequences were obtained from 72 patients, with 5 years (range: 0-16) median duration on treatment. Subtypes A1, B and C viruses were identified at frequencies of 4% (3/72), 4% (3/72) and 92% (66/72) respectively. Fifty four percent (39/72) of patients exclusively harboured R5 viral quasispecies; and 21% (15/72) exclusively harbored X4 viral quasispecies. Twenty five percent of patients (18/72) harbored dual/mixture of R5X4 quasispecies. Of these 18 patients, about 28% (5/18) harbored the R5+X4, a mixture with a majority R5 and minority X4 viruses, while about 72% (13/18) harbored the R5X4+ mixture with a majority X4 and minority R5 viruses. The proportion of all patients who harbored X4 viruses either exclusively or dual/mixture was 46% (33/72). Thirty-five percent (23/66) of the patients who were of HIV-1 subtype C harboured X4 viruses (χ2 = 3.58; p = .058), and 57% of these (13/23) harbored X4 viruses exclusively. CD4+ cell count less than 350 cell/μl was associated with the presence of X4 viruses (χ2 = 4.99; p = .008). CONCLUSION The effectiveness of Maraviroc as a component in salvage therapy may be compromised for a significant number of chronically infected patients harboring CXCR4 utilizing viruses.
Collapse
Affiliation(s)
- Nontokozo D Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| | - Denis M Tebit
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA.
| | - Pascal O Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
7
|
Ru W, Tang SJ. HIV-1 gp120Bal down-Regulates Phosphorylated NMDA Receptor Subunit 1 in Cortical Neurons via Activation of Glutamate and Chemokine Receptors. J Neuroimmune Pharmacol 2016; 11:182-91. [PMID: 26582091 PMCID: PMC4746099 DOI: 10.1007/s11481-015-9644-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023]
Abstract
HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Rom S, Reichenbach NL, Dykstra H, Persidsky Y. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity. Front Microbiol 2015; 6:878. [PMID: 26379653 PMCID: PMC4548080 DOI: 10.3389/fmicb.2015.00878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023] Open
Abstract
Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
9
|
The evolution of HIV-1 interactions with coreceptors and mannose C-type lectin receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:109-40. [PMID: 25595802 DOI: 10.1016/bs.pmbts.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of human immunodeficiency virus type 1 (HIV-1) commonly evolves between and within infected individuals, at virus transmission, and during disease progression. This evolution includes altered interactions between the virus and its coreceptors, i.e., chemokine receptors, as well as mannose C-type lectin receptors (CLRs). Transmitted/founder viruses are predominantly restricted to CCR5, whereas the subsequent intrapatient evolution of HIV-1 coreceptor use during progressive disease can be subdivided into two distinct pathways. Accordingly, the CCR5-restricted virus population is either gradually replaced by virus variants able to use CXCR4 or evolves toward an altered, more flexible use of CCR5. Despite a strong dependency on these coreceptors for host cell entry, HIV-1 also interacts with other cell surface molecules during target cell attachment, including the CLRs. The virus interaction with the CLRs may result either in the efficient transfer of virus to CD4(+) T cells or in the degradation of the virus in endosomal compartments. The determinants of the diverse outcomes depend on which CLR is engaged and also on the glycan makeup of the envelope glycoproteins, which may evolve with the strength of the immune pressure during the disease course. With the current clinical introduction of CCR5 antagonists and the development of additional entry inhibitors, knowledge on the evolution and baseline characteristics of HIV-1 interactions with coreceptor and CLR interactions may play important roles for individualized and optimized treatment strategies. This review summarizes our current understanding of the evolution of HIV-1 interactions with these receptors.
Collapse
|
10
|
Rao VR, Ruiz AP, Prasad VR. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 2014; 11:13. [PMID: 24894206 PMCID: PMC4043700 DOI: 10.1186/1742-6405-11-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022] Open
Abstract
As the HIV-1 epidemic enters its fourth decade, HIV-1 associated neurological disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of anti-retroviral therapy. Advancing age and increased life expectancy of the HIV-1 infected population have been shown to increase the risk of cognitive dysfunction. Over the past 10 years, there has been a significant progress in our understanding of the mechanisms and the risk factors involved in the development of HAND. Key events that lead up to neuronal damage in HIV-1 infected individuals can be categorized based on the interaction of HIV-1 with the various cell types, including but not limited to macrophages, brain endothelial cells, microglia, astrocytes and the neurons. This review attempts to decipher these interactions, beginning with HIV-1 infection of macrophages and ultimately resulting in the release of neurotoxic viral and host products. These include: interaction with endothelial cells, resulting in the impairment of the blood brain barrier; interaction with the astrocytes, leading to metabolic and neurotransmitter imbalance; interactions with resident immune cells in the brain, leading to release of toxic cytokines and chemokines. We also review the mechanisms underlying neuronal damage caused by the factors mentioned above. We have attempted to bring together recent findings in these areas to help appreciate the viral and host factors that bring about neurological dysfunction. In addition, we review host factors and viral genotypic differences that affect phenotypic pathological outcomes, as well as recent advances in treatment options to specifically address the neurotoxic mechanisms in play.
Collapse
|
11
|
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol 2014; 95:71-81. [PMID: 24158961 PMCID: PMC3868190 DOI: 10.1189/jlb.0713368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
Collapse
Affiliation(s)
- Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia; and
| | - Nicholas Francella
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon R. Lewin
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Abstract
Over the past three decades of intense research on the contribution of viral and host factors determining the variability in HIV-1 infection outcome, HIV pathogenesis is still a fascinating topic that requires further study. An understanding of the exact mechanism of how these factors influencing HIV pathogenesis is critical to the development of effective strategies to prevent infection. Significant progress has been made in identifying the role of CCR5 (R5) and CXCR4 (X4) HIV strains in disease progression, particularly with the persistence of R5 HIV-1 strains at the AIDS stage. This indicates that R5 strains are as fit as X4 in causing CD4+ T cell depletion and in contribution to disease outcome, and so questions the prerequisite of the shift from R5 to X4 for disease progression. In contrast, the ability of certain HIV strains to readily use CXCR4 for infection or entry into macrophages, as the case with viruses are homozygous for tropism by CCR5delta32. This raises another major paradox in HIV pathogenesis about the source of X4 variants and how do they emerge from a relatively homogeneous R5 viral population after transmission. The interactions between viral phenotypes, tropism and co-receptor usage and how they influence HIV pathogenesis are the main themes addressed in this review. A better understanding of the viral and host genetic factors involved in the fitness of X4 and R5 strains of HIV-1 may facilitate development of specific inhibitors against these viral populations to at least reduce the risk of disease progression.
Collapse
Affiliation(s)
- Hassan M Naif
- Molecular Virology Program, Medical Biotechnology, Al-Nahrain University , Baghdad, Iraq
| |
Collapse
|
13
|
Stantchev TS, Paciga M, Lankford CR, Schwartzkopff F, Broder CC, Clouse KA. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection. Retrovirology 2012. [PMID: 23206338 PMCID: PMC3526565 DOI: 10.1186/1742-4690-9-97] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI) and/or thioredoxin (Trx) have emerged as the two enzymes most often implicated in this process. RESULTS We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets--primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM), and also phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb) in HIV-1 envelope pseudotyped and wild type (wt) virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. CONCLUSIONS Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this process and may provide an explanation for differences among previously published studies. More importantly, from an in vivo perspective, the preferential utilization of PDI may be relevant to the HIV-1 entry and establishment of virus reservoirs in resting CD4+ cells, while the elevated levels of Trx reported in the chronic stages of HIV-1 infection may facilitate the virus entry in macrophages and help to sustain high viremia during the decline of T lymphocytes.
Collapse
Affiliation(s)
- Tzanko S Stantchev
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Salimi H, Roche M, Webb N, Gray LR, Chikere K, Sterjovski J, Ellett A, Wesselingh SL, Ramsland PA, Lee B, Churchill MJ, Gorry PR. Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5. J Leukoc Biol 2012; 93:113-26. [PMID: 23077246 DOI: 10.1189/jlb.0612308] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BR-derived HIV-1 strains have an exceptional ability to enter macrophages via mechanisms involving their gp120 Env that remain incompletely understood. Here, we used cell-based affinity-profiling methods and mathematical modeling to generate quantitative VERSA metrics that simultaneously measure Env-CD4 and Env-CCR5 interactions. These metrics were analyzed to distinguish the phenotypes of M-tropic and non-M-tropic CCR5-using HIV-1 variants derived from autopsy BRs and LNs, respectively. We show that highly M-tropic Env variants derived from brain can be defined by two distinct and simultaneously occurring phenotypes. First, BR-derived Envs demonstrated an enhanced ability to interact with CD4 compared with LN-derived Envs, permitting entry into cells expressing scant levels of CD4. Second, BR-derived Envs displayed an altered mechanism of engagement between CD4-bound gp120 and CCR5 occurring in tandem. With the use of epitope mapping, mutagenesis, and structural studies, we show that this altered mechanism is characterized by increased exposure of CD4-induced epitopes in gp120 and by a more critical interaction between BR-derived Envs and the CCR5 N-terminus, which was associated with the predicted presence of additional atomic contacts formed at the gp120-CCR5 N-terminus interface. Our results suggest that BR-derived HIV-1 variants with highly efficient macrophage entry adopt conformations in gp120 that simultaneously alter the way in which the Env interacts with CD4 and CCR5.
Collapse
Affiliation(s)
- Hamid Salimi
- Center for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kondo N, Melikyan GB. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells. PLoS One 2012; 7:e44827. [PMID: 22970312 PMCID: PMC3435301 DOI: 10.1371/journal.pone.0044827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022] Open
Abstract
Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
CD56+ T cells, the crucial component of the host innate immune system, play an important role in defense against viral infections. We investigated the noncytolytic anti-HIV-1 activity of primary CD56+ T cells. SNs collected from CD56+ T cell cultures inhibited HIV-1 infection and replication. This CD56+ T SN-mediated anti-HIV-1 activity was broad-spectrum, as CD56+ T SNs could inhibit infections by laboratory-adapted and clinical strains of HIV-1. The antibody to IFN-γ could partially block the CD56+ T SN-mediated anti-HIV effect. Investigation of mechanism(s) of the CD56+ T cell action on HIV-1 showed that although CD56+ T SN had little effect on HIV-1 entry coreceptor CCR5 expression, CD56+ T SN induced the expression of CC-chemokines, the ligands for CCR5. The antibodies to CC-chemokines also significantly blocked CD56+ T SN-mediated anti-HIV activity. Furthermore, CD56+ T SN up-regulated the expression of STAT-1/-2 and enhanced the expression of IRF1, -3, -7, and -9, resulting in the induction of endogenous IFN-α/β expression in macrophages. Moreover, CD56+ T SN up-regulated intracellular expression of APOBEC3G/3F, the recently identified HIV-1 restriction factors. These findings provide compelling evidence that CD56+ T cells may have a critical role in innate immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Wei Hou
- Animal Biosafety Level 3 Laboratory/Center for Animal Experiment, Wuhan University, Wuhan, P. R. China
| | | | | |
Collapse
|
17
|
MAGOMBEDZE GESHAM, GARIRA WINSTON, MWENJE EDDIE. IN-VIVOMATHEMATICAL STUDY OF CO-INFECTION DYNAMICS OF HIV-1 ANDMYCOBACTERIUM TUBERCULOSIS. J BIOL SYST 2011. [DOI: 10.1142/s0218339008002551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) fuels the pathogenesis of Mycobacterium tuberculosis (Mtb) in humans. We develop a mathematical model in an attempt to understand the immune mechanisms that are involved during the co-infection of Mtb and HIV-1. Our study reveals that infection of an Mtb infected individual with HIV-1 results in fast development of active TB. The mathematical model analysis and simulations show that Mtb infection is linked to HIV infection through macrophages and CD4+ T cells. The study shows that depletion of macrophages and CD4+ T cells by HIV-1 worsens the picture of Mtb infection and in-turn Mtb infection affects the progression of HIV-1 infection since it is also capable of inducing rapid replication of HIV. Our analytical and numerical simulations show that macrophages are a potential reservoir of HIV particles during HIV-1 infection. Co-infection simulations reveal that co-infection exacerbates more the pathogen that caused the first infection. Simulations also show that co-infection disease progression patterns converge to a similar trend after a considerable time interval irrespective of which pathogen first caused infection and the second pathogen that caused co-infection. This work suggests directions for further studies and potential treatment strategies.
Collapse
Affiliation(s)
- GESHAM MAGOMBEDZE
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - WINSTON GARIRA
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - EDDIE MWENJE
- Departments of Applied Biology, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
18
|
Alternative coreceptor requirements for efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages. J Virol 2011; 85:10699-709. [PMID: 21835796 DOI: 10.1128/jvi.05510-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macrophage tropism of human immunodeficiency virus type 1 (HIV-1) is distinct from coreceptor specificity of the viral envelope glycoproteins (Env), but the virus-cell interactions that contribute to efficient HIV-1 entry into macrophages, particularly via CXCR4, are not well understood. Here, we characterized a panel of HIV-1 Envs that use CCR5 (n = 14) or CXCR4 (n = 6) to enter monocyte-derived macrophages (MDM) with various degrees of efficiency. Our results show that efficient CCR5-mediated MDM entry by Env-pseudotyped reporter viruses is associated with increased tolerance of several mutations within the CCR5 N terminus. In contrast, efficient CXCR4-mediated MDM entry was associated with reduced tolerance of a large deletion within the CXCR4 N terminus. Env sequence analysis and structural modeling identified amino acid variants at positions 261 and 263 within the gp41-interactive region of gp120 and a variant at position 326 within the gp120 V3 loop that were associated with efficient CXCR4-mediated MDM entry. Mutagenesis studies showed that the gp41 interaction domain variants exert a significant but strain-specific influence on CXCR4-mediated MDM entry, suggesting that the structural integrity of the gp120-gp41 interface is important for efficient CXCR4-mediated MDM entry of certain HIV-1 strains. However, the presence of Ile326 in the gp120 V3 loop stem, which we show by molecular modeling is located at the gp120-coreceptor interface and predicted to interact with the CXCR4 N terminus, was found to be critical for efficient CXCR4-mediated MDM entry of divergent CXCR4-using Envs. Together, the results of our study provide novel insights into alternative mechanisms of Env-coreceptor engagement that are associated with efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages.
Collapse
|
19
|
Dimonte S, Mercurio F, Svicher V, D'Arrigo R, Perno CF, Ceccherini-Silberstein F. Selected amino acid mutations in HIV-1 B subtype gp41 are associated with specific gp120v₃ signatures in the regulation of co-receptor usage. Retrovirology 2011; 8:33. [PMID: 21569409 PMCID: PMC3117778 DOI: 10.1186/1742-4690-8-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/12/2011] [Indexed: 12/30/2022] Open
Abstract
Background The third variable loop (V3) of the HIV-1 gp120 surface protein is a major determinant of cellular co-receptor binding. However, HIV-1 can also modulate its tropism through other regions in gp120, such as V1, V2 and C4 regions, as well as in the gp41 protein. Moreover, specific changes in gp41 are likely to be responsible for of damage in gp120-CCR5 interactions, resulting in potential resistance to CCR5 inhibitors. In order to genetically characterize the two envelope viral proteins in terms of co-receptor usage, we have analyzed 526 full-length env sequences derived from HIV-1 subtype-B infected individuals, from our and public (Los Alamos) databases. The co-receptor usage was predicted by the analysis of V3 sequences using Geno2Pheno (G2P) algorithm. The binomial correlation phi coefficient was used to assess covariation among gp120V3 and gp41 mutations; subsequently the average linkage hierarchical agglomerative clustering was performed. Results According to G2P false positive rate (FPR) values, among 526 env-sequences analyzed, we further characterized 196 sequences: 105 with FPR <5% and 91 with FPR >70%, for X4-using and R5-using viruses, respectively. Beyond the classical signatures at 11/25 V3 positions (S11S and E25D, R5-tropic viruses; S11KR and E25KRQ, X4-tropic viruses), other specific V3 and gp41 mutations were found statistically associated with the co-receptor usage. Almost all of these specific gp41 positions are exposed on the surface of the glycoprotein. By the covariation analysis, we found several statistically significant associations between V3 and gp41 mutations, especially in the context of CXCR4 viruses. The topology of the dendrogram showed the existence of a cluster associated with R5-usage involving E25DV3, S11SV3, T22AV3, S129DQgp41 and A96Ngp41 signatures (bootstrap = 0.88). Conversely, a large cluster was found associated with X4-usage involving T8IV3, S11KRV3, F20IVYV3, G24EKRV3, E25KRV3, Q32KRV3, A30Tgp41, A189Sgp41, N195Kgp41 and L210Pgp41 mutations (bootstrap = 0.84). Conclusions Our results show that gp120V3 and several specific amino acid changes in gp41 are associated together with CXCR4 and/or CCR5 usage. These findings implement previous observations that determinants of tropism may reside outside the V3-loop, even in the gp41. Further studies will be needed to confirm the degree to which these gp41 mutations contribute directly to co-receptor use.
Collapse
|
20
|
Meehan CJ, Hedge JA, Robertson DL, McCormack GP, Travers SAA. Emergence, dominance, and possible decline of CXCR4 chemokine receptor usage during the course of HIV infection. J Med Virol 2011; 82:2004-12. [PMID: 20981786 DOI: 10.1002/jmv.21922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Binding to a chemokine receptor, either CCR5 or CXCR4, by the gp120 glycoprotein is an essential step in the pathway by which HIV enters host cells. Recently, CCR5 antagonists have been developed that obstruct binding of CCR5 by gp120, thus inhibiting host cell entry. Resistance to such CCR5 antagonists may emerge, however, through the selection of viral strains capable of utilizing CXCR4 receptors. This study explores the evolutionary context of emergence, and in many cases decline, of dominant CXCR4-usage (X4) during disease progression within a number of individuals. Of seven individuals exhibiting a switch to dominant CXCR4 usage, such dominance is transient in five of them with CCR5-usage (R5) re-emerging to dominate the viral population later in disease progression. Three individuals conform to documented X4 transience in that the re-emergence of R5 dominance is an outgrowth from the predominant R5 strain. However, in two individuals we observe a novel pathway for R5 re-emergence in that R5 strains emerge to dominate late in disease progression through continued evolution of the X4 population. This suggests that the molecular mechanism of such switches between R5 and X4-usage is strain specific and that no single mechanism is shared between individuals. These findings have implications for the understanding of the mechanisms of potential emergence of resistance to CCR5 antagonists through use of the CXCR4 receptor and support the importance to have an appropriately optimized background therapy for use with entry inhibitors and, as for all HAART, to monitor drug resistance in a comprehensive manner.
Collapse
Affiliation(s)
- Conor J Meehan
- Department of Zoology, Martin Ryan Institute, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
21
|
Svicher V, Balestra E, Cento V, Sarmati L, Dori L, Vandenbroucke I, D'Arrigo R, Buonomini AR, Van Marck H, Surdo M, Saccomandi P, Mostmans W, Aerssens J, Aquaro S, Stuyver LJ, Andreoni M, Ceccherini-Silberstein F, Perno CF. HIV-1 dual/mixed tropic isolates show different genetic and phenotypic characteristics and response to maraviroc in vitro. Antiviral Res 2011; 90:42-53. [PMID: 21349294 DOI: 10.1016/j.antiviral.2011.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Dual/mixed-tropic HIV-1 strains are predominant in a significative proportion of patients, though few information is available regarding the genetic characteristics, quasispecies composition, and susceptibility against CCR5-antagonists of the primary-isolates. For this reason, we investigated in deep details, both phenotypically and genotypically, the characteristics of 54 HIV-1 primary-isolates obtained from HIV-infected patients. Tropism was assessed by multiple-cycles phenotypic-assay on U87MG-CD4(+)-CCR5(+)-/CXCR4(+)-expressing cells. In vitro selection in PBMCs of X4-tropic viral strains following maraviroc-treatment was also performed. Phenotypic-assay reported pure R5-tropic viruses in 31 (57.4%) isolates, dual/mixed-tropic viruses in 22 (40.7%), and pure X4-tropic virus in only 1 (1.8%). Among dual/mixed-tropic isolates, 12 showed a remarkably higher replication-efficacy in CCR5-expressing cells (R5(+)/X4), and 2 in CXCR4-expressing cells (R5/X4(+)). Genotypic-tropism testing showed a correlation between PSSM-scores, geno2pheno false-positive-rate, and V3-net-charge with both CCR5-usage and syncytium-inducing ability. Moreover, specific gp120- and gp41-mutations were significantly associated with tropism and/or syncytium-inducing ability. Ultra-deep V3-pyrosequencing showed the presence of a swarm of genetically distinct species with a preference for CCR5-coreceptor not only in all pure R5-isolates, but also in 6/7 R5(+)/X4-tropic isolates. In both pure-X4 and R5/X4(+)-isolates, we observed extensive prevalence of X4-using species. In vitro selection-experiments with CCR5-inhibitor maraviroc (up to 2 months) showed no-emergence of X4-tropic variants for all R5- and R5(+)/X4-isolates tested (while X4-virus remained fully-resistant). In conclusion, our study shows that dual/mixed-tropic viruses are constituted by different species, whereby those with characteristics R5(+)/X4 are genotypically and phenotypically similar to the pure-R5 isolates; thus the use of CCR5-antagonists in patients with R5(+)/X4-tropic viruses may be a therapeutic-option that deserves further investigations.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Loftin LM, Kienzle M, Yi Y, Collman RG. R5X4 HIV-1 coreceptor use in primary target cells: implications for coreceptor entry blocking strategies. J Transl Med 2011; 9 Suppl 1:S3. [PMID: 21284902 PMCID: PMC3105503 DOI: 10.1186/1479-5876-9-s1-s3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Entry coreceptor use by HIV-1 plays a pivotal role in viral transmission, pathogenesis and disease progression. In many HIV-1 infected individuals, there is an expansion in coreceptor use from CCR5 to include CXCR4, which is associated with accelerated disease progression. While targeting HIV-1 envelope interactions with coreceptor during viral entry is an appealing approach to combat the virus, the methods of determining coreceptor use and the changes in coreceptor use that can occur during disease progression are important factors that may complicate the use of therapies targeting this stage of HIV-1 replication. Indicator cells are typically used to determine coreceptor use by HIV-1 in vitro, but the coreceptors used on these cells can differ from those used on primary cell targets. V3 based genetic sequence algorithms are another method used to predict coreceptor use by HIV-1 strains. However, these algorithms were developed to predict coreceptor use in cell lines and not primary cells and, furthermore, are not highly accurate for some classes of viruses. This article focuses on R5X4 HIV-1, the earliest CXCR4-using variants, reviewing the pattern of coreceptor use on primary CD4+ lymphocytes and macrophages, the relationship between primary cell coreceptor use and the two principal approaches to coreceptor analysis (genetic prediction and indicator cell phenotyping), and the implications of primary cell coreceptor use by these strains for treatment with a new class of small molecule antagonists that inhibit CCR5-mediated entry. These are important questions to consider given the development of new CCR5 blocking therapies and the prognosis associated with CXCR4 use.
Collapse
Affiliation(s)
- Lamorris M Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA 19104-6060, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The identification of phenotypically distinct HIV-1 variants with different prevalence during the progression of the disease has been one of the earliest discoveries in HIV-1 biology, but its relevance to AIDS pathogenesis remains only partially understood. The physiological basis for the phenotypic variability of HIV-1 was elucidated with the discovery of distinct coreceptors employed by the virus to infect susceptible cells. The role of the viral phenotype in the variable clinical course and treatment outcome of HIV-1 infection has been extensively investigated over the past two decades. In this review, we summarize the major findings on the clinical significance of the HIV-1 coreceptor usage.
Collapse
Affiliation(s)
- Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
24
|
Abstract
Current antiretroviral therapy regimens can effectively suppress HIV in patients for prolonged periods of time, but do not constitute a cure, since they are incapable of eradicating viral reservoirs. It is, therefore, necessary for us to refocus on the partially understood pathogenesis of HIV, on the issue of viral persistence, and on the development of strategies for a temporally contained therapy capable of purging HIV from the body. Macrophages play a pivotal role in all three of these scenarios. This review summarizes important aspects of macrophage biology as they relate to HIV and discusses conceptual challenges for virus suppression and eradication in this cell type. We highlight a number of significant recent advances in understanding differences in HIV replication and pharmacotherapy between macrophages and CD4 T cells, as well as the role of macrophages in various aspects of the disease process and in different anatomical compartments. Finally, the importance of infected macrophages in the persistence of HIV, regarding both pathogenesis and advancement of eradication strategies, is discussed.
Collapse
Affiliation(s)
- Stephanie Venzke
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|
25
|
Sterjovski J, Roche M, Churchill MJ, Ellett A, Farrugia W, Gray LR, Cowley D, Poumbourios P, Lee B, Wesselingh SL, Cunningham AL, Ramsland PA, Gorry PR. An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology 2010; 404:269-78. [PMID: 20570309 DOI: 10.1016/j.virol.2010.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/24/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
While CCR5 is the principal coreceptor used by macrophage (M)-tropic HIV-1, not all primary CCR5-using (R5) viruses enter macrophages efficiently. Here, we used functionally-diverse R5 envelope (Env) clones to characterize virus-cell interactions important for efficient CCR5-mediated macrophage entry. The magnitude of macrophage entry by Env-pseudotyped reporter viruses correlated with increased immunoreactivity of CD4-induced gp120 epitopes, increased ability to scavenge low levels of cell-surface CCR5, reduced sensitivity to the CCR5 inhibitor maraviroc, and increased dependence on specific residues in the CCR5 ECL2 region. These results are consistent with an altered and more efficient mechanism of CCR5 engagement. Structural studies revealed potential alterations within the gp120 V3 loop, the gp41 interaction sites at the gp120 C- and N-termini, and within the gp120 CD4 binding site which may directly or indirectly lead to more efficient CCR5-usage. Thus, enhanced gp120-CCR5 interactions may contribute to M-tropism of R5 HIV-1 strains through different structural mechanisms.
Collapse
|
26
|
Joly M, Pinto JM. Modelagem matemática da evolução do fenótipo indutor de sincício na infecção HIV-1/AIDS. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2010. [DOI: 10.1590/s1415-790x2010000200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
É proposta e discutida neste trabalho a modelagem matemática do processo de geração de variantes do vírus da imunodeficiência humana do tipo 1 que apresentam o fenótipo indutor de sincício durante as fases assintomática e AIDS clínica. Tais variantes podem fazer uso de CXCR4 exclusivamente (variantes X4) ou não (variantes R5X4 ou dual-trópicas). A base experimental de Shankarappa et al. (J Virol 1999; 73(2): 10489-502) é empregada como referência para derivação e calibração paramétrica de modelos fenomenológicos. Neste artigo, diferentes modelos matemáticos de evolução fenotípica do HIV-1, em termos da habilidade retroviral de induzir a formação de sincício, são propostos, testados e discutidos. Melhor aderência a resultados experimentais é verificada quando é considerada a reversibilidade entre fenótipos SI e NSI. Em adição, maior alinhamento à dinâmica in-vivo é observada se funções dependentes do tempo são admitidas para modelar a taxa de mutação entre variantes R5, R5X4 e X4 do HIV-1.
Collapse
Affiliation(s)
- Marcel Joly
- Universidade de São Paulo; Petrobras Petróleo Brasileiro S.A
| | | |
Collapse
|
27
|
Loftin LM, Kienzle MF, Yi Y, Lee B, Lee FH, Gray L, Gorry PR, Collman RG. Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: efficiency of Env-CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry. Virology 2010; 402:135-48. [PMID: 20381825 DOI: 10.1016/j.virol.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
R5X4 HIV-1 has impaired utilization of CCR5 on primary CD4+ lymphocytes but the mechanisms responsible are not well defined. Using a panel of diverse R5X4 Envs we identified a spectrum of CCR5 use on CD4+ lymphocytes. Greater lymphocyte CCR5 use correlated with relative resistance to CCR5 mAbs and small molecule antagonists. Increasing CCR5 expression on lymphocytes increased the proportion of entry mediated by CCR5 for all R5X4 isolates except 89.6. In cell lines with regulated CCR5 expression, strains with greater lymphocyte CCR5 use better exploited limiting levels of CCR5. Introduction of an R306S mutation in the 89.6 V3 domain enhanced its utilization of CCR5 at low levels and switched its preference to CCR5 for lymphocyte entry. Thus, the degree to which R5X4 HIV-1 use primary lymphocyte CCR5 is determined by low CCR5 expression coupled with variations in the efficiency of Env-CCR5 interactions, which is in part governed by V3 sequences.
Collapse
Affiliation(s)
- Lamorris M Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Moog R. 2008 Congress of the ESFH in Düsseldorf, Germany. Transfus Apher Sci 2009; 41:23-6. [PMID: 19556166 DOI: 10.1016/j.transci.2009.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol 2009; 83:5430-41. [PMID: 19321618 DOI: 10.1128/jvi.02648-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) strains isolated from the brain use CCR5 for entry into macrophages and microglia. Strains that use both CCR5 and CXCR4 for entry (R5X4 strains) have been identified in the brains of some individuals, but mechanisms underlying the persistence of R5X4 viruses compartmentalized between the brain and other tissue reservoirs are unknown. Here, we characterized changes in the HIV-1 envelope (Env) that enhance the tropism of R5X4 variants for brain or lymphoid tissue. R5X4 Envs derived from the brains of two individuals had enhanced CCR5 usage in fusion assays compared to R5X4 Envs derived from matched spleen or blood, which was associated with reduced dependence on specific residues in the CCR5 N terminus and extracellular loop 1 (ECL1) and ECL3 regions. In contrast, spleen/blood-derived Envs had enhanced CXCR4 usage compared to brain-derived Envs, which was associated with reduced dependence on residues in the CXCR4 N terminus and ECL2 region. Consequently, brain-derived Envs had preferential CCR5 usage for HIV-1 entry into the JC53 cell line, could use either CCR5 or CXCR4 for entry into monocyte-derived macrophages (MDM), and could use CCR5 (albeit inefficiently) for entry into peripheral blood mononuclear cells (PBMC), whereas the entry of spleen-derived Envs was CXCR4 dependent in all three cell types. Mutagenesis studies of Env amino acid variants influencing coreceptor usage showed that S306 in the gp120 V3 region of brain-derived Envs reduces dependence on the CCR5 N terminus and enhances CCR5 usage for HIV-1 entry into PBMC and MDM, whereas R306 in spleen-derived Envs reduces dependence on the CXCR4 N terminus and confers the CXCR4 restricted phenotype. These results identify mechanisms underlying R5X4 HIV-1 persistence in different tissue reservoirs. Tissue-specific changes in the gp120 V3 region that increase the efficiency of CCR5 or CXCR4 usage, and thereby influence coreceptor preference, may enhance the tropism of R5X4 strains for CCR5-expressing macrophage lineage cells in the brain and CXCR4-expressing T cells in lymphoid tissues, respectively.
Collapse
|
30
|
Baseline resistance of primary human immunodeficiency virus type 1 strains to the CXCR4 inhibitor AMD3100. J Virol 2008; 82:11695-704. [PMID: 18799588 DOI: 10.1128/jvi.01303-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.
Collapse
|
31
|
|
32
|
Abstract
Cell fusion would seem to be obviously recognizable upon visual inspection, and many studies employ a simple microscopic fusion index to quantify the rate and extent of fusion in cell culture. However, when cells are not in monolayers or when there is a large background of multinucleation through failed cytokinesis, cell-cell fusion can only be proven by mixing of cell contents. Furthermore, determination of the microscopic fusion index must generally be carried out manually, creating opportunities for unintended observer bias and limiting the numbers of cells assayed and therefore the statistical power of the assay. Strategies for making assays dependent on fusion and independent of visual observation are critical to increasing the accuracy and throughput of screens for molecules that control cell fusion. A variety of in vitro biochemical and nonbiochemical techniques have been developed to assay and monitor fusion events in cultured cells. In this chapter, we briefly discuss several in vitro fusion assays, nearly all based on systems of two components that interact to create a novel assayable signal only after cells fuse. We provide details for the use of one example of such a system, intracistronic complementation of beta-galactosidase activity by mutants of Escherichia coli lacZ, which allows for either cell-by-cell microscopic assay of cell fusion or quantitative and kinetic detection of cell fusions in whole populations. In addition, we describe a combination of gene knock-down protocols with this assay to study factors required for myoblast fusion.
Collapse
Affiliation(s)
- Jessica H Shinn-Thomas
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
33
|
Cunliffe JM, Whorton MR, Sunahara RK, Kennedy RT. A CE assay for the detection of agonist-stimulated adenylyl cyclase activity. Electrophoresis 2007; 28:1913-20. [PMID: 17480040 DOI: 10.1002/elps.200600571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A CE assay was developed for the detection of adenylyl cyclase (AC) activity stimulated at the AC and G protein-coupled receptor (GPCR) level. In the assay, cell membranes overexpressing GPCR and/or AC were incubated with modulators and substrate ATP to produce cAMP in a dose-dependent manner. In both the CE-UV and a radiochemical assay, the addition of forskolin (FSK) resulted in a two- to three-fold maximum increase in AC activity with EC50s of 4.2 +/- 0.7 and 2.4 +/- 0.7 microM, respectively, demonstrating that similar results were obtained by both assays. GPCR activation was also detected using cell membranes overexpressing AC and the beta2-adrenergic receptor (beta2AR) fused to the stimulatory G protein. Terbutaline (beta2AR agonist) increased the basal rate of cAMP formation 1.7 +/- 0.1-fold resulting in an EC50 of 62 +/- 10 nM. The assay's ability to detect antagonists is demonstrated by the expected right-shifted EC50 of terbutaline by the beta2AR antagonist propranolol. The CE-UV assay offers advantages over the traditional radioactivity assay in terms of safety and labor.
Collapse
Affiliation(s)
- Jennifer M Cunliffe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | |
Collapse
|
34
|
Laakso MM, Lee FH, Haggarty B, Agrawal C, Nolan KM, Biscone M, Romano J, Jordan APO, Leslie GJ, Meissner EG, Su L, Hoxie JA, Doms RW. V3 loop truncations in HIV-1 envelope impart resistance to coreceptor inhibitors and enhanced sensitivity to neutralizing antibodies. PLoS Pathog 2007; 3:e117. [PMID: 17722977 PMCID: PMC1950945 DOI: 10.1371/journal.ppat.0030117] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/02/2007] [Indexed: 02/01/2023] Open
Abstract
The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1) envelope (Env) protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (ΔV1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked to high levels of resistance to these antiviral compounds. The envelope protein of HIV-1 is responsible for binding virus to the surface of cells and mediating viral entry. Viral entry can be prevented by neutralizing antibodies that bind to envelope, and by small molecule inhibitors that bind to viral receptors on the cell surface, such as CCR5. HIV may acquire resistance to these small molecule inhibitors, several of which are being used in clinical trials to treat HIV-infected individuals, through resistance mechanisms that are not well understood. In addition, broadly neutralizing antibodies are rare—the envelope protein possesses structural features that limit antibody binding. We made a partial deletion in a region of envelope that interacts with viral receptors, and which is also widely believed to act as a shield against neutralizing antibodies. Normally, an envelope with such a modification would have total loss of function. However, by passaging virus with the partially deleted envelope in vitro, the envelope acquired adaptive mutations that restored function. Virus with the adapted envelope was highly sensitive to neutralizing antibodies and so may serve as a platform for immunization. This envelope also exhibited complete resistance to small molecule inhibitors that bind to the viral receptor CCR5, and lends insight into a mechanism of drug resistance by which the virus interacts with viral receptors on the cell surface in a novel manner.
Collapse
Affiliation(s)
- Meg M Laakso
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beth Haggarty
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Caroline Agrawal
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katrina M Nolan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark Biscone
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Josephine Romano
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrea P. O Jordan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - George J Leslie
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eric G Meissner
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lishan Su
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert W Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Thomas ER, Dunfee RL, Stanton J, Bogdan D, Taylor J, Kunstman K, Bell JE, Wolinsky SM, Gabuzda D. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion. Virology 2006; 360:105-19. [PMID: 17084877 PMCID: PMC1890014 DOI: 10.1016/j.virol.2006.09.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/28/2006] [Accepted: 09/22/2006] [Indexed: 01/09/2023]
Abstract
HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion.
Collapse
Affiliation(s)
- Elaine R. Thomas
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca L. Dunfee
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Derek Bogdan
- Northwestern University Medical School, Chicago, IL, USA
| | - Joann Taylor
- Northwestern University Medical School, Chicago, IL, USA
| | - Kevin Kunstman
- Northwestern University Medical School, Chicago, IL, USA
| | - Jeanne E. Bell
- Department of Pathology, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- *Corresponding Author. Mailing Address: Dana-Farber Cancer Institute, JFB 816 44 Binney St. Boston, MA 02115 Phone: (617) 632-2154 Fax: (617) 632 3113 E-mail:
| |
Collapse
|
36
|
Peters PJ, Dueñas-Decamp MJ, Sullivan WM, Clapham PR. Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues. J Neuroimmune Pharmacol 2006; 2:32-41. [PMID: 18040824 DOI: 10.1007/s11481-006-9042-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus (HIV)-positive individuals frequently suffer from progressive encephelopathy, which is characterized by sensory neuropathy, sensory myelopathy, and dementia. Our group and others have reported the presence of highly macrophage-tropic R5 variants of HIV-1 in brain tissue of patients with neurological complications. These variants are able to exploit low amounts of CD4 and/or CCR5 for infection and potentially confer an expanded tropism for any cell types that express low CD4 and/or CCR5. In contrast to the brain-derived envelopes, we found that envelopes from lymph node tissue, blood, or semen were predominantly non-macrophage-tropic and required high amounts of CD4 for infection. Nevertheless, where tested, the non-macrophage-tropic envelopes conferred efficient replication in primary CD4(+) T-cell cultures. Determinants of R5 macrophage tropism appear to involve changes in the CD4 binding site, although further unknown determinants are also involved. The variation of R5 envelopes also affects their sensitivity to inhibition by ligands and entry inhibitors that target CD4 and CCR5. In summary, HIV-1 R5 viruses vary extensively in macrophage tropism. In the brain, highly macrophage-tropic variants may represent neurotropic or neurovirulent viruses. In addition, variation in R5 macrophage tropism may also have implications (1) for transmission, depending on what role macrophages or cells that express low CD4 and/or CCR5 play in the establishment of infection in a new host, and (2) for pathogenesis and depletion of CD4(+) T cells (i.e., do highly macrophage-tropic variants confer a broader tropism among CD4(+) T-cell populations late in disease and contribute to their depletion?).
Collapse
Affiliation(s)
- Paul J Peters
- Center for AIDS Research, Program in Molecular Medicine and Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 373 Plantation Street Biotech II Suite 315, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
37
|
Stantchev TS, Markovic I, Telford WG, Clouse KA, Broder CC. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res 2006; 123:178-89. [PMID: 17030448 PMCID: PMC1847631 DOI: 10.1016/j.virusres.2006.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/27/2022]
Abstract
Binding of HIV-1 envelope glycoprotein (Env) to its cellular receptors elicits a variety of signaling events, including the activation of select tyrosine kinases. To evaluate the potential role of such signaling, we examined the effects of the tyrosine kinase inhibitor, genistein, on HIV-1 entry and infection of human macrophages using a variety of assays. Without altering cell viability, cell surface expression of CD4 and CCR5 or their abilities to interact with Env, genistein inhibited infection of macrophages by reporter gene-encoding, beta-lactamase containing, or wild type virions, as well as Env-mediated cell-fusion. The observation that genistein blocked virus infection if applied before, during or immediately after the infection period, but not 24h later; coupled with a more pronounced inhibition of infection in the reporter gene assays as compared to both beta-lactamase and p24 particle entry assays, imply that genistein exerts its inhibitory effects on both entry and early post-entry steps. These findings suggest that other exploitable targets, or steps, of the HIV-1 infection process may exist and could serve as additional opportunities for the development of new therapeutics.
Collapse
Affiliation(s)
- Tzanko S Stantchev
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University Bethesda, 4301 Jones Bridge Road, MD 20814, USA
| | | | | | | | | |
Collapse
|
38
|
Cervantes-Acosta G, Welman M, Freund F, Cohen EA, Lemay G. CD4/CXCR4 co-expression allows productive HIV-1 infection in canine kidney MDCK cells. Virus Res 2006; 120:138-45. [PMID: 16600413 DOI: 10.1016/j.virusres.2006.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
The Madin-Darby canine kidney (MDCK) cell line has become the prototypic cell type for studying the mechanisms involved in viral glycoproteins transport and viral assembly in polarized cells. This cell line has been used in our laboratories for studying human immunodeficiency virus (HIV-1), despite the fact that MDCK cells cannot be infected by HIV. In transfected MDCK cells, HIV-1 glycoproteins are specifically transported to the basolateral cell surface where viral budding also mostly occurs. However, this model is of limited use when viral propagation, infection of most cells, or larger production of virions, is needed. The initial objective of this work was thus to establish an MDCK-derived cell line that could be productively infected by HIV-1, in order to pursue our studies on the polarization of viral budding. Expression of both receptor and co-receptor for T-tropic strains of the virus showed that canine cells are rendered permissive once virus binding and entry is allowed. In addition, a reduced infectivity of the viral particles released from the basolateral surface was observed. This observation most likely reflects the interference mediated by CD4 molecules that accumulate at the basolateral domain. Accordingly, this effect was largely prevented when using viruses that down-regulate cell surface CD4 by expression of both viral accessory proteins Vpu and Nef. This is a further evidence that the function of different viral proteins depends of the site of viral budding, which is itself determined by the presence of targeting signal(s) harbored by viral envelope glycoproteins.
Collapse
Affiliation(s)
- Guillermo Cervantes-Acosta
- Département de Microbiologie et Immunologie, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | | | |
Collapse
|
39
|
Goodenow MM, Collman RG. HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol 2006; 80:965-72. [PMID: 16923919 DOI: 10.1189/jlb.0306148] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HIV-1 infection of cells is mediated by engagement between viral envelope glycoproteins (Env) and a receptor complex comprising CD4 and one of two chemokine receptors, CCR5 and CXCR4, expressed on the surface of target cells. Most CD4+-transformed T cell lines express only CXCR4, but primary lymphocytes and macrophages, the main cellular targets for infection in vivo, express both coreceptors. Cell- and viral strain-specific utilization of these coreceptor pathways, rather than coreceptor expression per se, regulates lymphocyte and macrophage entry and tropism. Virus use of coreceptor[s] (R5, X4, or R5 and X4) and its target cell tropism (lymphocytes, macrophages, and/or transformed T cell lines) are related but distinct characteristics of Envs. A comprehensive classification schema of HIV-1 Env phenotypes that addresses both tropism and coreceptor use is proposed. Defining Env phenotype based on both parameters is important in the development of entry inhibitors and vaccines, for understanding changes in Env that evolve over time in vivo, and for discerning differences among viral species that underlie aspects of pathogenesis and transmission. Recognizing how tropism is related to, yet differs from, coreceptor selectivity is critical for understanding the mechanisms by which these viral characteristics impact pathogenesis.
Collapse
Affiliation(s)
- Maureen M Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|
40
|
Aquaro S, Ronga L, Pollicita M, Antinori A, Ranazzi A, Perno CF. Human immunodeficiency virus infection and acquired immunodeficiency syndrome dementia complex: role of cells of monocyte-macrophage lineage. J Neurovirol 2006; 11 Suppl 3:58-66. [PMID: 16540457 DOI: 10.1080/13550280500513416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry of human immunodeficiency virus (HIV) into the central nervous system (CNS) causes both the establishment of a lifelong viral reservoir in the brain and symptoms of neurological dysfunction that have an AIDS dementia complex (ADC) clinical appearance. Neurological dysfunction in ADC patients still remains an unresolved problem. However, ADC pathogenesis may be a multistep process that starts with HIV invasion of CNS by crossing the blood-brain barrier (BBB). It progresses by developing a chronic inflammatory status that can cause dysfunction in neurons and astrocytes that result in apoptotic death. Monocytes-macrophages (M/M) may play an important role by concealing the HIV transfer across the BBB. Furthermore, HIV-infected M/M could produce and release neurotoxic factors. In this review the main mediators and cells involved in pathogenesis and development of ADC are highlighted. A better understanding of the mechanisms involved in this process may help in a successful therapeutic approach to the neuropathogenesis of HIV infection.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata,", Rome, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Gray L, Churchill MJ, Keane N, Sterjovski J, Ellett AM, Purcell DFJ, Poumbourios P, Kol C, Wang B, Saksena NK, Wesselingh SL, Price P, French M, Gabuzda D, Gorry PR. Genetic and functional analysis of R5X4 human immunodeficiency virus type 1 envelope glycoproteins derived from two individuals homozygous for the CCR5delta32 allele. J Virol 2006; 80:3684-91. [PMID: 16537640 PMCID: PMC1440368 DOI: 10.1128/jvi.80.7.3684-3691.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) isolated from two HIV-1-infected CCR5delta32 homozygotes. Envs from both subjects used CCR5 and CXCR4 for entry into transfected cells. Most R5X4 Envs were lymphocyte-tropic and used CXCR4 exclusively for entry into peripheral blood mononuclear cells (PBMC), but a subset was dually lymphocyte- and macrophage-tropic and used either CCR5 or CXCR4 for entry into PBMC and monocyte-derived macrophages. The persistence of CCR5-using HIV-1 in two CCR5delta32 homozygotes suggests the conserved CCR5 binding domain of Env is highly stable and provides new mechanistic insights important for HIV-1 transmission and persistence.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Cell Line
- Cells, Cultured
- Clone Cells
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Genes, Reporter
- HIV-1/physiology
- Homozygote
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Luciferases/metabolism
- Male
- Molecular Sequence Data
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Lachlan Gray
- Macfarlane Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne 3001, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Joly M, Pinto JM. Role of mathematical modeling on the optimal control of HIV-1 pathogenesis. AIChE J 2006. [DOI: 10.1002/aic.10716] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Ghaffari G, Tuttle DL, Briggs D, Burkhardt BR, Bhatt D, Andiman WA, Sleasman JW, Goodenow MM. Complex determinants in human immunodeficiency virus type 1 envelope gp120 mediate CXCR4-dependent infection of macrophages. J Virol 2005; 79:13250-61. [PMID: 16227248 PMCID: PMC1262568 DOI: 10.1128/jvi.79.21.13250-13261.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Guity Ghaffari
- Department of Pediatrics, Division of Immunology, Rhematology, and Infectious Diseases, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cilliers T, Willey S, Sullivan WM, Patience T, Pugach P, Coetzer M, Papathanasopoulos M, Moore JP, Trkola A, Clapham P, Morris L. Use of alternate coreceptors on primary cells by two HIV-1 isolates. Virology 2005; 339:136-44. [PMID: 15992849 DOI: 10.1016/j.virol.2005.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 03/30/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
Two HIV-1 isolates (CM4 and CM9) able to use alternate HIV-1 coreceptors on transfected cell lines were tested for their sensitivity to inhibitors of HIV-1 entry on primary cells. CM4 was able to use CCR5 and Bob/GPR15 efficiently in transfected cells. The R5 isolate grew in Delta32/Delta32 CCR5 PBMC in the absence or presence of AMD3100, a CXCR4-specific inhibitor, indicating that it uses a receptor other than CCR5 or CXCR4 on primary cells. It was insensitive to the CCR5 entry inhibitors RANTES and PRO140, but was partially inhibited by vMIP-1, a chemokine that binds CCR3, CCR8, GPR15 and CXCR6. The coreceptor used by this isolate on primary cells is currently unknown. CM9 used CCR5, CXCR4, Bob/GPR15, CXCR6, CCR3, and CCR8 on transfected cells and was able to replicate in the absence or presence of AMD3100 in Delta32/Delta32 CCR5 PBMC. It was insensitive to eotaxin, vMIP-1 and I309 when tested individually, but was inhibited completely when vMIP-1 or I309 was combined with AMD3100. Both I309 and vMIP-1 bind CCR8, strongly suggesting that this isolate can use CCR8 on primary cells. Collectively, these data suggest that some HIV-1 isolates can use alternate coreceptors on primary cells, which may have implications for strategies that aim to block viral entry.
Collapse
Affiliation(s)
- Tonie Cilliers
- AIDS Virus Research Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Joly M, Pinto JM. CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: implications for susceptibility to infection by HIV-1. Math Biosci 2005; 195:92-126. [PMID: 15893340 DOI: 10.1016/j.mbs.2005.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 11/23/2022]
Abstract
Chemokine receptor expression may vary dramatically among cell subsets. Therefore, the stage of differentiation and the lineage of CD4 cells may profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). However, the mechanisms of coreceptor competition for association with HIV-1 glycoproteins remain unknown. Here, we propose mathematical models that address the interdependence of the concentrations of CD4 and CCR5 for efficient infection by M-tropic HIV-1 as well as additional complications originated by coreceptor competition caused by posttranslational modifications that positively or negatively affect the coreceptor ability to form complexes with CD4 and/or HIV-1 envelope. Furthermore, since CCR5 and CXCR4 expression on human leukocytes designate these cells as HIV-1 potential targets, the expression of the major HIV-1 coreceptors are also dynamically modeled/quantified as function of the stage of cell differentiation. Results show that although coreceptor competition degree has limited influence on R5 strain infectivity, the infectivity of CXCR4-using isolates strongly depends on the CD4 expression, according to the coreceptor competition model proposed in Lee et al. [J. Virol. 74(11) (2000) 5016]. Understanding the role of in vivo alterations in CD4, CCR5 and CXCR4 densities on HIV-1 cell entry may help the development of optimal control strategies for AIDS pathogenesis.
Collapse
MESH Headings
- Algorithms
- CD4 Antigens/metabolism
- CD4 Antigens/physiology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/virology
- Cell Lineage
- Gene Expression
- HIV Infections/blood
- HIV Infections/physiopathology
- HIV Infections/virology
- HIV-1/pathogenicity
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Macrophages/metabolism
- Macrophages/physiology
- Macrophages/virology
- Models, Biological
- Monocytes/metabolism
- Monocytes/physiology
- Monocytes/virology
- Receptors, CCR5/blood
- Receptors, CCR5/genetics
- Receptors, CCR5/physiology
- Receptors, CXCR4/blood
- Receptors, CXCR4/genetics
- Receptors, CXCR4/physiology
- Receptors, HIV/metabolism
- Receptors, HIV/physiology
- T-Lymphocytes/metabolism
- T-Lymphocytes/physiology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Marcel Joly
- Department of Chemical Engineering, University of São Paulo, São Paulo SP 05508-900, Brazil
| | | |
Collapse
|
46
|
Princen K, Schols D. HIV chemokine receptor inhibitors as novel anti-HIV drugs. Cytokine Growth Factor Rev 2005; 16:659-77. [PMID: 16005254 DOI: 10.1016/j.cytogfr.2005.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
The chemokine receptors CXCR4 and CCR5 are the main coreceptors used by the T-cell-tropic (CXCR4-using, X4) and macrophage-tropic (CCR5-using, R5) HIV-1 strains, respectively, for entering their CD4+ target cells. In this review, we focus on the function of these chemokine receptors in HIV infection and their role as novel targets for viral inhibition. Besides some modified chemokines with antiviral activity, several low-molecular weight CCR5 and CXCR4 antagonistic compounds have been described with potent antiviral activity. The best CXCR4 antagonists described are the bicyclam derivatives, which consistently block X4 but also R5/X4 viral replication in PBMCs. We believe that chemokine receptor antagonists will become important new antiviral drugs to combat AIDS. Both CXCR4 and CCR5 chemokine receptor inhibitors will be needed in combination and even in combinations of antiviral drugs that also target other aspects of the HIV replication cycle to obtain optimum antiviral therapeutic effects.
Collapse
Affiliation(s)
- Katrien Princen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
47
|
Gray L, Sterjovski J, Churchill M, Ellery P, Nasr N, Lewin SR, Crowe SM, Wesselingh SL, Cunningham AL, Gorry PR. Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 2005; 337:384-98. [PMID: 15916792 DOI: 10.1016/j.virol.2005.04.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/18/2005] [Accepted: 04/27/2005] [Indexed: 11/23/2022]
Abstract
The mechanisms underlying the pathogenicity of CCR5-restricted (R5) human immunodeficiency virus type-1 (HIV-1) strains are incompletely understood. Acquisition or enhancement of macrophage (M)-tropism by R5 viruses contributes to R5 HIV-1 pathogenesis. In this study, we show that M-tropic R5 viruses isolated from individuals with acquired immunodeficiency syndrome (late R5 viruses) require lower levels of CD4/CCR5 expression for entry, have decreased sensitivity to inhibition by the entry inhibitors TAK-779 and T-20, and have increased sensitivity to neutralization by the Env MAb IgG1b12 compared with non-M-tropic R5 viruses isolated from asymptomatic, immunocompetent individuals (early R5 viruses). Augmenting CCR5 expression levels on monocyte-derived macrophages via retroviral transduction led to a complete or marginal restoration of M-tropism by early R5 viruses, depending on the viral strain. Thus, reduced CD4/CCR5 dependence is a phenotype of R5 HIV-1 associated with M-tropism and late stage infection, which may affect the efficacy of HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Lachlan Gray
- Macfarlane Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne, 3001 Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen S, Tuttle DL, Oshier JT, Knot HJ, Streit WJ, Goodenow MM, Harrison JK. Transforming growth factor-beta1 increases CXCR4 expression, stromal-derived factor-1alpha-stimulated signalling and human immunodeficiency virus-1 entry in human monocyte-derived macrophages. Immunology 2005; 114:565-74. [PMID: 15804293 PMCID: PMC1782104 DOI: 10.1111/j.1365-2567.2004.02110.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Stromal-derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 play crucial roles in leukocyte migration and activation, as well as embryogenesis, angiogenesis, cancer and viral pathogenesis. CXCR4 is one of the major human immunodeficiency virus-1 (HIV-1) coreceptors on macrophages. In many tissues macrophages are one of the predominant cell types infected by HIV-1 and act as a reservoir for persistent infection and viral dissemination. In patients infected by HIV-1, blood and tissue levels of transforming growth factor-beta1 (TGF-beta1) are increased. The purpose of this study was to evaluate the effects of TGF-beta1 on CXCR4 expression and function in primary human monocyte-derived macrophages (MDMs) and rat microglia. TGF-beta1 up-regulated CXCR4 and enhanced SDF-1alpha-stimulated ERK1,2 phosphorylation in these cells. The increased CXCR4 expression in human MDMs resulted in increased susceptibility of the cells to entry by dual-tropic CXCR4-using HIV-1 (D-X4). In contrast, TGF-beta1 failed to increase CCR5 expression or infection by a CCR5-using virus in MDMs. Our data demonstrate that TGF-beta1 enhances macrophage responsiveness to SDF-1alpha stimulation and susceptibility to HIV-1 by selectively increasing expression of CXCR4. The results suggest that increased expression of CXCR4 on macrophages may contribute to the emergence of dual-tropic X4 viral variants at later stages of HIV-1 infection.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610-0267, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jayakumar P, Berger I, Autschbach F, Weinstein M, Funke B, Verdin E, Goldsmith MA, Keppler OT. Tissue-resident macrophages are productively infected ex vivo by primary X4 isolates of human immunodeficiency virus type 1. J Virol 2005; 79:5220-6. [PMID: 15795306 PMCID: PMC1069582 DOI: 10.1128/jvi.79.8.5220-5226.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 11/21/2004] [Indexed: 11/20/2022] Open
Abstract
Infection of macrophages has been implicated as a critical event in the transmission and persistence of human immunodeficiency virus type 1 (HIV-1). Here, we explore whether primary X4 HIV-1 isolates can productively infect tissue macrophages that have terminally differentiated in vivo. Using immunohistochemistry, HIV-1 RNA in situ hybridization, and confocal immunofluorescence microscopy, we demonstrate that macrophages residing in human tonsil blocks can be productively infected ex vivo by primary X4 HIV-1 isolates. This challenges the model in which macrophage tropism is a key determinant of the selective transmission of R5 HIV-1 strains. Infection of tissue macrophages by X4 HIV-1 may be highly relevant in vivo and contribute to key events in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Prerana Jayakumar
- Gladstone Institute of Virology and Immunology, San Francisco General Hospital, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mukhtar M, Acheampong E, Khan MA, Bouhamdan M, Pomerantz RJ. Down-modulation of the CXCR4 co-receptor by intracellular expression of a single chain variable fragment (SFv) inhibits HIV-1 entry into primary human brain microvascular endothelial cells and post-mitotic neurons. ACTA ACUST UNITED AC 2005; 135:48-57. [PMID: 15857668 DOI: 10.1016/j.molbrainres.2004.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 11/22/2004] [Indexed: 12/15/2022]
Abstract
Our laboratories previously demonstrated that expression of a single chain variable antibody fragment (SFv), anti-CXCR4 SFv, in human lymphoid cells suppresses surface display of the chemokine co-receptor CXCR4 and inhibits infectious entry of human immunodeficiency virus type I (HIV-1). We now sought to extend these results to two types of central nervous system (CNS) cells, primary isolated human brain microvascular endothelial cells (MVECs), and post-mitotic differentiated human neurons, both of which normally express significant levels of CXCR4. The anti-CXCR4 SFv expression construct was delivered using an HIV-1-based vector, and control cells received LacZ-expressing viral particles. Upon intracellular expression of the anti-CXCR4 SFv, immunostaining revealed a marked reduction in surface display of CXCR4 on both cell types. Consequently, post-mitotic neurons expressing the anti-CXCR4 SFv were significantly protected from HIV-1 infection, as measured by HIV-1 p24 antigen production, and partial protection was observed in human brain MVECs. The ability to selectively down-modulate the surface expression of CXCR4 in CNS cells may allow for the development of clinical molecular therapy strategies against HIV-1-related neurodegenerative disorders and neuroinvasion.
Collapse
Affiliation(s)
- Muhammad Mukhtar
- The Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|