1
|
Shankar K, Sorin MN, Sharma H, Skoglund O, Dahmane S, ter Beek J, Tesfalidet S, Nenzén L, Carlson LA. In vitro reconstitution reveals membrane clustering and RNA recruitment by the enteroviral AAA+ ATPase 2C. PLoS Pathog 2024; 20:e1012388. [PMID: 39102425 PMCID: PMC11326647 DOI: 10.1371/journal.ppat.1012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Enteroviruses are a vast genus of positive-sense RNA viruses that cause diseases ranging from common cold to poliomyelitis and viral myocarditis. They encode a membrane-bound AAA+ ATPase, 2C, that has been suggested to serve several roles in virus replication, e.g. as an RNA helicase and capsid assembly factor. Here, we report the reconstitution of full-length, poliovirus 2C's association with membranes. We show that the N-terminal membrane-binding domain of 2C contains a conserved glycine, which is suggested by structure predictions to divide the domain into two amphipathic helix regions, which we name AH1 and AH2. AH2 is the main mediator of 2C oligomerization, and is necessary and sufficient for its membrane binding. AH1 is the main mediator of a novel function of 2C: clustering of membranes. Cryo-electron tomography reveal that several 2C copies mediate this function by localizing to vesicle-vesicle interfaces. 2C-mediated clustering is partially outcompeted by RNA, suggesting a way by which 2C can switch from an early role in coalescing replication organelles and lipid droplets, to a later role where 2C assists RNA replication and particle assembly. 2C is sufficient to recruit RNA to membranes, with a preference for double-stranded RNA (the replicating form of the viral genome). Finally, the in vitro reconstitution revealed that full-length, membrane-bound 2C has ATPase activity and ATP-independent, single-strand ribonuclease activity, but no detectable helicase activity. Together, this study suggests novel roles for 2C in membrane clustering, RNA membrane recruitment and cleavage, and calls into question a role of 2C as an RNA helicase. The reconstitution of functional, 2C-decorated vesicles provides a platform for further biochemical studies into this protein and its roles in enterovirus replication.
Collapse
Affiliation(s)
- Kasturika Shankar
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Marie N. Sorin
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Himanshu Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Oskar Skoglund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Selma Dahmane
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | - Louise Nenzén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Yin C, Zhao H, Xia X, Pan Z, Li D, Zhang L. Picornavirus 2C proteins: structure-function relationships and interactions with host factors. Front Cell Infect Microbiol 2024; 14:1347615. [PMID: 38465233 PMCID: PMC10921941 DOI: 10.3389/fcimb.2024.1347615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Picornaviruses, which are positive-stranded, non-enveloped RNA viruses, are known to infect people and animals with a broad spectrum of diseases. Among the nonstructural proteins in picornaviruses, 2C proteins are highly conserved and exhibit multiple structural domains, including amphipathic α-helices, an ATPase structural domain, and a zinc finger structural domain. This review offers a comprehensive overview of the functional structures of picornaviruses' 2C protein. We summarize the mechanisms by which the 2C protein enhances viral replication. 2C protein interacts with various host factors to form the replication complex, ultimately promoting viral replication. We review the mechanisms through which picornaviruses' 2C proteins interact with the NF-κB, RIG-I, MDA5, NOD2, and IFN pathways, contributing to the evasion of the antiviral innate immune response. Additionally, we provide an overview of broad-spectrum antiviral drugs for treating various enterovirus infections, such as guanidine hydrochloride, fluoxetine, and dibucaine derivatives. These drugs may exert their inhibitory effects on viral infections by targeting interactions with 2C proteins. The review underscores the need for further research to elucidate the precise mechanisms of action of 2C proteins and to identify additional host factors for potential therapeutic intervention. Overall, this review contributes to a deeper understanding of picornaviruses and offers insights into the antiviral strategies against these significant viral pathogens.
Collapse
Affiliation(s)
- Chunhui Yin
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haomiao Zhao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhengyang Pan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Daoqun Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Yeager C, Carter G, Gohara DW, Yennawar NH, Enemark E, Arnold J, Cameron CE. Enteroviral 2C protein is an RNA-stimulated ATPase and uses a two-step mechanism for binding to RNA and ATP. Nucleic Acids Res 2022; 50:11775-11798. [PMID: 36399514 PMCID: PMC9723501 DOI: 10.1093/nar/gkac1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and β phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.
Collapse
Affiliation(s)
- Calvin Yeager
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Griffin Carter
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Eric J Enemark
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jamie J Arnold
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig E Cameron
- To whom correspondence should be addressed. Tel: +1 919 966 9699; Fax: +1 919 962 8103;
| |
Collapse
|
4
|
Heat Shock Protein 60 Is Involved in Viral Replication Complex Formation and Facilitates Foot and Mouth Virus Replication by Stabilizing Viral Nonstructural Proteins 3A and 2C. mBio 2022; 13:e0143422. [PMID: 36106732 PMCID: PMC9601101 DOI: 10.1128/mbio.01434-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maintenance of viral protein homeostasis depends on the machinery of the infected host cells, giving us an insight into the interplay between host and virus. Accumulating evidence suggests that heat shock protein 60 (HSP60), as one molecular chaperone, is involved in regulating virus infection. However, the role of HSP60 during foot-and-mouth disease virus (FMDV) replication and its specific mechanisms have not been reported. We demonstrate that HSP60 modulates the FMDV life cycle. HSP60 plays a role at the postentry stage of the viral life cycle, including RNA replication and mRNA translation; however, HSP60 does not affect viral replication of Seneca Valley virus (SVA) or encephalomyocarditis virus (EMCV). We found that HSP60 is involved in FMDV replication complex (RC) formation. Furthermore, our results indicate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, key elements of the viral replication complex. We also show that HSP60 regulates the stability of 3A and 2C via caspase-dependent and autophagy-lysosome-dependent degradation, thereby promoting FMDV RNA synthesis and mRNA translation mediated by the RC. Additionally, we determined that the apical domain of HSP60 is responsible for interacting with 3A and 2C. The N terminus of 3A and ATPase domain of 2C are involved in binding to HSP60. Importantly, HSP60 depletion potently reduced FMDV pathogenicity in infected mice. Altogether, this study demonstrates a specific role of HSP60 in promoting FMDV replication. Furthermore, targeting host HSP60 will help us design the FMDV-specific antiviral drugs.
Collapse
|
5
|
Zhang C, Yang F, Wojdyla JA, Qin B, Zhang W, Zheng M, Cao W, Wang M, Gao X, Zheng H, Cui S. An anti-picornaviral strategy based on the crystal structure of foot-and-mouth disease virus 2C protein. Cell Rep 2022; 40:111030. [PMID: 35793627 DOI: 10.1016/j.celrep.2022.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/05/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule. Mutations at ZFER, PBL, and Pocket affect FMDV 2C ATPase activity and are lethal to FMDV infectious clones. Because the PBL-Pocket interaction between FMDV 2C molecules is essential for its functions, we design an anti-FMDV peptide derived from PBL (PBL-peptide). PBL-peptide inhibits FMDV 2C ATPase activity, binds FMDV 2C with nanomolar affinity, and disrupts FMDV 2C oligomerization. FMDV 2C targets lipid droplets (LDs) and induces LD clustering in cells, and PBL-peptide disrupts FMDV 2C-induced LD clustering. Finally, we demonstrate that PBL-peptide exhibits anti-FMDV activity in cells.
Collapse
Affiliation(s)
- Chu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Min Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
6
|
Huan C, Qu X, Li Z. Host Restrictive Factors Are the Emerging Storm Troopers Against Enterovirus: A Mini-Review. Front Immunol 2022; 13:910780. [PMID: 35603180 PMCID: PMC9114347 DOI: 10.3389/fimmu.2022.910780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Enterovirus infection continues to be a global health problem. The lack of specific drugs and broad-spectrum vaccines means an urgent need to develop effective strategies against enteroviruses. Host restrictive factors are a class of intrinsic host antiviral factors that have been broadly defined and investigated during HIV infections and have great significance for drug development and treatment design. In recent years, the essential role of host restrictive factors in regulating enteroviral infections has been gradually recognized and investigated. An increasing number of studies have shown that host-restrictive factors regulate multiple steps in the life cycle of enteroviruses. This mini-review discusses the restrictive factors against enteroviruses, their antiviral mechanism, and the arms race between them and enteroviruses. We also summarise the pathways that enteroviruses use to impair host antiviral signals. This mini-review characterizes the essential role of host restriction factors in enterovirus infections, which provides ideas and potential targets for antiviral drug design by regulating host restrictive factors. It also reveals potential future research on the interplay between host restrictive factors and enteroviruses.
Collapse
Affiliation(s)
- Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xinglong Qu
- Respiratory Department of the First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Filipe IC, Guedes MS, Zdobnov EM, Tapparel C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021; 9:1758. [PMID: 34442837 PMCID: PMC8400195 DOI: 10.3390/microorganisms9081758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses (EVs) from the D species are the causative agents of a diverse range of infectious diseases in spite of comprising only five known members. This small clade has a diverse host range and tissue tropism. It contains types infecting non-human primates and/or humans, and for the latter, they preferentially infect the eye, respiratory tract, gastrointestinal tract, and nervous system. Although several Enterovirus D members, in particular EV-D68, have been associated with neurological complications, including acute myelitis, there is currently no effective treatment or vaccine against any of them. This review highlights the peculiarities of this viral species, focusing on genome organization, functional elements, receptor usage, and pathogenesis.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Mariana Soares Guedes
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, Switzerland and Swiss Institute of Bioinformatics, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
8
|
Chen P, Li Z, Cui S. Picornaviral 2C proteins: A unique ATPase family critical in virus replication. Enzymes 2021; 49:235-264. [PMID: 34696834 DOI: 10.1016/bs.enz.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 2C proteins of Picornaviridae are unique members of AAA+ protein family. Although picornavirus 2C shares many conserved motifs with Super Family 3 DNA helicases, duplex unwinding activity of many 2C proteins remains undetected, and high-resolution structures of 2C hexamers are unavailable. All characterized 2C proteins exhibit ATPase activity, but the purpose of ATP hydrolysis is not fully understood. 2C is highly conserved among picornaviruses and plays crucial roles in nearly all steps of the virus lifecycle. It is therefore considered as an effective target for broad-spectrum antiviral drug development. Crystallographic investigation of enterovirus 2C proteins provide structural details important for the elucidation of 2C function and development of antiviral drugs. This chapter summarizes not only the findings of enzymatic activities, biochemical and structural characterizations of the 2C proteins, but also their role in virus replication, immune evasion and morphogenesis. The linkage between structure and function of the 2C proteins is discussed in detail. Inhibitors targeting the 2C proteins are also summarized to provide an overview of drug development. Finally, we raise several key questions to be addressed in this field and provide future research perspective on this unique class of ATPases.
Collapse
Affiliation(s)
- Pu Chen
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijian Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Cui
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Wang SH, Wang K, Zhao K, Hua SC, Du J. The Structure, Function, and Mechanisms of Action of Enterovirus Non-structural Protein 2C. Front Microbiol 2020; 11:615965. [PMID: 33381104 PMCID: PMC7767853 DOI: 10.3389/fmicb.2020.615965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses are a group of RNA viruses belonging to the family Picornaviridae. They include human enterovirus groups A, B, C, and D as well as non-human enteroviruses. Enterovirus infections can lead to hand, foot, and mouth disease and herpangina, whose clinical manifestations are often mild, although some strains can result in severe neurological complications such as encephalitis, myocarditis, meningitis, and poliomyelitis. To date, research on enterovirus non-structural proteins has mainly focused on the 2A and 3C proteases and 3D polymerase. However, another non-structural protein, 2C, is the most highly conserved protein, and plays a vital role in the enterovirus life cycle. There are relatively few studies on this protein. Previous studies have demonstrated that enterovirus 2C is involved in virus uncoating, host cell membrane rearrangements, RNA replication, encapsidation, morphogenesis, ATPase, helicase, and chaperoning activities. Despite ongoing research, little is known about the pathogenesis of enterovirus 2C proteins in viral replication or in the host innate immune system. In this review, we discuss and summarize the current understanding of the structure, function, and mechanism of the enterovirus 2C proteins, focusing on the key mutations and motifs involved in viral infection, replication, and immune regulation. We also focus on recent progress in research into the role of 2C proteins in regulating the pattern recognition receptors and type I interferon signaling pathway to facilitate viral replication. Given these functions and mechanisms, the potential application of the 2C proteins as a target for anti-viral drug development is also discussed. Future studies will focus on the determination of more crystal structures of enterovirus 2C proteins, which might provide more potential targets for anti-viral drug development against enterovirus infections.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Kuan Wang
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Shu-Cheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Alidjinou EK, Bertin A, Sane F, Caloone D, Engelmann I, Hober D. Emergence of Fluoxetine-Resistant Variants during Treatment of Human Pancreatic Cell Cultures Persistently Infected with Coxsackievirus B4. Viruses 2019; 11:E486. [PMID: 31141921 PMCID: PMC6630805 DOI: 10.3390/v11060486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
This study reports the antiviral activity of the drug fluoxetine against some enteroviruses (EV). We had previously established a model of persistent coxsackievirus B4 (CVB4) infection in pancreatic cell cultures and demonstrated that fluoxetine could clear the virus from these cultures. We further report the emergence of resistant variants during the treatment with fluoxetine in this model. Four independent persistent CVB4 infections in Panc-1 cells were treated with fluoxetine. The resistance to fluoxetine was investigated in an acute infection model. The 2C region, the putative target of fluoxetine antiviral activity, was sequenced. However, Fluoxetine treatment failed to clear CVB4 in two persistent infections. The resistance to fluoxetine was later confirmed in HEp-2 cells. The decrease in viral titer was significantly lower when cells were inoculated with the virus obtained from persistently infected cultures treated with fluoxetine than those from susceptible mock-treated cultures (0.6 log TCID50/mL versus 4.2 log TCID50/mL, p < 0.0001). Some previously described mutations and additional ones within the 2C protein were found in the fluoxetine-resistant isolates. The model of persistent infection is an interesting tool for assessing the emergence of variants resistant to anti-EV molecules. The resistance of EV strains to fluoxetine and its mechanisms require further investigation.
Collapse
Affiliation(s)
- Enagnon Kazali Alidjinou
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Antoine Bertin
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Famara Sane
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Delphine Caloone
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Ilka Engelmann
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Didier Hober
- Université Lille, Faculté de médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| |
Collapse
|
11
|
Guan H, Tian J, Zhang C, Qin B, Cui S. Crystal structure of a soluble fragment of poliovirus 2CATPase. PLoS Pathog 2018; 14:e1007304. [PMID: 30231078 PMCID: PMC6166989 DOI: 10.1371/journal.ppat.1007304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/01/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022] Open
Abstract
Poliovirus (PV) 2CATPase is the most studied 2C protein in the Picornaviridae family. It is involved in RNA replication, encapsidation and uncoating and many inhibitors have been found that target PV 2CATPase. Despite numerous investigations to characterize its functions, a high-resolution structure of PV 2C has not yet been determined. We report here the crystal structure of a soluble fragment of PV 2CATPase to 2.55Å, containing an ATPase domain, a zinc finger and a C-terminal helical domain but missing the N-terminal domain. The ATPase domain shares the common structural features with EV71 2C and other Superfamily 3 helicases. The C-terminal cysteine-rich motif folds into a CCCC type zinc finger in which four cysteine ligands and several auxiliary residues assist in zinc binding. By comparing with the known zinc finger fold groups, we found the zinc finger of 2C proteins belong to a new fold group, which we denote the "Enterovirus 2C-like" group. The C-terminus of PV 2CATPase forms an amphipathic helix that occupies a hydrophobic pocket located on an adjacent PV 2CATPase in the crystal lattice. The C-terminus mediated PV 2C-2C interaction promotes self-oligomerization, most likely hexamerization, which is fundamental to the ATPase activity of 2C. The zinc finger is the most structurally diverse feature in 2C proteins. Available structural and virological data suggest that the zinc finger of 2C might confer the specificity of interaction with other proteins. We built a hexameric ring model of PV 2CATPase and visualized the previously identified functional motifs and drug-resistant sites, thus providing a structure framework for antiviral drug development.
Collapse
Affiliation(s)
- Hongxin Guan
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Tian
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chu Zhang
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Qin
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Cui
- MOH key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Guan H, Tian J, Qin B, Wojdyla JA, Wang B, Zhao Z, Wang M, Cui S. Crystal structure of 2C helicase from enterovirus 71. SCIENCE ADVANCES 2017; 3:e1602573. [PMID: 28508043 PMCID: PMC5409451 DOI: 10.1126/sciadv.1602573] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Enterovirus 71 (EV71) is the major pathogen responsible for outbreaks of hand, foot, and mouth disease. EV71 nonstructural protein 2C participates in many critical events throughout the virus life cycle; however, its precise role is not fully understood. Lack of a high-resolution structure made it difficult to elucidate 2C activity and prevented inhibitor development. We report the 2.5 Å-resolution crystal structure of the soluble part of EV71 2C, containing an adenosine triphosphatase (ATPase) domain, a cysteine-rich zinc finger with an unusual fold, and a carboxyl-terminal helical domain. Unlike other AAA+ ATPases, EV71 2C undergoes a carboxyl terminus-mediated self-oligomerization, which is dependent on a specific interaction between the carboxyl-terminal helix of one monomer and a deep pocket formed between the ATPase and the zinc finger domains of the neighboring monomer. The carboxyl terminus-mediated self-oligomerization is fundamental to 2C ATPase activity and EV71 replication. Our findings suggest a strategy for inhibition of enterovirus replication by disruption of the self-oligomerization interface of 2C.
Collapse
Affiliation(s)
- Hongxin Guan
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Juan Tian
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Bo Qin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | | | - Bei Wang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Zhendong Zhao
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Meitian Wang
- Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Sheng Cui
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| |
Collapse
|
13
|
A non-cleavable hexahistidine affinity tag at the carboxyl-terminus of the HIV-1 Pr55 Gag polyprotein alters nucleic acid binding properties. Protein Expr Purif 2016; 130:137-145. [PMID: 27721079 DOI: 10.1016/j.pep.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
HIV Gag (Pr55Gag), a multidomain polyprotein that orchestrates the assembly and release of the human immunodeficiency virus (HIV), is an active target of antiretroviral inhibitor development. However, highly pure, stable, recombinant Pr55Gag has been difficult to produce in quantities sufficient for biophysical studies due to its susceptibility to proteolysis by cellular proteases during purification. Stability has been improved by using a construct that omits the p6 domain (Δp6). In vivo, p6 is crucial to the budding process and interacts with protein complexes in the ESCRT (Endosomal Sorting Complexes Required for Transport) pathway, it has been difficult to study its role in the context of Gag using in vitro approaches. Here we report the generation of a full length Gag construct containing a tobacco etch virus (TEV)-cleavable C-terminal hexahistidine tag, allowing a detailed comparison of its nucleic acid binding properties with other constructs, including untagged, Δp6, and C-terminally tagged (TEV-cleavable and non-cleavable) Gags, respectively. We have developed a standard expression and purification protocol that minimizes nucleic acid contamination and produces milligram quantities of full length Gag for in vitro studies and compound screening purposes. We found that the presence of a carboxyl-terminal hexahistidine tag changes the nucleic binding properties compared to the proteins that did not contain the tag (full length protein that was either untagged or reulted from removal of the tag during purification). The HIV Gag expression and purification protocol described herein provides a facile method of obtaining large quantities of high quality protein for investigators who wish to study the full length protein or the effect of the p6 domain on the biophysical properties of Gag.
Collapse
|
14
|
A Single Amino Acid Substitution in Poliovirus Nonstructural Protein 2CATPase Causes Conditional Defects in Encapsidation and Uncoating. J Virol 2016; 90:6174-6186. [PMID: 27076638 PMCID: PMC4936127 DOI: 10.1128/jvi.02877-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2CATPase. In particular, residue N252 of poliovirus 2CATPase interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2CATPase has important roles both in RNA replication and encapsidation. In this study, we searched for additional sites in 2CATPase, near N252, that are required for encapsidation. Accordingly, segments adjacent to N252 were analyzed by combining triple and single alanine mutations to identify residues required for function. Two triple alanine mutants exhibited defects in RNA replication. The remaining two mutations, located in secondary structures in a predicted three-dimensional model of 2CATPase, caused lethal growth phenotypes. Most single alanine mutants, derived from the lethal variants, were either quasi-infectious and yielded variants with wild-type (wt) or temperature-sensitive (ts) growth phenotypes or had a lethal growth phenotype due to defective RNA replication. The K259A mutation, mapping to an α helix in the predicted structure of 2CATPase, resulted in a cold-sensitive virus. In vivo protein synthesis and virus production were strikingly delayed at 33°C relative to the wt, suggesting a defect in uncoating. Studies with a reporter virus indicated that this mutant is also defective in encapsidation at 33°C. Cell imaging confirmed a much-reduced production of K259A mature virus at 33°C relative to the wt. In conclusion, we have for the first time linked a cold-sensitive encapsidation defect in 2CATPase (K259A) to a subsequent delay in uncoating of the virus particle at 33°C during the next cycle of infection. IMPORTANCE Enterovirus morphogenesis, which involves the encapsidation of newly made virion RNA, is a process still poorly understood. Elucidation of this process is important for future drug development for a large variety of diseases caused by these agents. We have previously shown that the specificity of encapsidation of poliovirus and of C-cluster coxsackieviruses, which are prototypes of enteroviruses, is dependent on an interaction of capsid proteins with the multifunctional nonstructural protein 2CATPase. In this study, we have searched for residues in poliovirus 2CATPase, near a presumed capsid-interacting site, important for encapsidation. An unusual cold-sensitive mutant of 2CATPase possessed a defect in encapsidation at 37°C and subsequently in uncoating during the next cycle of infection at 33°C. These studies not only reveal a new site in 2CATPase that is involved in encapsidation but also identify a link between encapsidation and uncoating.
Collapse
|
15
|
Ao YY, Yu JM, Zhang CY, Xin YY, Li LL, Duan ZJ. Identification of a Novel Enterovirus Species in Rhesus Macaque in China. Sci Rep 2016; 6:28526. [PMID: 27329349 PMCID: PMC4916455 DOI: 10.1038/srep28526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022] Open
Abstract
Recent studies of Enterovirus (EV) in nonhuman primates (NHPs), which could act as a source of future emerging human viral diseases, have boosted interest in the search for novel EVs. Here, a highly divergent strain of EV, tentatively named SEV-gx, was identified by viral metagenomic analysis from stool samples of rhesus macaques in China. In total, 27 of 280 (9.6%) faecal samples from rhesus macaques were positive for SEV-gx. Its complete genomic sequence is 7,367 nucleotide (nt). Genomic analyses showed that it has a standard genomic organisation for EVs, being more closely related to EV-J strains (approximately 54.0%, 43.0–44.1%, 52.3–55.2%, 61.1–62.7% and 64.0% amino acids identity in polyprotein, P1, P2 and P3 and combined 2C/3CD regions, respectively). It was also shown to have genome characteristics typical of EVs. Phylogenetic analysis of P1, 2C and 3CD aa indicated that SEV-gx can be classified as a distinct cluster in the EVs. All of this evidence demonstrates SEV-gx is a novel species (tentatively named EV-K) in the EV genus, which contributes to our understanding of the genetic diversity and evolution of EVs. Further studies are needed to investigate the potential pathogenicity of SEV-gx in NHPs and humans.
Collapse
Affiliation(s)
- Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| | - Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| | - Cui-Yuan Zhang
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| | - Yun-Yun Xin
- The First affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan, China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| |
Collapse
|
16
|
Khaw YS, Chan YF, Jafar FL, Othman N, Chee HY. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia. Front Microbiol 2016; 7:543. [PMID: 27199901 PMCID: PMC4851184 DOI: 10.3389/fmicb.2016.00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Faizatul Lela Jafar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Norlijah Othman
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Hui Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
17
|
Agudo R, de la Higuera I, Arias A, Grande-Pérez A, Domingo E. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology 2016; 494:257-66. [PMID: 27136067 PMCID: PMC7111656 DOI: 10.1016/j.virol.2016.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis. A replacement in FMDV protein 2C confers reduced sensitivity to the mutagen ribavirin. The effect of the replacement is to prevent a mutational bias evoked by ribavirin. 2C has an effect in nucleotide incorporation by the FMDV polymerase. We describe a new molecular mechanism of escape to ribavirin-mediated extinction.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ignacio de la Higuera
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Armando Arias
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas, (IHSM-UMA-CSIC) Área de Genética, Campus de Teatinos, 29071 Málaga, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
18
|
Suttisansanee U, Ran Y, Mullings KY, Sukdeo N, Honek JF. Modulating glyoxalase I metal selectivity by deletional mutagenesis: underlying structural factors contributing to nickel activation profiles. Metallomics 2016; 7:605-12. [PMID: 25557363 DOI: 10.1039/c4mt00299g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolically produced methylglyoxal is a cytotoxic compound that can lead to covalent modification of cellular DNA, RNA and protein. One pathway to detoxify this compound is via the glyoxalase enzyme system. The first enzyme of this detoxification system, glyoxalase I (GlxI), can be divided into two classes according to its metal activation profile, a Zn(2+)-activated class and a Ni(2+)-activated class. In order to elucidate some of the key structural features required for selective metal activation by these two classes of GlxI, deletional mutagenesis was utilized to remove, in a step-wise fashion, a key α-helix (residues 73-87) and two small loop regions (residues 99-103 and 111-114) from the Zn(2+)-activated Pseudomonas aeruginosa GlxI (GloA3) in order to mimic the smaller Ni(2+)-activated GlxI (GloA2) from the same organism. This approach was observed to clearly shift the metal activation profile of a Zn(2+)-activated class GlxI into a Ni(2+)-activated class GlxI enzyme. The α-helix structural component was found to contribute significantly toward GlxI metal specificity, while the two small loop regions were observed to play a more crucial role in the magnitude of the enzymatic activity. The current study should provide additional information on the fundamental relationship of protein structure to metal selectivity in these metalloenzymes.
Collapse
Affiliation(s)
- Uthaiwan Suttisansanee
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
19
|
van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015; 7:4529-62. [PMID: 26266417 PMCID: PMC4576193 DOI: 10.3390/v7082832] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands.
| |
Collapse
|
20
|
Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo. J Virol 2015; 89:6391-405. [PMID: 25855728 DOI: 10.1128/jvi.03488-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. IMPORTANCE The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Despite major efforts, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that the zinc binding activity of M2-1 is essential for virus replication and pathogenesis in vivo. Recombinant hMPVs that lacked zinc binding activity were not only defective in replication in the upper and lower respiratory tract but also triggered a strong protective immunity in cotton rats. Thus, inhibition of M2-1 zinc binding activity can lead to the development of novel, live attenuated vaccines, as well as antiviral drugs for pneumoviruses.
Collapse
|
21
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
22
|
Piralla A, Daleno C, Girello A, Esposito S, Baldanti F. Circulation of two Enterovirus C105 (EV-C105) lineages in Europe and Africa. J Gen Virol 2015; 96:1374-1379. [PMID: 25667329 DOI: 10.1099/vir.0.000088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
The coding sequences of five human enterovirus (HEV)-C genotype 105 strains recovered in Italy, Romania and Burundi from patients with upper and lower respiratory tract infections were analysed and phylogenetically compared with other circulating HEV-C strains. The EV-C105 was closely related to EV-C109 and EV-C118 strains. The European strains were similar to other circulating EV-C105 strains, while the two African EV-C105 clustered in separate bootstrap-supported (>0.90) branches of the P2 and P3 region trees. Minor inconsistencies in the clustering pattern of EV-C105 in the capsid region (P1) and non-capsid region (P3) suggest that recombination may have occurred in EV-C105 group B viruses. In conclusion, phylogenetic analysis revealed the circulation of two distinct EV-C105 lineages in Europe and Africa. A different pattern of evolution could be hypothesized for the two EV-C105 lineages.
Collapse
Affiliation(s)
- A Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C Daleno
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Girello
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - S Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F Baldanti
- Section of Microbiology, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
23
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
24
|
Li Y, Tas A, Sun Z, Snijder EJ, Fang Y. Proteolytic processing of the porcine reproductive and respiratory syndrome virus replicase. Virus Res 2014; 202:48-59. [PMID: 25557977 DOI: 10.1016/j.virusres.2014.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/16/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) replicase polyproteins pp1a and pp1ab are proteolytically processed by four proteases encoded in ORF1a. In this study, a large set of PRRSV replicase cleavage products were identified and pp1a cleavage sites were verified by using a combination of bioinformatics, proteomics, immunoprecipitation, and site-directed mutagenesis. For genotype 1 PRRSV (isolate SD01-08), proteomic analysis identified H180/S181, G385/A386, and G1446/A1447 as the cleavage sites separating nsp1α/1β, nsp1β/nsp2, and nsp2/nsp3, respectively. Transient expression of nsp2-8, nsp3-8, nsp4-8, nsp5-8 (using the recombinant vaccinia virus/T7 RNA polymerase system) and immunoprecipitation identified the cleavage end products nsp2, nsp3, nsp4, nsp7α and nsp7β, and various processing intermediates. Our studies also revealed the existence of alternative proteolytic processing pathways for the processing of the nsp3-8 region, depending on the presence or absence of nsp2 as a co-factor. The identity of most cleavage products was further corroborated by site-directed mutagenesis of individual cleavage sites in constructs expressing nsp3-8 or nsp4-8. This study constitutes the first in-depth experimental analysis of PRRSV replicase processing and the data are discussed against the background of the processing scheme previously derived for the arterivirus prototype, the distantly related equine arteritis virus (EAV). Despite several differences between the two viruses, of which the functional significance remains to be studied, our study demonstrates the general conservation of the replicase pp1a processing scheme between EAV and PRRSV, and likely also the other members of the arterivirus family.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ali Tas
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhi Sun
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Eric J Snijder
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ying Fang
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
25
|
Tang F, Xia H, Wang P, Yang J, Zhao T, Zhang Q, Hu Y, Zhou X. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB. Virology 2014; 464-465:353-364. [PMID: 25113906 PMCID: PMC7112070 DOI: 10.1016/j.virol.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg2+ and Zn2+, were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71.
Collapse
Affiliation(s)
- Fenfen Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Peipei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Tianyong Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072 China.
| |
Collapse
|
26
|
Zheng W, Li X, Wang J, Li X, Cao H, Wang Y, Zeng Q, Zheng SJ. A critical role of interferon-induced protein IFP35 in the type I interferon response in cells induced by foot-and-mouth disease virus (FMDV) protein 2C. Arch Virol 2014; 159:2925-35. [DOI: 10.1007/s00705-014-2147-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
|
27
|
Wang C, Ma HC, Wimmer E, Jiang P, Paul AV. A C-terminal, cysteine-rich site in poliovirus 2C(ATPase) is required for morphogenesis. J Gen Virol 2014; 95:1255-1265. [PMID: 24558221 DOI: 10.1099/vir.0.062497-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2C(ATPase) gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2C(ATPase) is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2C(ATPase) polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2C(ATPase) polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2C(ATPase) is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain.
Collapse
Affiliation(s)
- Chunling Wang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hsin-Chieh Ma
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
28
|
Strategies for purifying variants of human rhinovirus 14 2C protein. Protein Expr Purif 2013; 95:28-37. [PMID: 24316192 DOI: 10.1016/j.pep.2013.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022]
Abstract
The positive strand RNA genome of picornaviruses, including human rhinovirus (HRV), poliovirus (PV) and foot-and-mouth disease virus, is translated immediately into a polyprotein that is cleaved by virally encoded proteinases into 10-13 mature proteins. These include the four proteins required to assemble the viral particle as well as 3D(pol) (the viral RNA polymerase) and 2C, an ATPase and putative helicase. 2C is a protein which is responsible, together with 2B and 3A, for anchoring the replication complexes to membranous structures in the infected cell on which RNA replication takes place. Additionally, expression of 2C and its precursor 2BC in mammalian cells leads to vesicle formation observed in infected cells. 2C is encoded by all picornaviruses; nevertheless, its exact role in viral replication remains unclear. A contributing factor is the absence of structural data for this hydrophobic protein the generation of which has been hampered by an inability to produce soluble and stable material. Here, we compare 2C from several genera and show that the 2C protein has considerable heterogeneity. Using protein structure meta-analysis, we developed models of HRV14 2C that should be useful for mutational analysis. Based on these analyses, we expressed and purified two domains of HRV14 2C using three different protocols and examined the folding by thermal denaturation or (1)H NMR. Both domains were concentrated sufficiently to allow crystal screens or NMR pilot experiments to be performed. This work provides a platform to explore 2C proteins from all picornaviral genera to generate candidates for structural analysis.
Collapse
|
29
|
Piralla A, Daleno C, Scala A, Greenberg D, Usonis V, Principi N, Baldanti F, Esposito S. Genome characterisation of enteroviruses 117 and 118: a new group within human enterovirus species C. PLoS One 2013; 8:e60641. [PMID: 23565264 PMCID: PMC3614900 DOI: 10.1371/journal.pone.0060641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
The more than 120 genotypes of human enteroviruses (HEVs) reflect a wide range of evolutionary divergence, and there are 23 currently classified as human enterovirus C species (HEV-C). Two new HEV-C (EV-C117 and EV-C118) were identified in the Community-Acquired Pneumonia Pediatric Research Initiative (CAP-PRI) study, and the present paper describes the characterisation of the complete genome of one EV-C117 strain (LIT22) and two EV-C118 (ISR38 and ISR10) strains. The EV-C117 and EV-C118 5'UTR sequences were related to those of EV-C104, EV-C105 and EV-C109, and were slightly shorter than those of other HEV A-D species. Similarity plot analyses showed that EV-C117 and EV-C118 have a P1 region that is highly divergent from that of the other HEV-C, and phylogenetic analyses highly supported a monophyletic group consisting of EV-C117, EV-C118, EV-C104, EV-C105 and EV-C109 strains. Phylogenetic, Simplot and Bootscan analyses indicated that recombination was not the main mechanism of EV-C117 and EV-C118 evolution, thus strengthening the hypothesis of the monophyletic origin of the coding regions, as in the case of other HEV-C. Phylogenetic analysis also revealed the emergence of a new group within HEV-C that is divided into two subgroups. Nucleotide and amino acid identity in VP1 sequences have been established as useful criteria for assigning new HEV types, but analysis of the complete P1 region improves resolution.
Collapse
Affiliation(s)
- Antonio Piralla
- Molecular Virology Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Cristina Daleno
- Pediatric Clinic 1, Università degli Studi di Milano, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Scala
- Pediatric Clinic 1, Università degli Studi di Milano, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Greenberg
- The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Vytautas Usonis
- Vilnius University Clinic of Children's Diseases, Vilnius University, Vilnius, Lithuania
| | - Nicola Principi
- Pediatric Clinic 1, Università degli Studi di Milano, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Susanna Esposito
- Pediatric Clinic 1, Università degli Studi di Milano, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | | |
Collapse
|
30
|
The nonstructural protein 2C of a Picorna-like virus displays nucleic acid helix destabilizing activity that can be functionally separated from its ATPase activity. J Virol 2013; 87:5205-18. [PMID: 23449794 DOI: 10.1128/jvi.00245-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Picorna-like viruses in the Picornavirales order are a large group of positive-strand RNA viruses that include numerous important pathogens for plants, insects, and humans. In these viruses, nonstructural protein 2C is one of the most conserved proteins and contains ATPase activity and putative RNA helicase activity. Here we expressed 2C protein of Ectropis obliqua picorna-like virus (EoV; genus Iflavirus, family Iflaviridae, order Picornavirales) in a eukaryotic expression system and determined that EoV 2C displays ATP-independent nucleic acid helix destabilizing and strand annealing acceleration activity in a concentration-dependent manner, indicating that this picornaviral 2C is more like an RNA chaperone than like the previously predicted RNA helicase. Our further characterization of EoV 2C revealed that divalent metal ions, such as Mg(2+) and Zn(2+), inhibit 2C-mediated helix destabilization to different extents. Moreover, we determined that EoV 2C also contains ATPase activity like that of other picornaviral 2C proteins and further assessed the functional relevance between its RNA chaperone-like and ATPase activities using mutational analysis as well as their responses to Mg(2+). Our data show that, when one of the two 2C activities was dramatically inhibited or almost abolished, the other activity could remain intact, showing that the RNA chaperone-like and ATPase activities of EoV 2C can be functionally separated. This report reveals that a picorna-like virus 2C protein displays RNA helix destabilizing and strand annealing acceleration activity, which may be critical for picornaviral replication and pathogenesis, and should foster our understanding of picorna-like viruses and viral RNA chaperones.
Collapse
|
31
|
Wang J, Wang Y, Liu J, Ding L, Zhang Q, Li X, Cao H, Tang J, Zheng SJ. A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth disease virus (FMDV) 2C-induced apoptosis. Virus Res 2012; 170:59-65. [PMID: 22974759 DOI: 10.1016/j.virusres.2012.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Foot-and-mouth disease virus (FMDV) 2C, is one of the most highly-conserved viral proteins among the serotypes of FMDV. However, its effect on host cells is not very clear. Using yeast two-hybrid system and immunoprecipitation approaches, we found that FMDV 2C interacted with the N-myc and STAT interactor (Nmi) protein. When expressed in cells, FMDV 2C is mainly associated with endoplasmic reticulum in the forms of speckles. In the absence of FMDV 2C, Nmi was distributed diffusely in the cytoplasm. However, upon FMDV 2C overexpression Nmi was recruited into FMDV 2C containing speckles where both proteins are co-localized. In addition, FMDV 2C induced apoptosis in BHK-21 cells, which was markedly inhibited by Nmi knockdown, suggesting that Nmi may play a critical role in FMDV 2C-induced apoptosis. These findings may help to further understand the molecular mechanism of pathogenesis of FMDV infection.
Collapse
Affiliation(s)
- Jianchang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alanine scanning of poliovirus 2CATPase reveals new genetic evidence that capsid protein/2CATPase interactions are essential for morphogenesis. J Virol 2012; 86:9964-75. [PMID: 22761387 DOI: 10.1128/jvi.00914-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polypeptide 2C(ATPase) is one of the most thoroughly studied but least understood proteins in the life cycle of poliovirus. Within the protein, multiple functional domains important for uncoating, host cell membrane alterations, and RNA replication and encapsidation have previously been identified. In this study, charged to alanine-scanning mutagenesis was used to generate conditional-lethal mutations in hitherto-uncharacterized domains of the 2C(ATPase) polypeptide, particularly those involved in morphogenesis. Adjacent or clustered charged amino acids (2 to 4), scattered along the 2C(ATPase) coding sequence, were replaced with alanines. RNA transcripts of mutant poliovirus cDNA clones were transfected into HeLa cells. Subsequently, 10 lethal, 1 severely temperature-sensitive, 2 quasi-infectious, and 3 wild type-like mutants were identified. Using a luciferase-containing reporter virus, we demonstrated RNA replication defects in all lethal and quasi-infectious mutants. Temperature-sensitive mutants were defective in RNA replication only at the restricted temperatures. Furthermore, we characterized a quasi-infectious mutant (K(6)A/K(7)A) that produced a suppressor mutation (G(1)R) and a novel 2B^2C(ATPase) cleavage site (Q^R). Surprisingly, this cleavage site mutation did not interfere with normal processing of the polyprotein. These mutants have led to the identification of several new sites within the 2C(ATPase) polypeptide that are required for RNA replication. In addition, analysis of the suppressor mutants has revealed a new domain near the C terminus of 2C(ATPase) that is involved in encapsidation, possibly achieved through interaction with an amino acid sequence between NTP binding motifs A and B of 2C(ATPase). Most importantly, the identification of suppressor mutations in both 2C(ATPase) and the capsid domains (VP1 and VP3) of poliovirus has confirmed that an interaction between 2C(ATPase) and capsid proteins is involved in viral morphogenesis.
Collapse
|
33
|
Abstract
The encephalomyocarditis virus (EMCV) is a small non-enveloped single-strand RNA virus, the causative agent of not only myocarditis and encephalitis, but also neurological diseases, reproductive disorders and diabetes in many mammalian species. EMCV pathogenesis appears to be viral strain- and host-specific, and a better understanding of EMCV virulence factors is increasingly required. Indeed, EMCV is often used as a model for diabetes and viral myocarditis, and is also widely used in immunology as a double-stranded RNA stimulus in the study of Toll-like as well as cytosolic receptors. However, EMCV virulence and properties have often been neglected. Moreover, EMCV is able to infect humans albeit with a low morbidity. Progress on xenografts, such as pig heart transplantation in humans, has raised safety concerns that need to be explored. In this review we will highlight the biology of EMCV and all known and potential virulence factors.
Collapse
Affiliation(s)
- Margot Carocci
- Microbiology Immunology Department, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
34
|
Suttisansanee U, Lau K, Lagishetty S, Rao KN, Swaminathan S, Sauder JM, Burley SK, Honek JF. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum. J Biol Chem 2011; 286:38367-38374. [PMID: 21914803 PMCID: PMC3207458 DOI: 10.1074/jbc.m111.251603] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/08/2011] [Indexed: 11/06/2022] Open
Abstract
The glyoxalase system catalyzes the conversion of toxic, metabolically produced α-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn(2+) and non-Zn(2+) activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni(2+)/Co(2+)-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn(2+)-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.
Collapse
Affiliation(s)
| | - Kelvin Lau
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
35
|
Samuelsson U, Oikarinen S, Hyöty H, Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes 2011; 12:156-64. [PMID: 20920146 DOI: 10.1111/j.1399-5448.2010.00678.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To explore if drinking water may influence the development of type 1 diabetes in children, either via enterovirus spread via drinking water or quality of drinking water related to acidity or concentration of certain minerals. METHODS One hundred and forty-two families with a child with diabetes and who lived either in seven municipalities with a high annual diabetes incidence during 1977-2001 and in six municipalities with the lowest incidence during those 25 yr were asked to participate. Three hundred and seventy-three families in these communities were used as controls. The families filled a 200-mL plastic bottle with their tap drinking water and returned it by mail. The water samples were analyzed for pH, zinc, iron, nitrate, nitrite, nitrate-nitrogen and nitrite-nitrogen, and occurrence of enterovirus RNA. RESULTS Enterovirus RNA was not found in the tap water samples. The concentration of zinc, nitrate, and nitrate-nitrogen was lower in the municipalities with high incidence of type 1 diabetes. The water samples from families with a child with diabetes had lower concentration of zinc than water samples from control families. CONCLUSION Low zinc in drinking water is associated with the risk of developing type 1 diabetes during childhood. Enterovirus does not seem to be spread via drinking water in a country with modern water works.
Collapse
Affiliation(s)
- Ulf Samuelsson
- Division of Paediatrics, Department of Molecular and Clinical Medicine, Linkoping University, Linkoping, Sweden.
| | | | | | | |
Collapse
|
36
|
Papageorgiou N, Coutard B, Lantez V, Gautron E, Chauvet O, Baronti C, Norder H, de Lamballerie X, Heresanu V, Ferté N, Veesler S, Gorbalenya AE, Canard B. The 2C putative helicase of echovirus 30 adopts a hexameric ring-shaped structure. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1116-20. [PMID: 20944244 DOI: 10.1107/s090744491002809x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/14/2010] [Indexed: 11/10/2022]
Abstract
The 2C protein, which is an essential ATPase and one of the most conserved proteins across the Picornaviridae family, is an emerging antiviral target for which structural and functional characterization remain elusive. Based on a distant relationship to helicases of small DNA viruses, piconavirus 2C proteins have been predicted to unwind double-stranded RNAs. Here, a terminally extended variant of the 2C protein from echovirus 30 has been studied by means of enzymatic activity assays, transmission electron microscopy, atomic force microscopy and dynamic light scattering. The transmission electron-microscopy technique showed the existence of ring-shaped particles with ∼12 nm external diameter. Image analysis revealed that these particles were hexameric and resembled those formed by superfamily 3 DNA virus helicases.
Collapse
Affiliation(s)
- Nicolas Papageorgiou
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 Centre National de la Recherche Scientifique, Université de la Méditerranée and Université de Provence, Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog 2010; 6:e1001066. [PMID: 20865167 PMCID: PMC2928791 DOI: 10.1371/journal.ppat.1001066] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase) in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase) of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase) and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2C(ATPase) coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2C(ATPase) is an essential component of the replication complex, and (iv) 2C(ATPase) has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.
Collapse
|
38
|
Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, Belsham GJ, Curry S. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J Biol Chem 2010; 285:24347-59. [PMID: 20507978 PMCID: PMC2915670 DOI: 10.1074/jbc.m110.129940] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jauka T, Mutsvunguma L, Boshoff A, Edkins AL, Knox C. Localisation of Theiler's murine encephalomyelitis virus protein 2C to the Golgi apparatus using antibodies generated against a peptide region. J Virol Methods 2010; 168:162-9. [PMID: 20471424 DOI: 10.1016/j.jviromet.2010.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 11/15/2022]
Abstract
The picornavirus 2C protein is highly conserved and indispensible for virus replication. Polyclonal antibodies against Theiler's murine encephalomyelitis virus (TMEV) 2C protein were generated by immunisation of rabbits with a peptide comprising amino acids 31-210 of the protein. Antibodies were used to investigate the localisation of 2C in infected cells by indirect immunofluorescence and confocal microscopy. Analysis of infected cells revealed that the distribution of 2C changed during infection. Early on, the protein was localised in the perinuclear region with punctate staining in the cytoplasm and at later stages, it was concentrated in one large structure in close proximity to the nucleus and occupying almost 50% of the cell size. Dual-label immunofluorescence using wheat germ agglutinin (WGA) and anti-TMEV 2C antibodies suggested that 2C, and therefore virus replication, is targeted to the Golgi apparatus. At late stages of infection Golgi staining was dispersed, indicating potential reorganisation of membranes. Infection was accompanied by "rounding up" of the cells and a redistribution of actin around the putative replication complex. The results suggest that TMEV behaves similarly to FMDV which also forms replication complexes in the perinuclear region.
Collapse
Affiliation(s)
- Tembisa Jauka
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | | | | | | | | |
Collapse
|
40
|
Cordey S, Junier T, Gerlach D, Gobbini F, Farinelli L, Zdobnov EM, Winther B, Tapparel C, Kaiser L. Rhinovirus genome evolution during experimental human infection. PLoS One 2010; 5:e10588. [PMID: 20485673 PMCID: PMC2868056 DOI: 10.1371/journal.pone.0010588] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022] Open
Abstract
Human rhinoviruses (HRVs) evolve rapidly due in part to their error-prone RNA polymerase. Knowledge of the diversity of HRV populations emerging during the course of a natural infection is essential and represents a basis for the design of future potential vaccines and antiviral drugs. To evaluate HRV evolution in humans, nasal wash samples were collected daily for five days from 15 immunocompetent volunteers experimentally infected with a reference stock of HRV-39. In parallel, HeLa-OH cells were inoculated to compare HRV evolution in vitro. Nasal wash in vivo assessed by real-time PCR showed a viral load that peaked at 48–72 h. Ultra-deep sequencing was used to compare the low-frequency mutation populations present in the HRV-39 inoculum in two human subjects and one HeLa-OH supernatant collected 5 days post-infection. The analysis revealed hypervariable mutation locations in VP2, VP3, VP1, 2C and 3C genes and conserved regions in VP4, 2A, 2B, 3A, 3B and 3D genes. These results were confirmed by classical sequencing of additional samples, both from inoculated volunteers and independent cell infections, and suggest that HRV inter-host transmission is not associated with a strong bottleneck effect. A specific analysis of the VP1 capsid gene of 15 human cases confirmed the high mutation incidence in this capsid region, but not in the antiviral drug-binding pocket. We could also estimate a mutation frequency in vivo of 3.4×10−4 mutations/nucleotides and 3.1×10−4 over the entire ORF and VP1 gene, respectively. In vivo, HRV generate new variants rapidly during the course of an acute infection due to mutations that accumulate in hot spot regions located at the capsid level, as well as in 2C and 3C genes.
Collapse
Affiliation(s)
- Samuel Cordey
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Conversion of VPg into VPgpUpUOH before and during poliovirus negative-strand RNA synthesis. J Virol 2009; 83:12660-70. [PMID: 19812161 DOI: 10.1128/jvi.01676-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two protein primers involved in picornavirus RNA replication, VPg, the viral protein of the genome, and VPgpUpU(OH). A cis-acting replication element (CRE) within the open reading frame of poliovirus (PV) RNA allows the viral RNA-dependent RNA polymerase 3D(Pol) to catalyze the conversion of VPg into VPgpUpU(OH). In this study, we used preinitiation RNA replication complexes (PIRCs) to determine when CRE-dependent VPg uridylylation occurs relative to the sequential synthesis of negative- and positive-strand RNA. Guanidine HCl (2 mM), a reversible inhibitor of PV 2C(ATPase), prevented CRE-dependent VPgpUpU(OH) synthesis and the initiation of negative-strand RNA synthesis. VPgpUpU(OH) and nascent negative-strand RNA molecules were synthesized coincident in time following the removal of guanidine, consistent with PV RNA functioning simultaneously as a template for CRE-dependent VPgpUpU(OH) synthesis and negative-strand RNA synthesis. The amounts of [(32)P]UMP incorporated into VPgpUpU(OH) and negative-strand RNA products indicated that 100 to 400 VPgpUpU(OH) molecules were made coincident in time with each negative-strand RNA. 3'-dCTP inhibited the elongation of nascent negative-strand RNAs without affecting CRE-dependent VPg uridylylation. A 3' nontranslated region mutation which inhibited negative-strand RNA synthesis did not inhibit CRE-dependent VPg uridylylation. Together, the data implicate 2C(ATPase) in the mechanisms whereby PV RNA functions as a template for reiterative CRE-dependent VPg uridylylation before and during negative-strand RNA synthesis.
Collapse
|
42
|
Song C, Lu R, Bienzle D, Liu HC, Yoo D. Interaction of the porcine reproductive and respiratory syndrome virus nucleocapsid protein with the inhibitor of MyoD family-a domain-containing protein. Biol Chem 2009; 390:215-23. [PMID: 19090724 DOI: 10.1515/bc.2009.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is an RNA virus that replicates in the cytoplasm, but the viral nucleocapsid (N) protein localizes specifically in the nucleus and nucleolus of virus-infected cells. Nuclear localization of N is non-essential for PRRSV replication in cultured cells but has been shown to modulate the pathogenesis of virus in pigs, suggesting that N plays an accessory role in the nucleus during infection. We identified by yeast two-hybrid screening the inhibitor of MyoD family-a (I-mfa) domain-containing protein (HIC) as a cellular partner for PRRS virus (PRRSV) N protein. This protein is a homolog of human HIC, a recently identified cellular transcription factor. The specific interaction of PRRSV N with HIC was confirmed in cells by mammalian two-hybrid assay and co-immunoprecipitation and in vitro by GST pull-down assay. HIC is a zinc-binding protein and confocal microscopy demonstrated co-localization of N with the HIC-p40 isomer in the nucleus and nucleolus, and in the cytoplasm with HIC-p32, which is the N-terminal truncation of HIC-p40. The porcine homolog of HIC is universally expressed in pig tissues including alveolar macrophages. The interaction of viral capsid with the cellular transcription factor implicates a possible regulation of host cell gene expression by the N protein during PRRSV infection.
Collapse
Affiliation(s)
- Cheng Song
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
43
|
Adams P, Kandiah E, Effantin G, Steven AC, Ehrenfeld E. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J Biol Chem 2009; 284:22012-22021. [PMID: 19520852 DOI: 10.1074/jbc.m109.031807] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poliovirus protein 2C plays an essential role in viral RNA replication, although its precise biochemical activities or structural requirements have not been elucidated. The protein has several distinctive properties, including ATPase activity and membrane and RNA binding, that are conserved among orthologs of many positive-strand RNA viruses. Sequence alignments have placed these proteins in the SF3 helicase family, a subset of the AAA+ ATPase superfamily. A feature common to AAA+ proteins is the formation of oligomeric rings that are essential for their catalytic functions. Here we show that a recombinant protein, MBP-2C, in which maltose-binding protein was fused to 2C, formed soluble oligomers and that ATPase activity was restricted to oligomer-containing fractions from gel-filtration chromatography. The active fraction was visualized by negative-staining electron microscopy as ring-like particles composed of 5-8 protomers. This conclusion was confirmed by mass measurements obtained by scanning transmission electron microscopy. Mutation of amino acid residues in the 2C nucleotide-binding domain demonstrated that loss of the ability to bind or hydrolyze ATP did not affect oligomerization. Co-expression of active MBP-2C and inactive mutant proteins generated mixed oligomers that exhibited little ATPase activity, suggesting that incorporation of inactive subunits eliminates the function of the entire particle. Finally, deletion of the N-terminal 38 amino acids blocked oligomerization of the fusion protein and eliminated ATPase activity, despite retention of an unaltered nucleotide-binding domain.
Collapse
Affiliation(s)
| | | | - Grégory Effantin
- NIAMS, National Institutes of Health, Bethesda, Maryland 20892-8011
| | | | | |
Collapse
|
44
|
Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 2008; 139:240-52. [PMID: 18773930 DOI: 10.1016/j.virusres.2008.07.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpU(OH). These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5' and 3' NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3D(Pol) to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpU(OH) prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpU(OH) primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5' and 3' NTRs during RNA replication.
Collapse
Affiliation(s)
- Benjamin P Steil
- Department of Microbiology and Program in Molecular Biology, University of Colorado Denver, School of Medicine, United States
| | | |
Collapse
|
45
|
Cordey S, Gerlach D, Junier T, Zdobnov EM, Kaiser L, Tapparel C. The cis-acting replication elements define human enterovirus and rhinovirus species. RNA (NEW YORK, N.Y.) 2008; 14:1568-1578. [PMID: 18541697 PMCID: PMC2491478 DOI: 10.1261/rna.1031408] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
Replication of picornaviruses is dependent on VPg uridylylation, which is linked to the presence of the internal cis-acting replication element (cre). Cre are located within the sequence encoding polyprotein, yet at distinct positions as demonstrated for poliovirus and coxsackievirus-B3, cardiovirus, and human rhinovirus (HRV-A and HRV-B), overlapping proteins 2C, VP2, 2A, and VP1, respectively. Here we report a novel distinct cre element located in the VP2 region of the recently reported HRV-A2 species and provide evolutionary evidence of its functionality. We also experimentally interrogated functionality of recently identified HRV-B cre in the 2C region that is orthologous to the human enterovirus (HEV) cre and show that it is dispensable for replication and appears to be a nonfunctional evolutionary relic. In addition, our mutational analysis highlights two amino acids in the 2C protein that are crucial for replication. Remarkably, we conclude that each genetic clade of HRV and HEV is characterized by a unique functional cre element, where evolutionary success of a new genetic lineage seems to be associated with an invention of a novel cre motif and decay of the ancestral one. Therefore, we propose that cre element could be considered as an additional criterion for human rhinovirus and enterovirus classification.
Collapse
Affiliation(s)
- Samuel Cordey
- Central Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
De Palma AM, Heggermont W, Lanke K, Coutard B, Bergmann M, Monforte AM, Canard B, De Clercq E, Chimirri A, Pürstinger G, Rohayem J, van Kuppeveld F, Neyts J. The thiazolobenzimidazole TBZE-029 inhibits enterovirus replication by targeting a short region immediately downstream from motif C in the nonstructural protein 2C. J Virol 2008; 82:4720-30. [PMID: 18337578 PMCID: PMC2346740 DOI: 10.1128/jvi.01338-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 03/03/2008] [Indexed: 11/20/2022] Open
Abstract
TBZE-029 {1-(2,6-difluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole} is a novel selective inhibitor of the replication of several enteroviruses. We show that TBZE-029 exerts its antiviral activity through inhibition of viral RNA replication, without affecting polyprotein processing. To identify the viral target of TBZE-029, drug-resistant coxsackievirus B3 (CVB3) was selected. Genotyping of resistant clones led to the identification of three amino acid mutations in nonstructural protein 2C, clustered at amino acid positions 224, 227, and 229, immediately downstream of NTPase/helicase motif C. The mutations were reintroduced, either alone or combined, into an infectious full-length CVB3 clone. In particular the mutations at positions 227 and 229 proved essential for the altered sensitivity of CVB3 to TBZE-029. Resistant virus exhibited cross-resistance to the earlier-reported antienterovirus agents targeting 2C, namely, guanidine hydrochloride, HBB [2-(alpha-hydroxybenzyl)-benzimidazole], and MRL-1237 {1-(4-fluorophenyl)-2-[(4-imino-1,4-dihydropyridin-1-yl)methyl]benzimidazole hydrochloride}. The ATPase activity of 2C, however, remained unaltered in the presence of TBZE-029.
Collapse
Affiliation(s)
- Armando M De Palma
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yin J, Liu Y, Wimmer E, Paul AV. Complete protein linkage map between the P2 and P3 non-structural proteins of poliovirus. J Gen Virol 2007; 88:2259-2267. [PMID: 17622630 DOI: 10.1099/vir.0.82795-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All of the non-structural proteins of poliovirus, including their processing precursors, are involved in the replication of the viral RNA genome. These proteins assemble into a replication complex, which also contains the viral RNA and cellular factors. An understanding of how these viral proteins interact with each other would enhance our understanding of the molecular events occurring during poliovirus infection of the cell. Previously, we have employed the yeast two-hybrid system to construct two separate linkage maps for the polioviral P2 and P3 proteins, respectively. In the present study, we have searched for interacting pairs between the P2 and P3 proteins in a similar inducible yeast two-hybrid system. Although, the primary functions of the proteolytic products of the P2 and P3 domains of the polyprotein in the viral life cycle are different, we observed significant interactions between 2C(ATPase) and 3AB; 2A(pro) and 3A, 3C(pro) or 3D(pol); 2B and 3A or 3AB. All of the interactions were measured in the yeast two-hybrid system by exchanging the interacting pairs on the transcription-activation and DNA-binding constructs. In vitro GST pull-down assay suggested that the 2C(ATPase)/3AB interaction involves both ionic and hydrophobic contacts between the two proteins. The possible biological implication of the interactions observed in the yeast two-hybrid system will be discussed.
Collapse
Affiliation(s)
- Jiang Yin
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ying Liu
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
48
|
Freistadt MS, Vaccaro JA, Eberle KE. Biochemical characterization of the fidelity of poliovirus RNA-dependent RNA polymerase. Virol J 2007; 4:44. [PMID: 17524144 PMCID: PMC1904441 DOI: 10.1186/1743-422x-4-44] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 05/24/2007] [Indexed: 11/26/2022] Open
Abstract
Background Putative high mutation rates of RNA viruses are believed to mediate undesirable phenomena, such as emergence of drug resistance. However, very little is known about biochemical fidelity rates for viral RNA-dependent RNA polymerases. Using a recently developed in vitro polymerase assay for poliovirus polymerase 3Dpol [Arnold and Cameron (2000) JBC 275:5329], we measured fidelity for each possible mismatch. Polymerase fidelity, in contrast to sequence error rate, is biochemically defined as kpol/Kd of {(correct plus incorrect) divided by incorrect} incorporations, such that a larger value connotes higher fidelity. Results To derive kpol/Kd for correct base incorporation, we performed conventional pre-steady state single turnover measurements, yielding values that range from 0.62 to 9.4 μM-1 sec-1. Pre-steady state measurements for incorrect base incorporation were less straightforward: several anomalous phenomena interfered with data collection. To obtain pre-steady state kinetic data for incorrect base incorporation, three strategies were employed. (1) For some incorrect bases, a conventional approach was feasible, although care was taken to ensure that only single turnovers were being assessed. (2) Heparin or unlabeled RNA traps were used to simulate single turnover conditions. (3) Finally, for some incorrect bases, incorporation was so poor that single datapoints were used to provide kinetic estimates. Overall, we found that fidelity for poliovirus polymerase 3Dpol ranges from 1.2 × 104 to 1.0 × 106 for transition mutations and 3.2 × 105 to 4.3 × 107 for transversion mutations. Conclusion These values are unexpectedly high showing that high RNA virus sequence variation is not due to intrinsically low polymerase fidelity. Based on unusual enzyme behavior that we observed, we speculate that RNA mismatches either directly or indirectly cause enzyme RNA dissociation. If so, high sequence variation of RNA viruses may be due to template-switch RNA recombination and/or unknown fitness/selection phenomena. These findings may lead to a mechanistic understanding of RNA virus error catastrophe and improved anti-viral strategies.
Collapse
Affiliation(s)
- Marion S Freistadt
- Department of Microbiology, Immunology and Parasitology; Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, Louisiana, 70112, USA
- Department of Cell and Molecular Biology, 2000 Stern Hall, 6400 Freret St, Tulane University, New Orleans, LA, 70118, USA
| | - Joseph A Vaccaro
- Tulane University Health Sciences Center, Department of Biochemistry,1430 Tulane Avenue SL-43, New Orleans, LA 70112-2699, USA
| | - Karen E Eberle
- Department of Microbiology, Immunology and Parasitology; Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, Louisiana, 70112, USA
| |
Collapse
|
49
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
50
|
Ellis RJ, Varela-Calvino R, Tree TIM, Peakman M. HLA Class II molecules on haplotypes associated with type 1 diabetes exhibit similar patterns of binding affinities for coxsackievirus P2C peptides. Immunology 2005; 116:337-46. [PMID: 16236123 PMCID: PMC1802420 DOI: 10.1111/j.1365-2567.2005.02233.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Enteroviruses such as coxsackievirus B4 (CVB4) are proposed as possible environmental triggers or accelerants of the autoimmune process that leads to type 1 diabetes mellitus. One putative mechanism to account for this association is mimicry between virus components and islet autoantigens. Particular interest has focused on the CVB4 non-structural protein P2C, which we previously showed to be a major target of the effector memory anti-CVB4 CD4 T-cell response, and which harbours a region of sequence similarity with the islet autoantigen, glutamic acid decarboxylase (GAD65). Since several distinct human leucocyte antigen (HLA) Class II molecules are associated with development of type 1 diabetes, we hypothesized that for functional mimicry to be important, any potential region(s) of mimicry in P2C should bind to each of these susceptibility molecules. In the present study therefore we examined the affinity of 20-mer overlapping P2C peptides for soluble HLA-DR4, -DR3, -DQ2 and -DQ8. We identified one discrete region of P2C with high binding affinities for all of these HLA Class II molecules. Moreover, the binding affinity of P2C peptides was significantly correlated between HLA molecules present on the same susceptibility haplotype (e.g. DR4 and DQ8, P =0.0076; DR3 and DQ2 P = 0.002). We conclude that possession of these haplotypes favours restricted presentation of viral epitopes, and speculate that this could promote the potential for mimicry between microbial proteins and islet autoantigens.
Collapse
Affiliation(s)
- Richard J Ellis
- Department of Immunobiology, Guy's King's & St Thomas' School of Medicine, King's College London, Guy's Hospital, United Kingdom.
| | | | | | | |
Collapse
|