1
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
2
|
Han M, Rajput C, Hinde JL, Wu Q, Lei J, Ishikawa T, Bentley JK, Hershenson MB. Construction of a recombinant rhinovirus accommodating fluorescent marker expression. Influenza Other Respir Viruses 2018; 12:717-727. [PMID: 30120824 PMCID: PMC6185886 DOI: 10.1111/irv.12602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/02/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022] Open
Abstract
Background Rhinovirus (RV) causes the common cold and asthma exacerbations. The RV genome is a 7.3 kb single‐strand positive‐sense RNA. Objective Using minor group RV1A as a backbone, we sought to design and generate a recombinant RV1A accommodating fluorescent marker expression, thereby allowing tracking of viral infection. Method Recombinant RV1A infectious cDNA clones harboring the coding sequence of green fluorescent protein (GFP), Renilla luciferase, or iLOV (for light, oxygen, or voltage sensing) were engineered and constructed. RV‐infected cells were determined by flow cytometry, immunohistochemistry, and immunofluorescence microscopy. Results RV1A‐GFP showed a cytopathic effect in HeLa cells but failed to express GFP or Renilla luciferase due to deletion. The smaller fluorescent protein construct, RV1A‐iLOV, was stably expressed in infected cells. RV1A‐iLOV expression was used to examine the antiviral effect of bafilomycin in HeLa cells. Compared to parental virus, RV1A‐iLOV infection of BALB/c mice yielded a similar viral load and level of cytokine mRNA expression. However, imaging of fixed lung tissue failed to reveal a fluorescent signal, likely due to the oxidation and bleaching of iLOV‐bound flavin mononucleotide. We therefore employed an anti‐iLOV antibody for immunohistochemical and immunofluorescence imaging. The iLOV signal was identified in airway epithelial cells and CD45+ CD11b+ lung macrophages. Conclusions These results suggest that RV1A‐iLOV is a useful molecular tool for studying RV pathogenesis. The construction strategy for RV1A‐iLOV could be applied to other RV serotypes. However, the detection of iLOV‐expressing RV in fixed tissue required the use of an anti‐iLOV antibody, limiting the value of this construct.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charu Rajput
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joanna L Hinde
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Qian Wu
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jing Lei
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tomoko Ishikawa
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - J Kelley Bentley
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marc B Hershenson
- Department of Pediatrics & Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
3
|
Oncolytic activity of a coxsackievirus B3 strain in human endometrial cancer cell lines. Virol J 2018; 15:65. [PMID: 29631630 PMCID: PMC5891967 DOI: 10.1186/s12985-018-0975-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/02/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common gynecological malignancies globally. Although progress has been made in surgical and other adjuvant therapies, there is still a great need to develop new approaches to further reduce the incidence and mortality of EC. Oncolytic virotherapy offers a novel promising option of cancer treatment and has demonstrated good efficacy in preclinical models and clinical trials. However, only few oncolytic viruses have been tested for EC treatment. In this study, the potential of an oncolytic coxsackievirus B3 (CV-B3) strain 2035A (CV-B3/2035A) was investigated as a novel biotherapeutic agent against EC. METHODS Human EC cell lines (Ishikawa, HEC-1-A and HEC-1-B) were infected with CV-B3/2035A, and viral replication and cytotoxic effects were evaluated in vitro. CV-B3/2035A-induced oncolysis was also investigated in nude mice bearing EC xenografts in vivo and in patient-derived EC samples ex vivo. RESULTS Human EC cell lines expressing different levels of CAR and DAF were all susceptible to infection by CV-B3/2035A and supported efficient viral replication in vitro. In the EC xenograft/nude mouse model, both intratumoral and intravenous administrations of CV-B3-2035A exerted significant therapeutic effects against pre-established EC tumors without causing significant treatment-related toxicity and mortality in nude mice. Moreover, CV-B3/2035A treatment resulted in decreased viability of patient-derived EC samples ex vivo. CONCLUSIONS CV-B3/2035A showed oncolytic activity in human EC cell lines both in vitro and in vivo as well as in patient-derived EC samples ex vivo and thus could be used as an alternative virotherapy agent for the treatment of EC.
Collapse
|
4
|
Lauer KB, Borrow R, Blanchard TJ. Multivalent and Multipathogen Viral Vector Vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00298-16. [PMID: 27535837 PMCID: PMC5216423 DOI: 10.1128/cvi.00298-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
Collapse
Affiliation(s)
- Katharina B Lauer
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Ray Borrow
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Thomas J Blanchard
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Consultant in Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool, United Kingdom
| |
Collapse
|
5
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
6
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|
7
|
Henke A, Jarasch N, Wutzler P. Vaccination procedures against Coxsackievirus-induced heart disease. Expert Rev Vaccines 2014; 2:805-15. [PMID: 14711363 DOI: 10.1586/14760584.2.6.805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coxsackievirus B3--a member of the picornavirus family--is one of the major causes of virus-induced acute or chronic heart disease. Despite the fact that the molecular structure of this pathogen has been characterized very precisely during the last 10 years, until recently, there was no virus-specific preventive or therapeutic procedure against Coxsackievirus B3-induced human heart disease in clinical use. However, using different murine model systems it has been demonstrated that classic as well as newly developed vaccination procedures are quite successful in preventing Coxsackievirus B3 infections. In particular, the application of an interferon-gamma-expressing recombinant Coxsackievirus variant against Coxsackievirus B3-induced myocarditis has been effective.
Collapse
Affiliation(s)
- Andreas Henke
- Institute of Virology and Antiviral Therapy, Medical Center at the Friedrich Schiller University Jena, Hans-Knöll-Strasse 2, D-07740 Jena, Germany.
| | | | | |
Collapse
|
8
|
Zeng J, Chen XX, Dai JP, Zhao XF, Xin G, Su Y, Wang GF, Li R, Yan YX, Su JH, Deng YX, Li KS. An attenuated coxsackievirus b3 vector: a potential tool for viral tracking study and gene delivery. PLoS One 2013; 8:e83753. [PMID: 24386270 PMCID: PMC3875476 DOI: 10.1371/journal.pone.0083753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/07/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiomyocytes are quite resistant to gene transfer using standard techniques. We developed an expression vector carrying an attenuated but infectious and replicative coxsackievirus B3 (CVB3) genome, and unique ClaI-StuI cloning sites for an exogenous gene, whose product can be released from the nascent viral polyprotein by 2A(pro) cleavage. This vector was tested as an expression vehicle for green fluorescent protein (GFP). The vector transiently expressed GFP in cell cultures for at least ten passages and delivered functional GFP to the infected cardiomyocytes for at least 6 days. Moreover, the recombinant viruses showed virulence attenuation in vitro and in vivo. The findings suggest that the recombinant CVB3 vector could be a useful tool for viral tracking study and delivering exogenous proteins to cardiomyocytes.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Department of Endocrinology, The First Hospital of Yichang, Three Gorges University College of Medicine, Yichang, Hubei, People’s Republic of China
| | - Xiao xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jian ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiang feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Gang Xin
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Ge fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (GFW); (KSL)
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yin xia Yan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jing hua Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yu xue Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Kang sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (GFW); (KSL)
| |
Collapse
|
9
|
Role of the myristoylation site in expressing exogenous functional proteins in coxsackieviral vector. Biosci Biotechnol Biochem 2012; 76:1173-6. [PMID: 22790942 DOI: 10.1271/bbb.120045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We generated a cardiotropic replication-competent chimeric coxsackievirus B3 (CVB3) to express alcohol dehydrogenase (ADH). Although exogenously expressed ADH was found by Western blot analysis, its enzyme function was repressed. To define the factor that inhibits the enzymatic function of ADH, we introduced a site-directed mutation at the second amino acid (MGAQEF···) of the CVB3 VP0 capsid protein, effectively changing glycine to alanine. This glycine is known to be a myristoylation site during viral capsid protein maturation in infected cells. In contrast to the unmodified virus, ADH expression and enzymatic function were readily detectable in the mutated rCVB3-ADH (G2A) virus. While expression of ADH required mutation of the CVB3 VP0 myristoylation site for proper function, another chimeric virus that expresses green fluorescent protein (rCVB3-GFP (G or A)) worked independently of the myristoylation site. Indeed, infected HeLa cells displayed GFP under a fluorescent microscope. These results indicate that the myristoylation site in the VP0 capsid protein inhibited the expression of enzymatically active ADH but not GFP. VP0 myristoylation is dispensable for chimeric CVB3 virus replication.
Collapse
|
10
|
A novel pancreatropic coxsackievirus vector expressing glucagon-like peptide 1 reduces hyperglycemia in streptozotocin-treated mice. J Virol 2011; 85:12759-68. [PMID: 21937637 DOI: 10.1128/jvi.00661-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A coxsackievirus vector, vCVB(dm) (v stands for vector, CVB stands for group B coxsackievirus, and dm stands for double mutant), has been produced from a unique strain of coxsackievirus B3 (CVB3) containing 2 mutations that confer the property of highly selective pancreatropism. This vector has been tested as a delivery vehicle for glucagon-like peptide 1 (GLP-1), a peptide that enhances pancreatic regeneration following tissue damage. vCVB(dm) is a live vector comprising the entire plus-strand RNA genome with a multiple cloning site (MCS) inserted between the P1 and P2 gene regions. The MCS is flanked by sequences encoding the cleavage site for viral protease 2Apro that processes the polyprotein to release the incorporated gene. Our studies show that this vector selectively delivers GLP-1 to the pancreas where it is expressed in foci scattered throughout the acinar tissue for 4 or 5 days. Moreover, expression is associated with new beta cell clusters in juxtaposition to vector-infected cells. Inoculation of streptozotocin (STZ)-treated mice with vCVB(dm)GLP-1 was found to suppress development of hyperglycemia and increase insulin production relative to mice treated with STZ alone or with empty vector. This vector has the advantage of exclusively targeting pancreas and has potential use for short-term gene delivery to this tissue. The lack of viral integration provides a significant safety feature, making this vector a possible option for use as a therapeutic tool for pancreas-related diseases, including type 1 and 2 diabetes, pancreatitis, and pancreatic cancer.
Collapse
|
11
|
Lim BK, Yun SH, Gil CO, Ju ES, Choi JO, Kim DK, Jeon ES. Foreign gene transfer to cardiomyocyte using a replication-defective recombinant coxsackievirus B3 without cytotoxicity. Intervirology 2011; 55:201-9. [PMID: 21821992 DOI: 10.1159/000324541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Replication-competent coxsackievirus B3 (CVB3) has been used as a gene transfer vector for cultured cardiomyocytes and hearts in vivo. However, CVB3 induces cell lysis when it replicates in infected cells. In this study, we investigated whether a replication-defective rCVB3 vector could be generated and used as a noncytotoxic gene transfer vector for cardiomyocytes. METHODS We generated a replication-defective luciferase-expressing CVB3 plasmid. This recombinant cDNA and pCMV-P1 plasmids were amplified and cotransfected into Hek293 cells using transfection reagents. Replication-defective rLuCVB3 virus was recovered from the cells and cell culture supernatants for 3 days after transfection. The generated rLuCVB3 viruses were concentrated on a 30% sucrose cushion and semiquantified using a luciferase assay. In addition, foreign gene delivery by the rLuCVB3 was tested in cultured cardiomyocytes and intact mouse hearts after rLuCVB3 infection. RESULTS Luciferase was expressed in Hek293, HeLa cells and cardiomyocytes after rLuCVB3 infection. In addition, these cells did not show a significant cytopathic effect after 72 h. Luciferase protein expression or activity were detected for 3 days in the myocardium of rLuCVB3-infected mouse hearts without producing cytotoxicity or inflammation. CONCLUSION As a proof-of-concept, these data indicate that a replication-defective rCVB3 vector can be generated and used as a novel gene transfer system to transfect exogenous genes into cardiomyocytes without generating cytotoxicity.
Collapse
Affiliation(s)
- Byung-Kwan Lim
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Tong L, Lin L, Zhao W, Wang B, Wu S, Liu H, Zhong X, Cui Y, Gu H, Zhang F, Zhong Z. Destabilization of coxsackievirus b3 genome integrated with enhanced green fluorescent protein gene. Intervirology 2011; 54:268-75. [PMID: 21242657 DOI: 10.1159/000321351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
Abstract
AIMS To evaluate the stability of coxsackievirus B (CVB) genome integrated with the enhanced green fluorescent protein gene (egfp) and provide valuable information for the use of the recombinant CVB variant. METHODS A CVB3 variant expressing eGFP was constructed by insertion of the egfp open-reading frame (ORF) at the 5' end of CVB3 ORF. The recombinant virus CVB3-eGFP was serially passaged in HeLa cells. The deletions in the CVB3-eGFP genome around egfp were examined by reverse transcription polymerase chain reaction and sequencing. RESULTS Genomic deletions of CVB3-eGFP could be observed as early as the 2nd passage. Sequencing showed that the genomic deletions caused either viral ORF shifts or partial deletions of the viral VP4 coding sequence. The 6th passage of CVB3-eGFP was checked by plaque assay for eGFP expression. All plaque-like foci showed eGFP expression. eGFP expression was also viewed in HeLa cells infected with plaque-forming viruses. CONCLUSIONS The insertion of egfp destabilized the CVB3 genome. The genomic deletions led to lethal mutations because of the termination of viral protein synthesis due to viral ORF shift and loss of partial viral gene. These findings imply that experimental data based on CVB integrated with the reporter gene should be interpreted with caution.
Collapse
Affiliation(s)
- Lei Tong
- Department of Microbiology, Harbin Medical University, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abente EJ, Sosnovtsev SV, Bok K, Green KY. Visualization of feline calicivirus replication in real-time with recombinant viruses engineered to express fluorescent reporter proteins. Virology 2010; 400:18-31. [PMID: 20137802 PMCID: PMC2855553 DOI: 10.1016/j.virol.2009.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/15/2009] [Accepted: 12/31/2009] [Indexed: 11/30/2022]
Abstract
Caliciviruses are non-enveloped, icosahedral viruses with a single-stranded, positive sense RNA genome. Transposon-mediated insertional mutagenesis was used to insert a transprimer sequence into random sites of an infectious full-length cDNA clone of the feline calicivirus (FCV) genome. A site in the LC gene (encoding the capsid leader protein) of the FCV genome was identified that could tolerate foreign insertions, and two viable recombinant FCV variants expressing LC fused either to AcGFP, or DsRedFP were recovered. The effects of the insertions on LC processing, RNA replication, and stability of the viral genome were analyzed, and the progression of a calicivirus single infection and co-infection were captured by real-time imaging fluorescent microscopy. The ability to engineer viable recombinant caliciviruses expressing foreign markers enables new approaches to investigate virus and host cell interactions, as well as studies of viral recombination, one of the driving forces of calicivirus evolution.
Collapse
Affiliation(s)
- Eugenio J. Abente
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | | | - Karin Bok
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892
| | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
14
|
Systematic analysis of attenuated Coxsackievirus expressing a foreign gene as a viral vaccine vector. Vaccine 2010; 28:1234-40. [DOI: 10.1016/j.vaccine.2009.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/17/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022]
|
15
|
Kim DS, Nam JH. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert Opin Biol Ther 2010; 10:179-90. [DOI: 10.1517/14712590903379502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Carson SD, Kim KS, Pirruccello SJ, Tracy S, Chapman NM. Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. J Gen Virol 2007; 88:3031-3038. [DOI: 10.1099/vir.0.82710-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells in which the appropriate viral receptor cannot be detected may paradoxically act as a host to the virus. For example, RD cells are often considered to be non-permissive for infection with coxsackievirus and adenovirus receptor (CAR)-dependent group B coxsackieviruses (CVB), insofar as inoculated cell monolayers show little or no cytopathic effect (CPE) and immunohistological assays for CAR have been consistently negative. Supernatants recovered from RD cells exposed to CVB, however, contained more virus than was added in the initial inoculum, indicating that productive virus replication occurred in the monolayer. When infected with a recombinant CVB type 3 (CVB3) chimeric strain expressing S-Tag within the viral polyprotein, 4–11 % of RD cells expressed S-Tag over 48 h. CAR mRNA was detected in RD cells by RT-PCR, and CAR protein was detected on Western blots of RD lysates; both were detected at much lower levels than in HeLa cells. Receptor blockade by an anti-CAR antibody confirmed that CVB3 infection of RD cells was mediated by CAR. These results show that some RD cells in the culture population express CAR and can thereby be infected by CVB, which explains the replication of CAR-dependent CVB in cell types that show little or no CPE and in which CAR has not previously been detected. Cells within cultures of cell types that have been considered non-permissive may express receptor transiently, leading to persistent replication of virus within the cultured population.
Collapse
Affiliation(s)
| | - Kyung-Soo Kim
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Steven Tracy
- University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
17
|
|
18
|
Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, Barry WH, Chapman NM. 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005; 79:7024-41. [PMID: 15890942 PMCID: PMC1112132 DOI: 10.1128/jvi.79.11.7024-7041.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/physiology
- Enterovirus Infections/virology
- Genome, Viral
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred A
- Molecular Sequence Data
- Myocarditis/virology
- Myocytes, Cardiac/virology
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hunziker IP, Harkins S, Feuer R, Cornell CT, Whitton JL. Generation and analysis of an RNA vaccine that protects against coxsackievirus B3 challenge. Virology 2005; 330:196-208. [PMID: 15527846 DOI: 10.1016/j.virol.2004.09.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/26/2004] [Indexed: 01/25/2023]
Abstract
Coxsackievirus B3 (CVB3) is an important human pathogen that causes substantial morbidity and mortality but, to date, no vaccine is available. We have generated an RNA-based vaccine against CVB3 and have evaluated it in the murine model of infection. The vaccine was designed to allow production of the viral polyprotein, which should be cleaved to generate most of the viral proteins in their mature form; but infectious virus should not be produced. In vitro translation studies indicated that the mutant polyprotein was efficiently translated and was processed as expected. The mutant RNA was not amplified in transfected cells, and infectious particles were not produced. Furthermore, the candidate RNA vaccine appeared safe in vivo, causing no detectable pathology following injection. Finally, despite failing to induce detectable neutralizing antibodies, the candidate RNA vaccine conferred substantial protection against virus challenge, either with an attenuated recombinant CVB3, or with the highly pathogenic wt virus.
Collapse
Affiliation(s)
- Isabelle P Hunziker
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
20
|
Harkins S, Cornell CT, Whitton JL. Analysis of translational initiation in coxsackievirus B3 suggests an alternative explanation for the high frequency of R+4 in the eukaryotic consensus motif. J Virol 2005; 79:987-96. [PMID: 15613327 PMCID: PMC538586 DOI: 10.1128/jvi.79.2.987-996.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translational initiation of most eukaryotic mRNAs occurs when a preinitiation complex binds to the 5' cap, scans the mRNA, and selects a particular AUG codon as the initiation site. Selection of the correct initiation codon relies, in part, on its flanking residues; in mammalian cells, the core of the "Kozak" consensus is R-3CCAUGG+4 (R=purine; the A residue is designated position +1). The R-3 is considered the most important flanking residue, followed by G+4. Picornaviral mRNAs differ from most cellular mRNAs in several ways; they are uncapped, and they contain an internal ribosome entry site that allows the ribosome to bind near the initiation codon. The initiation codon of coxsackievirus B3 (CVB3) is flanked by both R-3 and G+4 (AAAATGG). Here, we report the construction of full-length CVB3 genomes that vary at these two positions, and we evaluate the effects of these variant sequences in vitro, in tissue culture cells, and in vivo. A virus with an A-->C transversion at position -3 replicates as well as wild-type CVB3, both in tissue culture and in vivo. This virus is highly pathogenic, and its sequence is stable throughout the course of an in vivo infection. Furthermore, the in vitro translation products from this RNA are very similar to the wild type. Thus, R-3-thought to be the most functionally important component of the Kozak consensus-appears to be dispensable in CVB3. In contrast, a G-to-C transversion at G+4 is lethal; RNAs carrying this mutation fail to generate infectious virus either in tissue culture or in vivo. However, in vitro analysis indicates that G+4 has only a marginal effect on translational initiation, especially if R-3 is present; instead, the G+4 is required mainly because the second triplet of the polyprotein open reading frame must encode glycine, without which infectious virus production cannot proceed. In summary, our data indicate that CVB3 remains viable, even in vivo, in the absence of R-3, and we propose that the most important factor contributing to the high frequency of G+4-not only in CVB but also in other eukaryotic mRNAs, and thus in the consensus motif itself-may be the constraint upon the second amino acid rather than the requirements for translational initiation.
Collapse
Affiliation(s)
- Stephanie Harkins
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
21
|
Lee CK, Kono K, Haas E, Kim KS, Drescher KM, Chapman NM, Tracy S. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. J Gen Virol 2005; 86:197-210. [PMID: 15604447 DOI: 10.1099/vir.0.80424-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause numerous diseases, including myocarditis, pancreatitis, aseptic meningitis and possibly type 1 diabetes. To date, infectious cDNA copies of CVB type 3 (CVB3) genomes have all been derived from pathogenic virus strains. An infectious cDNA copy of the well-characterized, non-pathogenic CVB3 strain GA genome was cloned in order to facilitate mapping of the CVB genes that influence expression of a virulence phenotype. Comparison of the sequence of the parental CVB3/GA population, derived by direct RT-PCR-mediated sequence analysis, to that of the infectious CVB3/GA progeny genome demonstrated that an authentic copy was cloned; numerous differences were observed in coding and non-coding sequences relative to other CVB3 strains. Progeny CVB3/GA replicated similarly to the parental strain in three different cell cultures and was avirulent when inoculated into mice, causing neither pancreatitis nor myocarditis. Inoculation of mice with CVB3/GA protected mice completely against myocarditis and pancreatitis induced by cardiovirulent CVB3 challenge. The secondary structure predicted for the CVB3/GA domain II, a region within the 5′ non-translated region that is implicated as a key site affecting the expression of a cardiovirulent phenotype, differs from those predicted for cardiovirulent and pancreovirulent CVB3 strains. This is the first report characterizing a cloned CVB3 genome from an avirulent strain.
Collapse
Affiliation(s)
- C-K Lee
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K Kono
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - E Haas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| | - S Tracy
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Henke A, Zell R, Martin U, Stelzner A. Direct interferon-gamma-mediated protection caused by a recombinant coxsackievirus B3. Virology 2003; 315:335-44. [PMID: 14585336 DOI: 10.1016/s0042-6822(03)00538-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coxsackievirus B3 (CVB3) is one of the most important causes of viral myocarditis. Cytokines are involved in the control of CVB3 replication and pathogenesis. Local expression of specific cytokines by recombinant CVB3 confers prevention of virus-caused myocarditis. Expression of IFN-gamma by CVB3(IFN-gamma) protected BALB/c and C57BL/6 mice when the lethal infection with the highly pathogenic CVB3H3 variant was given directly after or prior to CVB3(IFN-gamma) inoculation by decreasing the viral load and spread as well as tissue destruction. This direct effect was not restricted to the homologous virus. In vitro, cocultivation of CVB3(IFN-gamma)-infected cells induced a reduction of CVB3H3 replication and virus-induced cytopathogenicity.
Collapse
Affiliation(s)
- Andreas Henke
- Institute of Virology and Antiviral Therapy, Medical Center, Friedrich Schiller University, Winzerlaer Strasse 10, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
23
|
Tracy S, Drescher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 2002; 76:12097-111. [PMID: 12414951 PMCID: PMC136885 DOI: 10.1128/jvi.76.23.12097-12111.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 08/21/2002] [Indexed: 01/28/2023] Open
Abstract
Insulin-dependent (type 1) diabetes mellitus (T1D) onset is mediated by individual human genetics as well as undefined environmental influences such as viral infections. The group B coxsackieviruses (CVB) are commonly named as putative T1D-inducing agents. We studied CVB replication in nonobese diabetic (NOD) mice to assess how infection by diverse CVB strains affected T1D incidence in a model of human T1D. Inoculation of 4- or 8-week-old NOD mice with any of nine different CVB strains significantly reduced the incidence of T1D by 2- to 10-fold over a 10-month period relative to T1D incidences in mock-infected control mice. Greater protection was conferred by more-pathogenic CVB strains relative to less-virulent or avirulent strains. Two CVB3 strains were employed to further explore the relationship of CVB virulence phenotypes to T1D onset and incidence: a pathogenic strain (CVB3/M) and a nonvirulent strain (CVB3/GA). CVB3/M replicated to four- to fivefold-higher titers than CVB3/GA in the pancreas and induced widespread pancreatitis, whereas CVB3/GA induced no pancreatitis. Apoptotic nuclei were detected by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay in CVB3/M-infected pancreata but not in CVB3/GA-infected pancreata. In situ hybridization detected CVB3 RNA in acinar tissue but not in pancreatic islets. Although islets demonstrated inflammatory infiltrates in CVB3-protected mice, insulin remained detectable by immunohistochemistry in these islets but not in those from diabetic mice. Enzyme-linked immunosorbent assay-based examination of murine sera for immunoglobulin G1 (IgG1) and IgG2a immunoreactivity against diabetic autoantigens insulin and HSP60 revealed no statistically significant relationship between CVB3-protected mice or diabetic mice and specific autoimmunity. However, when pooled sera from CVB3/M-protected mice were used to probe a Western blot of pancreatic proteins, numerous proteins were detected, whereas only one band was detected by sera from CVB3/GA-protected mice. No proteins were detected by sera from diabetic or normal mice. Cumulatively, these data do not support the hypothesis that CVB are causative agents of T1D. To the contrary, CVB infections provide significant protection from T1D onset in NOD mice. Possible mechanisms by which this virus-induced protection may occur are discussed.
Collapse
Affiliation(s)
- S Tracy
- Enterovirus Research Laboratory, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 2002; 76:4430-40. [PMID: 11932410 PMCID: PMC155066 DOI: 10.1128/jvi.76.9.4430-4440.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroviral persistence has been implicated in the pathogenesis of several chronic human diseases, including dilated cardiomyopathy, insulin-dependent diabetes mellitus, and chronic inflammatory myopathy. However, these viruses are considered highly cytolytic, and it is unclear what mechanisms might permit their long-term survival. Here, we describe the generation of a recombinant coxsackievirus B3 (CVB3) expressing the enhanced green fluorescent protein (eGFP), which we used to mark and track infected cells in vitro. Following exposure of quiescent tissue culture cells to either wild-type CVB3 or eGFP-CVB3, virus production was very limited but increased dramatically after cells were permitted to divide. Studies with cell cycle inhibitors revealed that cells arrested at the G(1) or G(1)/S phase could express high levels of viral polyprotein and produced abundant infectious virus. In contrast, both protein expression and virus yield were markedly reduced in quiescent cells (i.e., cells in G(0)) and in cells blocked at the G(2)/M phase. Following infection with eGFP-CVB3, quiescent cells retained viral RNA for several days in the absence of infectious virus production. Furthermore, RNA extracted from nonproductive quiescent cells was infectious when transfected into dividing cells, indicating that CVB3 appears to be capable of establishing a latent infection in G(0) cells, at least in tissue culture. Finally, wounding of infected quiescent cells resulted in viral protein expression limited to cells in and adjacent to the lesion. We suggest that (i) cell cycle status determines the distribution of CVB3 during acute infection and (ii) the persistence of CVB3 in vivo may rely on infection of quiescent (G(0)) cells incapable of supporting viral replication; a subsequent change in the cell cycle status may lead to virus reactivation, triggering chronic viral and/or immune-mediated pathology in the host.
Collapse
Affiliation(s)
- Ralph Feuer
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The six serotypes of the group B coxsackieviruses (CVB) are common human enteroviruses linked etiologically to inflammatory cardiomyopathies. This has been demonstrated by molecular detection of enteroviral RNA in human heart tissue, serologic associations with disease, and virus isolation from cases of fulminant myocarditis. The murine model of CVB-associated myocarditis has demonstrated that CVB can be attenuated through mutations at different genomic sites. Human CVB3 isolates demonstrate varying degrees of cardiovirulence in the murine model; one site of virulence determination has been mapped to domain II of the 5' non-translated region. The interplay of CVB replication and the immune response to that replication in the heart is a complex interaction determining the extent to which the virus replication is limited and the degree to which a pathogenic inflammation of cardiac muscle occurs. Studies of CVB3-induced myocarditis in murine strains lacking subsets of the immune system or genes regulating the immune response have demonstrated a pivotal role of the T cell response to the generation of myocarditis. While CVB are associated with 20-25% of cases of myocarditis or cardiomyopathy, the severity of the disease and the existence of attenuated strains shown to generate protective immunity in animal models indicates that vaccination against the CVBs would be valuable.
Collapse
Affiliation(s)
- K S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | |
Collapse
|
26
|
Henke A, Zell R, Ehrlich G, Stelzner A. Expression of immunoregulatory cytokines by recombinant coxsackievirus B3 variants confers protection against virus-caused myocarditis. J Virol 2001; 75:8187-94. [PMID: 11483764 PMCID: PMC115063 DOI: 10.1128/jvi.75.17.8187-8194.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.
Collapse
Affiliation(s)
- A Henke
- Institute of Virology, Medical Center, Friedrich Schiller University, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
27
|
Crotty S, Miller CJ, Lohman BL, Neagu MR, Compton L, Lu D, Lü FX, Fritts L, Lifson JD, Andino R. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 2001; 75:7435-52. [PMID: 11462016 PMCID: PMC114979 DOI: 10.1128/jvi.75.16.7435-7452.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.
Collapse
Affiliation(s)
- S Crotty
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Slifka MK, Pagarigan R, Mena I, Feuer R, Whitton JL. Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J Virol 2001; 75:2377-87. [PMID: 11160741 PMCID: PMC114821 DOI: 10.1128/jvi.75.5.2377-2387.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that has been associated with serious diseases including myocarditis and pancreatitis. To better understand the effect of cytotoxic T-lymphocyte (CTL) responses in controlling CVB3 infection, we have inserted well-characterized CTL epitopes into the CVB3 genome. Constructs were made by placing the epitope of interest upstream of the open reading frame encoding the CVB3 polyprotein, separated by a poly-glycine linker and an artificial 3Cpro/3CDpro cleavage site. This strategy results in the foreign protein being translated at the amino- terminus of the viral polyprotein, from which it is cleaved prior to viral assembly. In this study, we cloned major histocompatibility complex class I-restricted CTL epitopes from lymphocytic choriomeningitis virus (LCMV) into recombinant CVB3 (rCVB3). In vitro, rCVB3 growth kinetics showed a 1- to 2-h lag period before exponential growth was initiated, and peak titers were approximately 1 log unit lower than for wild-type virus. rCVB3 replicated to high titers in vivo and caused severe pancreatitis but minimal myocarditis. Despite the high virus titers, rCVB3 infection of naive mice failed to induce a strong CD8+ T-cell response to the encoded epitope; this has implications for the proposed role of "cross-priming" during virus infection and for the utility of recombinant picornaviruses as vaccine vectors. In contrast, rCVB3 infection of LCMV-immune mice resulted in direct ex vivo cytotoxic activity against target cells coated with the epitope peptide, demonstrating that the rCVB3-encoded LCMV-specific epitope was expressed and presented in vivo. The preexisting CD8+ memory T cells could limit rCVB replication; compared to naive mice, infection of LCMV-immune mice with rCVB3 resulted in approximately 50-fold-lower virus titers in the heart and approximately 6-fold-lower virus titers in the pancreas. Although the inserted CTL epitope was retained by rCVB3 through several passages in tissue culture, it was lost in an organ-specific manner in vivo; a substantial proportion of viruses from the pancreas retained the insert, compared to only 0 to 1.8% of myocardial viruses. Together, these results show that expression of heterologous viral proteins by recombinant CVB3 provides a useful model for determining the mechanisms underlying the immune response to this viral pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral
- CD8-Positive T-Lymphocytes/immunology
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/virology
- Enterovirus B, Human/genetics
- Enterovirus B, Human/growth & development
- Enterovirus B, Human/immunology
- Enterovirus B, Human/pathogenicity
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Humans
- Immunologic Memory
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Recombination, Genetic
- Transfection
- Viral Proteins
- Virus Replication
Collapse
Affiliation(s)
- M K Slifka
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Chapman NM, Kim KS, Tracy S, Jackson J, Höfling K, Leser JS, Malone J, Kolbeck P. Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J Virol 2000; 74:7952-62. [PMID: 10933703 PMCID: PMC112326 DOI: 10.1128/jvi.74.17.7952-7962.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1999] [Accepted: 06/08/2000] [Indexed: 11/20/2022] Open
Abstract
We cloned the sequence encoding murine interleukin-4 (mIL-4), including the secretory signal, into the genome of CVB3/0, an artificially attenuated strain of coxsackievirus B3, at the junction of the capsid protein 1D and the viral protease 2Apro. Two strains of chimeric CVB3 were constructed using, in one case, identical sequences to encode 2Apro cleavage sites (CVB3/0-mIL4/47) on either side of the inserted coding sequence and, in the other case, nonidentical sequences that varied at the nucleotide level without changing the amino acid sequences (CVB3-PL2-mIL4/46). Transfection of HeLa cells yielded progeny viruses that replicated with rates similar to that of the parental CVB3/0 strain, although yields of mIL-4-expressing strains were approximately 10-fold lower than those of the parental virus. Western blot analysis of viral proteins isolated from HeLa cells inoculated with either strain of chimeric virus demonstrated that the chimeric viruses synthesized capsid protein 1D at approximately twofold-higher levels than the parental virus. mIL-4 protein was detected by enzyme-linked immunosorbent assay (ELISA) in HeLa cells inoculated with either strain of chimeric virus. Lysates of HeLa cells inoculated with either chimeric virus induced the proliferation of the mIL-4-requiring murine MC-9 cell line, demonstrating biological activity of the CVB3-expressed mIL-4. Reverse transcription (RT)-PCR analysis of viral RNA derived from sequential passaging of CVB3/0-mIL4/47 in HeLa cells demonstrated deletion of the mIL-4 coding sequence occurring by the fourth passage, while similar analysis of CVB3-PL2-mIL4/46 RNA demonstrated detection of the mIL-4 coding sequence in the virus population through 10 generations in HeLa cells. mIL-4 protein levels determined by ELISA were consistent with the stability and loss data determined by RT-PCR analysis of the passaged viral genomes. Studies of insert stability of CVB3-PL2-mIL4/46 during replication in mice showed the presence of the viral mIL-4 insert in pancreas, heart, and liver at 14 days postinfection. Comparison of the murine antibody responses to CVB3-PL2-mIL4/46 and the parental CVB3/0 strain demonstrated an increased level of CVB3-binding serum immunoglobulin G1 in mice inoculated with CVB3-PL2-mIL4/46.
Collapse
Affiliation(s)
- N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | |
Collapse
|