1
|
Perica K, Kotchetkov IS, Mansilla-Soto J, Ehrich F, Herrera K, Shi Y, Dobrin A, Gönen M, Sadelain M. HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature 2025; 640:793-801. [PMID: 39884316 DOI: 10.1038/s41586-025-08657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Autologous chimeric antigen receptor (CAR) T cells are a genetically engineered therapy that is highly effective against B cell malignancies and multiple myeloma1. However, the length and cost of personalized manufacturing limits access and leaves patients vulnerable to disease progression. Allogeneic cell therapies have the potential to increase patient access and improve treatment outcomes but are limited by immune rejection2,3. To devise a strategy to protect allogeneic CAR T cells from host immune cells, we turned to lymphotropic viruses that have evolved integrated mechanisms for immune escape of virus-infected lymphocytes4. We find that viral evasins that partially reduce human leukocyte antigen class I expression can shelter CAR T cells from mismatched CD8+ T cells without triggering 'missing-self' rejection by natural killer cells. However, this protection alone is insufficient to sustain effective allogeneic CAR T cell therapy. HIV-1 Nef uniquely also acts through the serine/threonine kinase Pak2 to abate activation-induced cell death and promote survival of CAR T cells in vivo. Thus, virus-like immune escape can harness several mechanisms that act in concert to enhance the therapeutic efficacy of allogeneic CAR T cells.
Collapse
Affiliation(s)
- Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan S Kotchetkov
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Fiona Ehrich
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Herrera
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA
| | - Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Li W, Li G, Liu Y, Meng L, Zhang T, Wang L, Li H, Yu B, Wu J, Wang C, Yu X. Functional variability of Nef in antagonizing SERINC5 during acute to chronic HIV-1 infection. AIDS 2025; 39:229-240. [PMID: 39612239 PMCID: PMC11784911 DOI: 10.1097/qad.0000000000004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The ability of HIV-1 Nef to counteract the host restriction factor SERINC5 and enhance virion infectivity has been well established. However, the impact of long-term within-host Nef evolution on this antagonistic capability remains unclear. DESIGN Analysis of longitudinal activity of Nef in antagonizing SERINC5. METHODS We investigated the downregulation activity of Nef against SERINC5 at different stages of infection by analyzing the cognate transmitted/founder, set point, and/or chronic Nef isolates from a cohort of 19 people with either subtype B or C HIV-1. RESULTS The Nef isolates from different stages exhibited varying abilities to antagonize SERINC5. Long-term evolution resulted in mutations accumulated in Nef and a decline of Nef-mediated SERINC5 downregulation function in subtype B, but not in subtype C viruses, leading to a rapid reduction in viral load from peak viremia. Furthermore, we identified four polymorphisms of both subtype B and C Nef that are associated with variations in the SERINC5 antagonistic function and viral infectivity. HIV-1 NL4-3 variants encoding Nef E63G, A83G, R105K, or D108E mutants exhibited reduced replication capacity through a SERINC5-dependent mechanism. However, among different subjects, only a small part of naturally occurring mutations at these sites were selected by host T-cell responses, suggesting a limited impact of host T-cell responses on influencing Nef's ability to antagonize SERINC5. CONCLUSION These results highlight the potential contribution of functional variation in Nef to differences in HIV-1 pathogenesis and provide significant implications for understanding the evolutionary interaction between Nef and SERINC5 in vivo .
Collapse
Affiliation(s)
- Weiting Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education
- National Engineering Laboratory for AIDS Vaccine
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine
| | - Yuyang Liu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine
| | | | - Libian Wang
- National Engineering Laboratory for AIDS Vaccine
| | - Haochen Li
- National Engineering Laboratory for AIDS Vaccine
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine
| | - Chu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education
- National Engineering Laboratory for AIDS Vaccine
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Impaired ability of Nef to counteract SERINC5 is associated with reduced plasma viremia in HIV-infected individuals. Sci Rep 2020; 10:19416. [PMID: 33173092 PMCID: PMC7656250 DOI: 10.1038/s41598-020-76375-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Nef plays an essential role in enhancing virion infectivity by antagonizing the host restriction molecule SERINC5. Because Nef is highly polymorphic due to the selective forces of host cellular immunity, we hypothesized that certain immune-escape polymorphisms may impair Nef’s ability to antagonize SERINC5 and thereby influence viral fitness in vivo. To test this hypothesis, we identified 58 Nef polymorphisms that were overrepresented in HIV-infected patients in Japan sharing the same HLA genotypes. The number of immune-associated Nef polymorphisms was inversely correlated with the plasma viral load. By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load. A series of biochemical experiments showed that the double mutations Y120F/Q125H, but not either single mutation, impaired Nef’s ability to antagonize SERINC5 and was associated with decreasing virion infectivity and viral replication in primary lymphocytes. In contrast, other Nef functions such as CD4, CCR5, CXCR4 and HLA class I downregulation and CD74 upregulation remained unchanged. Taken together, our results suggest that the differential ability of Nef to counteract SERINC5 by naturally occurring immune-associated mutations was associated with the plasma viral load in vivo.
Collapse
|
4
|
Yang Y, Liu W, Hu D, Su R, Ji M, Huang Y, Shereen MA, Xu X, Luo Z, Zhang Q, Liu F, Wu K, Liu Y, Wu J. HIV-1 Nef Interacts with LMP7 To Attenuate Immunoproteasome Formation and Major Histocompatibility Complex Class I Antigen Presentation. mBio 2020; 11:e02221-19. [PMID: 33109760 PMCID: PMC7593969 DOI: 10.1128/mbio.02221-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits β1, β2, and β5 are replaced by β1i/LMP2, β2i/MECL-1, and β5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaodi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Kwon Y, Kaake RM, Echeverria I, Suarez M, Karimian Shamsabadi M, Stoneham C, Ramirez PW, Kress J, Singh R, Sali A, Krogan N, Guatelli J, Jia X. Structural basis of CD4 downregulation by HIV-1 Nef. Nat Struct Mol Biol 2020; 27:822-828. [PMID: 32719457 PMCID: PMC7483821 DOI: 10.1038/s41594-020-0463-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
The HIV-1 Nef protein suppresses multiple immune surveillance mechanisms to promote viral pathogenesis and is an attractive target for the development of novel therapeutics. A key function of Nef is to remove the CD4 receptor from the cell surface by hijacking clathrin- and adaptor protein complex 2 (AP2)-dependent endocytosis. However, exactly how Nef does this has been elusive. Here, we describe the underlying mechanism as revealed by a 3.0-Å crystal structure of a fusion protein comprising Nef and the cytoplasmic domain of CD4 bound to the tetrameric AP2 complex. An intricate combination of conformational changes occurs in both Nef and AP2 to enable CD4 binding and downregulation. A pocket on Nef previously identified as crucial for recruiting class I MHC is also responsible for recruiting CD4, revealing a potential approach to inhibit two of Nef's activities and sensitize the virus to immune clearance.
Collapse
Affiliation(s)
- Yonghwa Kwon
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Charlotte Stoneham
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Peter W Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jacob Kress
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Rajendra Singh
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - John Guatelli
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaofei Jia
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| |
Collapse
|
6
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
7
|
Palmeira JDF, Argañaraz GA, de Oliveira GXLM, Argañaraz ER. Physiological relevance of ACOT8-Nef interaction in HIV infection. Rev Med Virol 2019; 29:e2057. [PMID: 31179598 DOI: 10.1002/rmv.2057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/06/2022]
Abstract
During human immunodeficiency virus (HIV) infection, Nef viral protein plays a crucial role in viral pathogenesis and progression of acquired immunodeficiency syndrome. Nef is expressed in the early stages of infection and alters the cellular environment increasing infectivity, viral replication, and the evasion of host immune response through several mechanisms. Nef has numerous functional domains that allow it to interact with a number of proteins, interfering with intracellular traffic. Among these proteins, human peroxisomal thioesterase 8, ACOT8, has been shown to be an important cellular partner of Nef. It has been suggested that this interaction may be involved in Nef-dependent endocytosis and also in the modulation of lipid composition in membrane rafts. However, the actual role of this interaction, as well as the mechanisms involved, has not yet been fully elucidated. In this review, we focused on the interplay between Nef and ACOT8 proteins, highlighting the possible physiological relevance in HIV infection.
Collapse
Affiliation(s)
| | - Gustavo A Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brazil
| | | | - Enrique R Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brazil
| |
Collapse
|
8
|
Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling. J Virol 2018; 92:JVI.01677-17. [PMID: 29187542 DOI: 10.1128/jvi.01677-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.
Collapse
|
9
|
Tello-Lafoz M, Martínez-Martínez G, Rodríguez-Rodríguez C, Albar JP, Huse M, Gharbi S, Merida I. Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse. Traffic 2017; 18:491-504. [PMID: 28477369 DOI: 10.1111/tra.12492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022]
Abstract
T Lymphocyte recognition of antigens leads to the formation of a highly organized structure termed immune synapse (IS) by analogy with the neuronals synapse. Sorting nexin 27 (SNX27) controls the endosomal traffic of PSD95, Dlg1, ZO-1 (PDZ) domain-interacting proteins, and its alteration is associated with impaired synaptic function and neurological diseases. In T-lymphocytes, SNX27-positive vesicles polarize to the IS, the identity of SNX27 interactors in these conditions nonetheless remains unknown. Here we used proteomics to analyze the SNX27 interactome purified from IS-forming T cells, and confirmed the conserved nature of the SNX27/WASH/retromer association in hematopoietic cells. Furthermore, our comparative interactome analysis of SNX27 wild-type and a mutant-deficient for PDZ cargo recognition identified the epithelial cell-cell junction protein zona occludens-2 (ZO-2) as an IS component. Biochemistry and microscopy approaches in T cells confirmed SNX27/ZO-2 PDZ-dependent interaction, and demonstrated its role controlling the dynamic localization of ZO-2 at the IS. This study broadens our knowledge of SNX27 function in T lymphocytes, and suggests that pathways that delimit polarized structures in nervous and epithelial systems also participate in IS regulation.
Collapse
Affiliation(s)
- María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Martínez-Martínez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Juan Pablo Albar
- Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Severine Gharbi
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Sharma U, Gupta P, Singhal M, Singh S, Gupta S, Venkatesh S, Rai A, Husain M. Comparative genetic variability in HIV-1 subtype C nef gene in early age groups of infants. J Med Virol 2017; 89:1606-1619. [PMID: 28370302 DOI: 10.1002/jmv.24820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022]
Abstract
Targeting properties of vertically transmitted viruses in early infancy is important to understand disease progression. To investigate genotypic characteristics of transmitted viruses, blood samples were obtained from infants aged 6 weeks-18 months, categorized in two age groups, acute (<6 months) and early (>6-18 months). Nef having an important role in pathogenesis was selected to explore the viral characteristics. A total of 57 PCR positive samples, amplified by nef gene were sequenced. Analysis showed that 50 sequences belonged to subtype C. In one sequence of acute age group, a long insertion of 10 residues (AAERMRRAEP) in variable region and a 13 residues deletion (ATNNADCAWLEAQ) around proteolytic cleavage region of gene in another sequence was observed. Insertions were also observed in sequences of early age group, however, they ranged from two to eight residues only. In one sequence of early age group, 3/4 arginines at positions 19, 21, 22 of arginine cluster were mutated to glutamine, alanine, and glutamine, respectively. Entropy analysis of two age groups revealed presence of several residues with statistically significant differences in their variability. Among these, 15 (R18,R23,R24; A66,L68,Q71; E74,E77,E78; V87,M92; R119, P144, E167, and C176) belonged to functional motifs, out of which, 12 were in acute age group, suggesting that variability was greater in this group. Prediction of HLA binding peptide motif revealed that epitope LTFGWCFKL was present in >80% study sequences. This epitope was also present in maximum number of HLA types circulating in India and vaccine candidate sequences, suggesting that it may be helpful in designing an epitope-based vaccine.
Collapse
Affiliation(s)
- Uma Sharma
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.,National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Poonam Gupta
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Megha Singhal
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Supriya Singh
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Sunil Gupta
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Srinivas Venkatesh
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Arvind Rai
- National Centre for Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India, Delhi, India
| | - Mohammad Husain
- Molecular Virology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Pushkarsky T, Shilov E, Kruglova N, Naumann R, Brichacek B, Jennelle L, Sviridov D, Kruglov A, Nedospasov SA, Bukrinsky M. Short Communication: Accumulation of Neutral Lipids in Liver and Aorta of Nef-Transgenic Mice. AIDS Res Hum Retroviruses 2017; 33:57-60. [PMID: 27649790 DOI: 10.1089/aid.2016.0128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV-infected individuals are at high risk of developing atherosclerosis and cardiovascular disease, in part, due to HIV-induced impairment of cholesterol metabolism. In vitro studies demonstrated that HIV-1 protein Nef inhibits activity of ABCA1, the main cellular cholesterol transporter, leading to cholesterol accumulation in macrophages and conversion of these cells into foam cells, characteristic for atherosclerosis. However, the mechanisms of Nef-mediated effects on cholesterol metabolism in vivo are not well characterized. In this study, we generated Nef-transgenic mice and evaluated the accumulation of neutral lipids in liver and aorta of these animals. Nef expression was low in all transgenic mice, with some mice carrying the Nef transgene, but not expressing the Nef RNA. Using Oil Red O staining, we demonstrated increased levels of neutral lipids in liver and aorta of mice expressing Nef relative to transgenic animals, with no detectable Nef expression or control wild-type mice. These results provide direct evidence that Nef promotes cholesterol deposition in tissues.
Collapse
Affiliation(s)
- Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | | | | | - Ronald Naumann
- Max-Planck Institute for Molecular Genetics, Dresden, Germany
| | - Beda Brichacek
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Lucas Jennelle
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrei Kruglov
- Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- German Rheumatism Research Center, Berlin, Germany
| | - Sergei A. Nedospasov
- Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- German Rheumatism Research Center, Berlin, Germany
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
12
|
Pereira EA, daSilva LLP. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic 2016; 17:976-96. [PMID: 27161574 DOI: 10.1111/tra.12412] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022]
Abstract
The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.
Collapse
Affiliation(s)
- Estela A Pereira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses 2016; 8:67. [PMID: 26950141 PMCID: PMC4810257 DOI: 10.3390/v8030067] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Collapse
|
14
|
Serena M, Giorgetti A, Busato M, Gasparini F, Diani E, Romanelli MG, Zipeto D. Molecular characterization of HIV-1 Nef and ACOT8 interaction: insights from in silico structural predictions and in vitro functional assays. Sci Rep 2016; 6:22319. [PMID: 26927806 PMCID: PMC4772117 DOI: 10.1038/srep22319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/11/2016] [Indexed: 11/29/2022] Open
Abstract
HIV-1 Nef interacts with several cellular proteins, among which the human peroxisomal thioesterase 8 (ACOT8). This interaction may be involved in the endocytosis regulation of membrane proteins and might modulate lipid composition in membrane rafts. Nef regions involved in the interaction have been experimentally characterized, whereas structural details of the ACOT8 protein are unknown. The lack of structural information hampers the comprehension of the functional consequences of the complex formation during HIV-1 infection. We modelled, through in silico predictions, the ACOT8 structure and we observed a high charge complementarity between Nef and ACOT8 surfaces, which allowed the identification of the ACOT8 putative contact points involved in the interaction. The predictions were validated by in vitro assays through the development of ACOT8 deletion mutants. Coimmunoprecipitation and immunofluorescence analyses showed that ACOT8 Arg45-Phe55 and Arg86-Pro93 regions are involved in Nef association. In addition, K91S mutation abrogated the interaction with Nef, indicating that Lys91 plays a key role in the interaction. Finally, when associated with ACOT8, Nef may be preserved from degradation. These findings improve the comprehension of the association between HIV-1 Nef and ACOT8, helping elucidating the biological effect of their interaction.
Collapse
Affiliation(s)
- Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Mirko Busato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesca Gasparini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.,Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Erica Diani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
15
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
16
|
Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling. J Virol 2015; 89:12349-61. [PMID: 26423946 DOI: 10.1128/jvi.01365-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Flaviviruses are significant human pathogens that have an enormous impact on the global health burden. Currently, there are very few vaccines against or therapeutic treatments for flaviviruses, and our understanding of how these viruses cause disease is limited. Evidence suggests that the capsid proteins of flaviviruses play critical nonstructural roles during infection, and therefore, elucidating how these viral proteins affect cellular signaling pathways could lead to novel targets for antiviral therapy. We used affinity purification to identify host cell proteins that interact with the capsid proteins of West Nile and dengue viruses. One of the cellular proteins that formed a stable complex with flavivirus capsid proteins is the peroxisome biogenesis factor Pex19. Intriguingly, flavivirus infection resulted in a significant loss of peroxisomes, an effect that may be due in part to capsid expression. We posited that capsid protein-mediated sequestration and/or degradation of Pex19 results in loss of peroxisomes, a situation that could result in reduced early antiviral signaling. In support of this hypothesis, we observed that induction of the lambda interferon mRNA in response to a viral RNA mimic was reduced by more than 80%. Together, our findings indicate that inhibition of peroxisome biogenesis may be a novel mechanism by which flaviviruses evade the innate immune system during early stages of infection. IMPORTANCE RNA viruses infect hundreds of millions of people each year, causing significant morbidity and mortality. Chief among these pathogens are the flaviviruses, which include dengue virus and West Nile virus. Despite their medical importance, there are very few prophylactic or therapeutic treatments for these viruses. Moreover, the manner in which they subvert the innate immune response in order to establish infection in mammalian cells is not well understood. Recently, peroxisomes were reported to function in early antiviral signaling, but very little is known regarding if or how pathogenic viruses affect these organelles. We report for the first time that flavivirus infection results in significant loss of peroxisomes in mammalian cells, which may indicate that targeting of peroxisomes is a key strategy used by viruses to subvert early antiviral defenses.
Collapse
|
17
|
Pawlak EN, Dikeakos JD. HIV-1 Nef: a master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim Biophys Acta Gen Subj 2015; 1850:733-41. [PMID: 25585010 DOI: 10.1016/j.bbagen.2015.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many viral genomes encode a limited number of proteins, illustrating their innate efficiency in bypassing host immune surveillance. This concept of genomic efficiency is exemplified by the 9 kb RNA genome of human immunodeficiency virus 1 (HIV-1), encoding 15 proteins sub-divided according to function. The enzymatic group includes proteins such as the drug targets reverse transcriptase and protease. In contrast, the accessory proteins lack any known enzymatic or structural function, yet are essential for viral fitness and HIV-1 pathogenesis. Of these, the HIV-1 accessory protein Nef is a master manipulator of host cellular processes, ensuring efficient counterattack against the host immune response, as well as long-term evasion of immune surveillance. In particular, the ability of Nef to downmodulate major histocompatibility complex class I (MHC-I) is a key cellular event that enables HIV-1 to bypass the host's defenses by evading the adaptive immune response. SCOPE OF REVIEW In this article, we briefly review how various pathogenic viruses control cell-surface MHC-I, and then focus on the mechanisms and implications of HIV-1 Nef-mediated MHC-I downregulation via modulation of the host membrane trafficking machinery. CONCLUSION The extensive interaction network formed between Nef and numerous membrane trafficking regulators suggests that Nef's role in evading the immune surveillance system intersects multiple host membrane trafficking pathways. SIGNIFICANCE Nef's ability to evade the immune surveillance system is linked to AIDS pathogenesis. Thus, a complete understanding of the molecular pathways that are subverted by Nef in order to downregulate MHC-I will enhance our understanding of HIV-1's progression to AIDS.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.
| |
Collapse
|
18
|
Smithgall TE, Thomas G. Small molecule inhibitors of the HIV-1 virulence factor, Nef. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e523-9. [PMID: 24451644 DOI: 10.1016/j.ddtec.2013.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although antiretroviral therapy has revolutionized the clinical management of AIDS, life-long treatment is required because these drugs do not eradicate HIV- infected cells. Chronic antiretroviral therapy may not protect AIDS patients from cognitive impairment, raising important quality of life issues. Because of the rise of HIV strains resistant to current drugs and uncertain vaccine prospects, an urgent need exists for the discovery and development of new therapeutic approaches. This review is focused on one such approach, which involves targeting HIV-1 Nef, a viral accessory protein essential for AIDS pathogenesis.
Collapse
|
19
|
Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J Biol Chem 2014; 289:28539-53. [PMID: 25122770 DOI: 10.1074/jbc.m114.600031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.
Collapse
Affiliation(s)
- John Jeff Alvarado
- From the Departments of Microbiology and Molecular Genetics and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Sreya Tarafdar
- From the Departments of Microbiology and Molecular Genetics and Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Joanne I Yeh
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | | |
Collapse
|
20
|
Ineffectual targeting of HIV-1 Nef by cytotoxic T lymphocytes in acute infection results in no functional impairment or viremia reduction. J Virol 2014; 88:7881-92. [PMID: 24789790 DOI: 10.1128/jvi.00482-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef is heavily targeted by CD8(+) T lymphocytes (CTLs) during acute infection and therefore is included in many candidate vaccines. We investigated whether CTL targeting of Nef during acute infection contributes to immune control by disrupting the function of Nef. The sequence and function of Nef in parallel with CTL responses were assessed longitudinally from peak viremia until the viremia set point in a cohort of six subjects with acute infection. All but one individual had a single founder strain. Nef-specific CTL responses were detected in all subjects and declined in magnitude over time. These responses were associated with mutations, but none of the mutations were detected in important functional motifs. Nef-mediated downregulation of CD4 and major histocompatibility complex (MHC) class I molecules was better preserved in acute infection than in chronic infection. Finally, Nef-specific CTL responses were not associated with a reduction in viremia from its acute-phase peak. Our results indicate that CTLs targeting Nef epitopes outside critical functional domains have little effect on the pathogenic functions of Nef, rendering these responses ineffective in acute infection. Importance: These data indicate that using the whole Nef protein as a vaccine immunogen likely allows immunodominance that leads to targeting of CTL responses that are rapidly escaped with little effect on Nef-mediated pathogenic functions. Pursuing vaccination approaches that can more precisely direct responses to vulnerable areas would maximize efficacy. Until vaccine-induced targeting can be optimized, other approaches, such as the use of Nef function inhibitors or the pursuit of immunotherapies such as T cell receptor gene therapy or adoptive transfer, may be more likely to result in successful control of viremia.
Collapse
|
21
|
Tarafdar S, Poe JA, Smithgall TE. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. J Biol Chem 2014; 289:15718-28. [PMID: 24722985 DOI: 10.1074/jbc.m114.572099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Nef virulence factor interacts with multiple host cell-signaling proteins. Nef binds to the Src homology 3 domains of Src family kinases, resulting in kinase activation important for viral infectivity, replication, and MHC-I down-regulation. Itk and other Tec family kinases are also present in HIV target cells, and Itk has been linked to HIV-1 infectivity and replication. However, the molecular mechanism linking Itk to HIV-1 is unknown. In this study, we explored the interaction of Nef with Tec family kinases using a cell-based bimolecular fluorescence complementation assay. In this approach, interaction of Nef with a partner kinase juxtaposes nonfluorescent YFP fragments fused to the C terminus of each protein, resulting in YFP complementation and a bright fluorescent signal. Using bimolecular fluorescence complementation, we observed that Nef interacts with the Tec family members Bmx, Btk, and Itk but not Tec or Txk. Interaction with Nef occurs through the kinase Src homology 3 domains and localizes to the plasma membrane. Allelic variants of Nef from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication, but not that of a Nef-defective mutant. Nef induced constitutive Itk activation in transfected cells that was sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family and suggest that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle.
Collapse
Affiliation(s)
- Sreya Tarafdar
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and the Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261
| | - Jerrod A Poe
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Thomas E Smithgall
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| |
Collapse
|
22
|
Iyer PC, Zhao J, Emert-Sedlak LA, Moore KK, Smithgall TE, Day BW. Synthesis and structure-activity analysis of diphenylpyrazolodiazene inhibitors of the HIV-1 Nef virulence factor. Bioorg Med Chem Lett 2014; 24:1702-6. [PMID: 24650642 DOI: 10.1016/j.bmcl.2014.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
HIV-1 Nef is a critical AIDS progression factor yet underexplored target for antiretroviral drug discovery. A recent high-throughput screen for pharmacological inhibitors of Nef-dependent Src-family kinase activation identified a diphenylpyrazolodiazene hit compound with submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound, known as 'B9', binds directly to Nef and inhibits its dimerization in cells as a possible mechanism of action. Here were synthesized a diverse set of B9 analogs and identified structural features essential to antiretroviral activity. Chemical modifications to each of the three rings present in the parent compound were identified that did not compromise antiviral action. These analogs will guide the development of next-generation compounds with appropriate pharmacological profiles for assessment of antiretroviral activity in vivo.
Collapse
Affiliation(s)
- Prema C Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA; University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15261, USA
| | - Jielu Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA; University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15261, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Kerry K Moore
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas E Smithgall
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15261, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Billy W Day
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA; University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15261, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
23
|
Poe JA, Vollmer L, Vogt A, Smithgall TE. Development and validation of a high-content bimolecular fluorescence complementation assay for small-molecule inhibitors of HIV-1 Nef dimerization. ACTA ACUST UNITED AC 2013; 19:556-65. [PMID: 24282155 DOI: 10.1177/1087057113513640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus "2A" linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.
Collapse
Affiliation(s)
- Jerrod A Poe
- 1Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
24
|
Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Retrovirology 2013; 10:135. [PMID: 24229420 PMCID: PMC3874621 DOI: 10.1186/1742-4690-10-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. RESULTS Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. CONCLUSIONS Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
Collapse
Affiliation(s)
- Ronald P Trible
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Purushottam Narute
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - John Jeff Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Katelyn Atkins
- School of Medicine, Oregon Health and Science University, 97239, Portland, OR, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Toshiaki Kodama
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA USA
| | - Vasiliy Korotchenko
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Billy W Day
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| |
Collapse
|
25
|
Effector kinase coupling enables high-throughput screens for direct HIV-1 Nef antagonists with antiretroviral activity. ACTA ACUST UNITED AC 2013; 20:82-91. [PMID: 23352142 DOI: 10.1016/j.chembiol.2012.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
HIV-1 Nef, a critical AIDS progression factor, represents an important target protein for antiretroviral drug discovery. Because Nef lacks intrinsic enzymatic activity, we developed an assay that couples Nef to the activation of Hck, a Src family member and Nef effector protein. Using this assay, we screened a large, diverse chemical library and identified small molecules that block Nef-dependent Hck activity with low micromolar potency. Of these, a diphenylpyrazolo compound demonstrated submicromolar potency in HIV-1 replication assays against a broad range of primary Nef variants. This compound binds directly to Nef via a pocket formed by the Nef dimerization interface and disrupts Nef dimerization in cells. Coupling of nonenzymatic viral accessory factors to host cell effector proteins amenable to high-throughput screening may represent a general strategy for the discovery of new antimicrobial agents.
Collapse
|
26
|
Zych C, Domling A, Ayyavoo V. Development of a robust cell-based high-throughput screening assay to identify targets of HIV-1 viral protein R dimerization. Drug Des Devel Ther 2013; 7:403-12. [PMID: 23737660 PMCID: PMC3668091 DOI: 10.2147/dddt.s44139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Targeting protein-protein interactions (PPI) is an emerging field in drug discovery. Dimerization and PPI are essential properties of human immunodeficiency virus (HIV)-1 proteins, their mediated functions, and virus biology. Additionally, dimerization is required for the functional interaction of HIV-1 proteins with many host cellular components. In this study, a bimolecular fluorescence complementation (BiFC)-based screening assay was developed that can quantify changes in dimerization, using HIV-1 viral protein R (Vpr) dimerization as a "proof of concept." Results demonstrated that Venus Vpr (generated by BiFC Vpr constructs) could be competed off in a dose-dependent manner using untagged, full-length Vpr as a competitor molecule. The change in signal intensity was measured quantitatively through flow cytometry and fluorescence microscopy in a high content screening assay. High content imaging was used to screen a library of small molecules for an effect on Vpr dimerization. Among the tested molecules, a few of the small molecules demonstrate an effect on Vpr dimerization in a dose-dependent manner.
Collapse
Affiliation(s)
- Courtney Zych
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
27
|
El-Far M, Isabelle C, Chomont N, Bourbonnière M, Fonseca S, Ancuta P, Peretz Y, Chouikh Y, Halwani R, Schwartz O, Madrenas J, Freeman GJ, Routy JP, Haddad EK, Sékaly RP. Down-regulation of CTLA-4 by HIV-1 Nef protein. PLoS One 2013; 8:e54295. [PMID: 23372701 PMCID: PMC3553160 DOI: 10.1371/journal.pone.0054295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Nef protein down-regulates several cell surface receptors through its interference with the cell sorting and trafficking machinery. Here we demonstrate for the first time the ability of Nef to down-regulate cell surface expression of the negative immune modulator CTLA-4. Down-regulation of CTLA-4 required the Nef motifs DD175, EE155 and LL165, all known to be involved in vesicle trafficking. Disruption of the lysosomal functions by pH-neutralizing agents prevented CTLA-4 down-regulation by Nef, demonstrating the implication of the endosomal/lysosomal compartments in this process. Confocal microscopy experiments visualized the co-localization between Nef and CTLA-4 in the early and recycling endosomes but not at the cell surface. Overall, our results provide a novel mechanism by which HIV-1 Nef interferes with the surface expression of the negative regulator of T cell activation CTLA-4. Down-regulation of CTLA-4 may contribute to the mechanisms by which HIV-1 sustains T cell activation, a critical step in viral replication and dissemination.
Collapse
Affiliation(s)
- Mohamed El-Far
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Catherine Isabelle
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Martin Bourbonnière
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Simone Fonseca
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Yoav Peretz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Younes Chouikh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Rabih Halwani
- Prince Naif Center for Immunology Research and Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Olivier Schwartz
- Virus and Immunity Group, Department of Virology, Institut Pasteur, Paris, France
| | - Joaquín Madrenas
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Gordon J. Freeman
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montréal, Canada
| | - Elias K. Haddad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec, Canada
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mwimanzi P, Markle TJ, Ueno T, Brockman MA. Human leukocyte antigen (HLA) class I down-regulation by human immunodeficiency virus type 1 negative factor (HIV-1 Nef): what might we learn from natural sequence variants? Viruses 2012; 4:1711-30. [PMID: 23170180 PMCID: PMC3499827 DOI: 10.3390/v4091711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022] Open
Abstract
HIV-1 causes a chronic infection in humans that is characterized by high plasma viremia, progressive loss of CD4+ T lymphocytes, and severe immunodeficiency resulting in opportunistic disease and AIDS. Viral persistence is mediated in part by the ability of the Nef protein to down-regulate HLA molecules on the infected cell surface, thereby allowing HIV-1 to evade recognition by antiviral CD8+ T lymphocytes. Extensive research has been conducted on Nef to determine protein domains that are required for its immune evasion activities and to identify critical cellular co-factors, and our mechanistic understanding of this process is becoming more complete. This review highlights our current knowledge of Nef-mediated HLA class I down-regulation and places this work in the context of naturally occurring sequence variation in this protein. We argue that efforts to fully understand the critical role of Nef for HIV-1 pathogenesis will require greater analysis of patient-derived sequences to elucidate subtle differences in immune evasion activity that may alter clinical outcome.
Collapse
Affiliation(s)
- Philip Mwimanzi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
| | - Tristan J. Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan;
| | - Mark A. Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; (P.M.); (T.J.M.)
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
- Author to whom correspondence should be addressed; ; Tel.: +1-778-782-3341; Fax: +1-778-782-5583
| |
Collapse
|
29
|
Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat Struct Mol Biol 2012; 19:701-6. [PMID: 22705789 PMCID: PMC3407041 DOI: 10.1038/nsmb.2328] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/17/2012] [Indexed: 11/16/2022]
Abstract
The HIV-1 Nef protein associates with the cytoplasmic domain of class I MHC and with the μ1 subunit of clathin adaptor protein complex I, rerouting MHC I to the endolysosomal degradation pathway. The molecular mechanism for this effect is now revealed by the crystal structure of Nef together with MHC I and a domain from μ1. The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface, which encompasses the cargo-recognition site of μ1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in μ1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.
Collapse
|
30
|
Kuo LS, Baugh LL, Denial SJ, Watkins RL, Liu M, Garcia JV, Foster JL. Overlapping effector interfaces define the multiple functions of the HIV-1 Nef polyproline helix. Retrovirology 2012; 9:47. [PMID: 22651890 PMCID: PMC3464899 DOI: 10.1186/1742-4690-9-47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
Background HIV-1 Nef is a multifunctional protein required for full pathogenicity of the virus. As Nef has no known enzymatic activity, it necessarily functions through protein-protein interaction interfaces. A critical Nef protein interaction interface is centered on its polyproline segment (P69VRPQVPLRP78) which contains the helical SH3 domain binding protein motif, PXXPXR. We hypothesized that any Nef-SH3 domain interactions would be lost upon mutation of the prolines or arginine of PXXPXR. Further, mutation of the non-motif “X” residues, (Q73, V74, and L75) would give altered patterns of inhibition for different Nef/SH3 domain protein interactions. Results We found that mutations of either of the prolines or the arginine of PXXPXR are defective for Nef-Hck binding, Nef/activated PAK2 complex formation and enhancement of virion infectivity (EVI). Mutation of the non-motif “X” residues (Q, V and L) gave similar patterns of inhibition for Nef/activated PAK2 complex formation and EVI which were distinct from the pattern for Hck binding. These results implicate an SH3 domain containing protein other than Hck for Nef/activated PAK2 complex formation and EVI. We have also mutated Nef residues at the N-and C-terminal ends of the polyproline segment to explore interactions outside of PXXPXR. We discovered a new locus GFP/F (G67, F68, P69 and F90) that is required for Nef/activated PAK2 complex formation and EVI. MHC Class I (MHCI) downregulation was only partially inhibited by mutating the PXXPXR motif residues, but was fully inhibited by mutating the C-terminal P78. Further, we observed that MHCI downregulation strictly requires G67 and F68. Our mutational analysis confirms the recently reported structure of the complex between Nef, AP-1 μ1 and the cytoplasmic tail of MHCI, but does not support involvement of an SH3 domain protein in MHCI downregulation. Conclusion Nef has evolved to be dependent on interactions with multiple SH3 domain proteins. To the N- and C- terminal sides of the polyproline helix are multifunctional protein interaction sites. The polyproline segment is also adapted to downregulate MHCI with a non-canonical binding surface. Our results demonstrate that Nef polyproline helix is highly adapted to directly interact with multiple host cell proteins.
Collapse
Affiliation(s)
- Lillian S Kuo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Y9.206, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. J Virol 2012; 86:7126-35. [PMID: 22553319 DOI: 10.1128/jvi.00878-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8(+) cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo.
Collapse
|
32
|
Narute PS, Smithgall TE. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner. PLoS One 2012; 7:e32561. [PMID: 22393415 PMCID: PMC3290594 DOI: 10.1371/journal.pone.0032561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/01/2012] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.
Collapse
Affiliation(s)
- Purushottam S. Narute
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Vermeire J, Vanbillemont G, Witkowski W, Verhasselt B. The Nef-infectivity enigma: mechanisms of enhanced lentiviral infection. Curr HIV Res 2012; 9:474-89. [PMID: 22103831 PMCID: PMC3355465 DOI: 10.2174/157016211798842099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022]
Abstract
The Nef protein is an essential factor for lentiviral pathogenesis in humans and other simians. Despite a multitude of functions attributed to this protein, the exact role of Nef in disease progression remains unclear. One of its most intriguing functions is the ability of Nef to enhance the infectivity of viral particles. In this review we will discuss current insights in the mechanism of this well-known, yet poorly understood Nef effect. We will elaborate on effects of Nef, on both virion biogenesis and the early stage of the cellular infection, that might be involved in infectivity enhancement. In addition, we provide an overview of different HIV-1 Nef domains important for optimal infectivity and briefly discuss some possible sources of the frequent discrepancies in the field. Hereby we aim to contribute to a better understanding of this highly conserved and therapeutically attractive Nef function.
Collapse
Affiliation(s)
- Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | | | | | | |
Collapse
|
34
|
Lai RP, Yan J, Heeney J, McClure MO, Göttlinger H, Luban J, Pizzato M. Nef decreases HIV-1 sensitivity to neutralizing antibodies that target the membrane-proximal external region of TMgp41. PLoS Pathog 2011; 7:e1002442. [PMID: 22194689 PMCID: PMC3240605 DOI: 10.1371/journal.ppat.1002442] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2023] Open
Abstract
Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis. Nef is a pathogenic factor expressed by primate lentiviruses. HIV-1 virions produced by cells that express Nef acquire unknown modifications that allow them to infect new target cells with higher efficiency. We hypothesized that Nef might alter the structure or function of the HIV-1 Env glycoproteins. In this study we tested whether Nef alters the sensitivity of HIV-1 to several agents that inhibit HIV-1 by binding to different parts of Env. We found that Nef confers 10 to 50-fold resistance to neutralization by two antibodies (2F5 and 4E10) that belong to one of the most powerful classes of neutralizing agents, which are active against a wide range of HIV-1 isolates. We established that Nef decreases the recognition of the virus particles by these antibodies, which bind to a domain of the Env adjacent to the retroviral membrane (MPER). Env from diverse HIV-1 isolates are equally sensitive to this activity, and Nef proteins derived from both HIV-1 and SIV retain the activity. By protecting lentiviruses from one of the most broadly-acting classes of neutralizing antibodies, this new activity of Nef might make a significant contribution to AIDS pathogenesis.
Collapse
Affiliation(s)
- Rachel P.J. Lai
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jin Yan
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Jonathan Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Myra O. McClure
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Department of Microbiology & Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Massimo Pizzato
- Section of Infectious Diseases, Imperial College London, London, United Kingdom
- Department of Microbiology & Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Singh P, Yadav GP, Gupta S, Tripathi AK, Ramachandran R, Tripathi RK. A novel dimer-tetramer transition captured by the crystal structure of the HIV-1 Nef. PLoS One 2011; 6:e26629. [PMID: 22073177 PMCID: PMC3206816 DOI: 10.1371/journal.pone.0026629] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/29/2011] [Indexed: 11/19/2022] Open
Abstract
HIV-1 Nef modulates disease progression through interactions with over 30 host proteins. Individual chains fold into membrane-interacting N-terminal and C-terminal core (Nef(core)) domains respectively. Nef exists as small oligomers near membranes and associates into higher oligomers such as tetramers or hexadecamers in the cytoplasm. Earlier structures of the Nef(core) in apo and complexed forms with the Fyn-kinase SH3 domain revealed dimeric association details and the role of the conserved PXXP recognition motif (residues 72-78) of Nef in SH3-domain interactions. The crystal structure of the tetrameric Nef reported here corresponds to the elusive cytoplasmic stage. Comparative analyses show that subunits of Nef(core) dimers (open conformation) swing out with a relative displacement of ~22 Å and rotation of ~174° to form the 'closed' tetrameric structure. The changes to the association are around Asp125, a conserved residue important for viral replication and the important XR motif (residues 107-108). The tetramer associates through C4 symmetry instead of the 222 symmetry expected when two dimers associate together. This novel dimer-tetramer transition agrees with earlier solution studies including small angle X-ray scattering, analytical ultracentrifugation, dynamic laser light scattering and our glutaraldehyde cross-linking experiments. Comparisons with the Nef(core)--Fyn-SH3 domain complexes reveal that the PXXP motif that interacts with the SH3-domain in the dimeric form is sterically occluded in the tetramer. However the 151-180 loop that is distal to the PXXP motif and contains several protein interaction motifs remains accessible. The results suggest how changes to the oligomeric state of Nef can help it distinguish between protein partners.
Collapse
Affiliation(s)
- Pankaj Singh
- Toxicology Division, Central Drug Research Institute (Council of Scientific & Industrial Research), Chattar Manzil, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Gaya Prasad Yadav
- Molecular and Structural Biology Division, Central Drug Research Institute (Council of Scientific & Industrial Research), Chattar Manzil, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Sudeepti Gupta
- Toxicology Division, Central Drug Research Institute (Council of Scientific & Industrial Research), Chattar Manzil, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- Chatrapati Shahuji Maharaj Medical University, Chowk, Lucknow, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, Central Drug Research Institute (Council of Scientific & Industrial Research), Chattar Manzil, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Raj Kamal Tripathi
- Toxicology Division, Central Drug Research Institute (Council of Scientific & Industrial Research), Chattar Manzil, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| |
Collapse
|
36
|
Lazarow PB. Viruses exploiting peroxisomes. Curr Opin Microbiol 2011; 14:458-69. [PMID: 21824805 DOI: 10.1016/j.mib.2011.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/05/2011] [Indexed: 11/29/2022]
Abstract
Viruses that are of great importance for global public health, including HIV, influenza and rotavirus, appear to exploit a remarkable organelle, the peroxisome, during intracellular replication in human cells. Peroxisomes are sites of lipid biosynthesis and catabolism, reactive oxygen metabolism, and other metabolic pathways. Viral proteins are targeted to peroxisomes (the spike protein of rotavirus) or interact with peroxisomal proteins (HIV's Nef and influenza's NS1) or use the peroxisomal membrane for RNA replication. The Nef interaction correlates strongly with the crucial Nef function of CD4 downregulation. Viral exploitation of peroxisomal lipid metabolism appears likely. Mostly, functional significance and mechanisms remain to be elucidated. Recently, peroxisomes were discovered to play a crucial role in the innate immune response by signaling the presence of intracellular virus, leading to the first rapid antiviral response. This review unearths, interprets and connects old data, in the hopes of stimulating new and promising research.
Collapse
Affiliation(s)
- Paul B Lazarow
- Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
37
|
Zhang F, Landford WN, Ng M, McNatt MW, Bieniasz PD, Hatziioannou T. SIV Nef proteins recruit the AP-2 complex to antagonize Tetherin and facilitate virion release. PLoS Pathog 2011; 7:e1002039. [PMID: 21625568 PMCID: PMC3098198 DOI: 10.1371/journal.ppat.1002039] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/08/2011] [Indexed: 12/01/2022] Open
Abstract
Lentiviral Nef proteins have multiple functions and are important for viral pathogenesis. Recently, Nef proteins from many simian immunodefiency viruses were shown to antagonize a cellular antiviral protein, named Tetherin, that blocks release of viral particles from the cell surface. However, the mechanism by which Nef antagonizes Tetherin is unknown. Here, using related Nef proteins that differ in their ability to antagonize Tetherin, we identify three amino-acids in the C-terminal domain of Nef that are critical specifically for its ability to antagonize Tetherin. Additionally, divergent Nef proteins bind to the AP-2 clathrin adaptor complex, and we show that residues important for this interaction are required for Tetherin antagonism, downregulation of Tetherin from the cell surface and removal of Tetherin from sites of particle assembly. Accordingly, depletion of AP-2 using RNA interference impairs the ability of Nef to antagonize Tetherin, demonstrating that AP-2 recruitment is required for Nef proteins to counteract this antiviral protein. Primate lentiviruses express several small proteins which antagonize cellular proteins that inhibit virus replication. One such viral protein, Nef, has recently been shown to antagonize the cellular protein Tetherin that prevents newly formed viral particles from leaving the surface of infected cells. In this study we reveal the mechanism by which Nef overcomes inhibition by Tetherin. We show that three amino acids in the Nef C-terminal flexible loop are important for Tetherin antagonism. We also show that the interaction between Nef and AP-2 adaptor complexes is important for Tetherin downregulation from the cell surface, removal from sites of particle assembly and antagonism. Thus, our study demonstrates that AP-2 is important for the ability of Nef to antagonize Tetherin.
Collapse
Affiliation(s)
- Fengwen Zhang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Wilmina N. Landford
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Melinda Ng
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Matthew W. McNatt
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail: (PDB); (TH)
| | - Theodora Hatziioannou
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- * E-mail: (PDB); (TH)
| |
Collapse
|
38
|
Foster JL, Denial SJ, Temple BRS, Garcia JV. Mechanisms of HIV-1 Nef function and intracellular signaling. J Neuroimmune Pharmacol 2011; 6:230-46. [PMID: 21336563 DOI: 10.1007/s11481-011-9262-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.
Collapse
Affiliation(s)
- John L Foster
- Division of Infectious Diseases, Center for AIDS Research, Chapel Hill, NC 27599-7042, USA.
| | | | | | | |
Collapse
|
39
|
Wonderlich ER, Leonard JA, Collins KL. HIV immune evasion disruption of antigen presentation by the HIV Nef protein. Adv Virus Res 2011; 80:103-27. [PMID: 21762823 PMCID: PMC3782996 DOI: 10.1016/b978-0-12-385987-7.00005-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Human Immunodeficiency Virus (HIV) Nef protein is necessary for high viral loads and for timely progression to AIDS. Nef plays a number of roles, but its effect on antigen presentation and immune evasion are among the best characterized. Cytotoxic T lymphocytes (CTLs) recognize and lyse virally infected cells by detecting viral antigens in complex with host major histocompatibility complex class I (MHC-I) molecules on the infected cell surface. The HIV Nef protein disrupts antigen presentation at the cell surface by interfering with the normal trafficking pathway of MHC-I and thus reduces CTL recognition and lysis of infected cells. The molecular mechanism by which Nef causes MHC-I downmodulation is becoming more clear, but some questions remain. A better understanding of how Nef disrupts antigen presentation may lead to the development of drugs that enhance the ability of the anti-HIV CTLs to control HIV disease.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
40
|
Sigalov AB. The SCHOOL of nature: IV. Learning from viruses. SELF/NONSELF 2010; 1:282-298. [PMID: 21487503 PMCID: PMC3062383 DOI: 10.4161/self.1.4.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that modulate signaling mediated by cell surface receptors. Despite tremendous advancement in recent years, the exact molecular mechanisms underlying these critical points in viral pathogenesis remain unknown. In this work, based on a novel platform of receptor signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, I suggest specific mechanisms used by different viruses such as human immunodeficiency virus (HIV), cytomegalovirus (CMV), severe acute respiratory syndrome coronavirus, human herpesvirus 6 and others, to modulate receptor signaling. I also use the example of HIV and CMV to illustrate how two unrelated enveloped viruses use a similar SCHOOL mechanism to modulate the host immune response mediated by two functionally different receptors: T cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly non-viral pathogens. Learning from viruses how to target cell surface receptors not only helps us understand viral strategies to escape from the host immune surveillance, but also provides novel avenues in rational drug design and the development of new therapies for immune disorders.
Collapse
|
41
|
Kwak YT, Raney A, Kuo LS, Denial SJ, Temple BRS, Garcia JV, Foster JL. Self-association of the Lentivirus protein, Nef. Retrovirology 2010; 7:77. [PMID: 20863404 PMCID: PMC2955668 DOI: 10.1186/1742-4690-7-77] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/23/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The HIV-1 pathogenic factor, Nef, is a multifunctional protein present in the cytosol and on membranes of infected cells. It has been proposed that a spatial and temporal regulation of the conformation of Nef sequentially matches Nef's multiple functions to the process of virion production. Further, it has been suggested that dimerization is required for multiple Nef activities. A dimerization interface has been proposed based on intermolecular contacts between Nefs within hexagonal Nef/FynSH3 crystals. The proposed dimerization interface consists of the hydrophobic B-helix and flanking salt bridges between R105 and D123. Here, we test whether Nef self-association is mediated by this interface and address the overall significance of oligomerization. RESULTS By co-immunoprecipitation assays, we demonstrated that HIV-1Nef exists as monomers and oligomers with about half of the Nef protomers oligomerized. Nef oligomers were found to be present in the cytosol and on membranes. Removal of the myristate did not enhance the oligomerization of soluble Nef. Also, SIVNef oligomerizes despite lacking a dimerization interface functionally homologous to that proposed for HIV-1Nef. Moreover, HIV-1Nef and SIVNef form hetero-oligomers demonstrating the existence of homologous oligomerization interfaces that are distinct from that previously proposed (R105-D123). Intracellular cross-linking by formaldehyde confirmed that SF2Nef dimers are present in intact cells, but surprisingly self-association was dependent on R105, but not D123. SIV(MAC239)Nef can be cross-linked at its only cysteine, C55, and SF2Nef is also cross-linked, but at C206 instead of C55, suggesting that Nefs exhibit multiple dimeric structures. ClusPro dimerization analysis of HIV-1Nef homodimers and HIV-1Nef/SIVNef heterodimers identified a new potential dimerization interface, including a dibasic motif at R105-R106 and a six amino acid hydrophobic surface. CONCLUSIONS We have demonstrated significant levels of intracellular Nef oligomers by immunoprecipitation from cellular extracts. However, our results are contrary to the identification of salt bridges between R105 and D123 as necessary for self-association. Importantly, binding between HIV-1Nef and SIVNef demonstrates evolutionary conservation and therefore significant function(s) for oligomerization. Based on modeling studies of Nef self-association, we propose a new dimerization interface. Finally, our findings support a stochastic model of Nef function with a dispersed intracellular distribution of Nef oligomers.
Collapse
Affiliation(s)
- Youn Tae Kwak
- Baylor Institute for Immunology Research, 3434 Live Oak, Dallas, TX 75204, USA
| | - Alexa Raney
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Y9.206, Dallas, Texas 75390, USA
| | - Lillian S Kuo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Y9.206, Dallas, Texas 75390, USA
| | - Sarah J Denial
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina 27599-7042, USA
| | - Brenda RS Temple
- Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, University of North Carolina, Chapel Hill, North Carolina 27599-7042, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina 27599-7042, USA
| | - John L Foster
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina 27599-7042, USA
| |
Collapse
|
42
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
43
|
A novel motif in HIV-1 Nef that regulates MIP-1beta chemokine release in macrophages. J Virol 2010; 84:8327-31. [PMID: 20504918 DOI: 10.1128/jvi.00741-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All primate lentiviruses encode Nef, an accessory protein that is important for viral pathogenicity in vivo. Lentiviral Nef proteins regulate the release of chemokines (MIP-1 alpha/beta) from infected macrophages, thereby enhancing virus dissemination (S. Swingler, A. Mann, J. Jacque, B. Brichacek, V. G. Sasseville, K. Williams, A. A. Lackner, E. N. Janoff, R. Wang, D. Fisher, and M. Stevenson, Nat. Med. 5:997-1003, 1999). In the current study, we have identified a novel domain within Nef (K(92)EK) that is required for Nef-dependent MIP-1beta production by infected macrophages. Mutations in this domain abrogated MIP-1beta induction but did not affect other Nef-ascribed activities, such as CD4 or major histocompatibility complex (MHC) class Iota downregulation. This further underscores Nef as a modular protein with genetically separable activities that may contribute to its role in viral replication and pathogenicity.
Collapse
|
44
|
Poe JA, Smithgall TE. HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication. J Mol Biol 2009; 394:329-42. [PMID: 19781555 DOI: 10.1016/j.jmb.2009.09.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
Nef, a human immunodeficiency virus type 1 (HIV-1) accessory factor capable of interaction with a diverse array of host cell signaling molecules, is essential for high-titer HIV replication and AIDS progression. Previous biochemical and structural studies have suggested that Nef may form homodimers and higher-order oligomers in HIV-infected cells, which may be required for both immune and viral receptor downregulation as well as viral replication. Using bimolecular fluorescence complementation, we provide the first direct evidence for Nef dimers within HIV host cells and identify the structural requirements for dimerization in vivo. Bimolecular fluorescence complementation analysis shows that the multiple hydrophobic and electrostatic interactions found within the dimerization interface of the Nef X-ray crystal structure are essential for dimerization in cells. Nef dimers localized to the plasma membrane as well as the trans-Golgi network, two subcellular localizations essential for Nef function. Mutations in the Nef dimerization interface dramatically reduced both Nef-induced CD4 downregulation and HIV replication. Viruses expressing dimerization-defective Nef mutants were disabled to the same extent as HIV that fails to express Nef in terms of replication. These results identify the Nef dimerization region as a potential molecular target for antiretroviral drug discovery.
Collapse
Affiliation(s)
- Jerrod A Poe
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
45
|
Role of HIV-1 Nef protein for virus replication in vitro. Microbes Infect 2009; 12:65-70. [PMID: 19770068 DOI: 10.1016/j.micinf.2009.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022]
Abstract
The Nef protein of primate lentiviruses (simian and human immunodeficiency viruses; SIV/HIVs) appears to be multi-functional and plays a pivotal role in viral persistence and pathogenesis in vivo. Of its numerous functions reported to date, the ability to enhance virion infectivity in indicator cell lines and to augment viral replication in peripheral blood mononuclear cells (PBMCs) and lymphocytes (PBLs) is very well conserved among various SIV/HIVs. This review summarizes and organizes current knowledge of HIV-1 Nef with respect to this particularly virological activity for understanding the basis of its in vivo function.
Collapse
|
46
|
A basic patch on alpha-adaptin is required for binding of human immunodeficiency virus type 1 Nef and cooperative assembly of a CD4-Nef-AP-2 complex. J Virol 2009; 83:2518-30. [PMID: 19129443 DOI: 10.1128/jvi.02227-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A critical function of the human immunodeficiency virus type 1 Nef protein is the downregulation of CD4 from the surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to the endocytic machinery, thereby increasing the rate of CD4 internalization. In support of this model, weak binary interactions between CD4, Nef, and the endocytic adaptor complex, AP-2, have been reported. In particular, dileucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding to a combination of the alpha and sigma2 subunits of AP-2. Here, we report the identification of a potential binding site for the Nef diacidic motif on alpha-adaptin. This site comprises two basic residues, lysine-297 and arginine-340, on the alpha-adaptin trunk domain. The mutation of these residues specifically inhibits the ability of Nef to bind AP-2 and downregulate CD4. We also present evidence that the diacidic motif on Nef and the basic patch on alpha-adaptin are both required for the cooperative assembly of a CD4-Nef-AP-2 complex. This cooperativity explains how Nef is able to efficiently downregulate CD4 despite weak binary interactions between components of the tripartite complex.
Collapse
|
47
|
AKAP149 binds to HIV-1 reverse transcriptase and is involved in the reverse transcription. J Mol Biol 2008; 383:783-96. [PMID: 18786546 DOI: 10.1016/j.jmb.2008.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/17/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
Abstract
Like all retroviruses, human immunodeficiency virus type 1 (HIV-1) undergoes reverse transcription during its replication cycle. The cellular cofactors potentially involved in this process still remain to be identified. We show here that A-kinase anchoring protein 149 (AKAP149) interacts with HIV-1 reverse transcriptase (RT) in both the yeast two-hybrid system and human cells. The AKAP149 binding site has been mapped to the RNase H domain of HIV-1 RT. AKAP149 silencing by RNA interference in HIV-1-infected cells inhibited viral replication at the reverse transcription step. We selected single-point mutants of RT defective for AKAP149 binding and demonstrated that mutant G462R, despite retaining significant intrinsic RT activity in vitro, failed to carry out HIV-1 reverse transcription correctly in infected cells. This suggests that the interaction between RT and AKAP149 in infected cells may play an important role in HIV-1 reverse transcription.
Collapse
|
48
|
HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 2008; 4:e1000131. [PMID: 18725938 PMCID: PMC2515349 DOI: 10.1371/journal.ppat.1000131] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/22/2008] [Indexed: 01/28/2023] Open
Abstract
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7(+) vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, beta-COP. Moreover, we demonstrate that Nef contains two separable beta-COP binding sites. One site, an arginine (RXR) motif in the N-terminal alpha helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.
Collapse
|
49
|
Lu TC, He JC, Wang ZH, Feng X, Fukumi-Tominaga T, Chen N, Xu J, Iyengar R, Klotman PE. HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein. J Biol Chem 2008; 283:8173-8182. [PMID: 18234668 PMCID: PMC2276381 DOI: 10.1074/jbc.m708920200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/30/2008] [Indexed: 09/10/2023] Open
Abstract
The ability of the human immunodeficiency virus, type 1 (HIV-1) protein Nef to induce cytoskeleton changes in infected host cells is a key event in viral replication. In renal podocytes, we found that Nef induced loss of stress fibers and increased lamellipodia, pathological changes leading to proteinuria in HIV-associated nephropathy. These morphological changes were mediated by Nef-induced Rac1 activation and RhoA inhibition. We identified a new interaction between Nef and diaphanous interacting protein (DIP), a recently described regulator of Rho and Rac signaling. We found that the Src homology 3 binding domain of DIP and the Nef PXXP motif were required for this interaction. Nef also interacts with Vav2 in podocytes. DIP and Vav2 both interact directly with Nef in a competitive manner. DIP interacts with p190RhoGAP, and intact DIP was required for Nef-induced phosphorylation of p190RhoGAP. DIP also interacts with Vav2, and although DIP enhanced baseline phosphorylation of Vav2, it was not required for Nef-induced Vav2 activation. In Nef-infected podocytes, Src kinase induces phosphorylation of DIP, p190RhoGAP, and Vav2, leading to RhoA inhibition and Rac1 activation. Inhibition of the Nef-induced signaling pathway by using a dominant negative of either Src or DIP or siRNA for DIP or p190RhoAGAP restored RhoA activity and stress fiber formation in Nef-infected podocytes, whereas siRNA for Vav2 reduced Rac1 activity and formation of lamellipodia. We conclude that in HIV-infected podocytes, Nef, through the recruitment of DIP and p190RhoAGAP to Nef-Src complex, activates p190RhoAGAP and down-regulates RhoA activity.
Collapse
Affiliation(s)
- Ting-Chi Lu
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim WM, Sigalov AB. Viral pathogenesis, modulation of immune receptor signaling and treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:325-49. [PMID: 19065800 PMCID: PMC7122915 DOI: 10.1007/978-0-387-09789-3_22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that target immune receptor transmembrane signaling. Uncovering the exact molecular mechanisms underlying these critical points in viral pathogenesis will not only help us understand strategies used by viruses to escape from the host immune surveillance but also reveal new therapeutic targets for antiviral as well as immunomodulatory therapy. In this chapter, based on our current understanding of transmembrane signal transduction mediated by multichain immune recognition receptors (MIRRs) and the results of sequence analysis, we discuss the MIRR-targetingviral strategies of immune evasion and suggest their possible mechanisms that, in turn, reveal new points of antiviral intervention. We also show how two unrelated enveloped viruses, human immunodeficiency virus and human cytomegalovirus, use a similar mechanism to modulate the host immune response mediated by two functionally different MIRRs-T-cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly nonviral pathogens.
Collapse
Affiliation(s)
- Walter M Kim
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|