1
|
Schou MD, Søgaard OS, Rasmussen TA. Clinical trials aimed at HIV cure or remission: new pathways and lessons learned. Expert Rev Anti Infect Ther 2023; 21:1227-1243. [PMID: 37856845 DOI: 10.1080/14787210.2023.2273919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.
Collapse
Affiliation(s)
- Maya Dyveke Schou
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Cummins NW, Baker J, Chakraborty R, Dean PG, Garcia-Rivera E, Krogman A, Kumar S, Kuzmichev YV, Laird GM, Landay A, Lichterfeld M, Mahmood M, Martinson J, Maynes M, Natesampillai S, Rajkumar V, Rassadkina Y, Ritter KD, Rivera CG, Rizza SA, Subramanian K, Tande AJ, Wonderlich ER, Whitaker JA, Zeuli J, Badley AD. Single center, open label dose escalating trial evaluating once weekly oral ixazomib in ART-suppressed, HIV positive adults and effects on HIV reservoir size in vivo. EClinicalMedicine 2021; 42:101225. [PMID: 34901797 PMCID: PMC8639424 DOI: 10.1016/j.eclinm.2021.101225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Achieving a functional or sterilizing cure for HIV will require identification of therapeutic interventions that reduce HIV reservoir size in infected individuals. Proteasome inhibitors, such as ixazomib, impact multiple aspects of HIV biology including latency, transcription initiation, viral replication, and infected cell killing through the HIV protease - Casp8p41 pathway, resulting in latency reversal and reduced measures of HIV reservoir size ex vivo. METHODS We conducted a phase 1b/2a dose escalating, open label trial of weekly oral ixazomib for 24 weeks in antiretroviral (ART)-suppressed, HIV positive adults (NCT02946047). The study was conducted from March 2017 to August 2019 at two tertiary referral centers in the United States. The primary outcomes were safety and tolerability of oral ixazomib. Secondary outcomes included changes in immunologic markers and estimates of HIV reservoir size after ixazomib treatment. FINDINGS Sixteen participants completed the study. Ixazomib up to 4mg weekly was safe and well-tolerated, yielding no treatment-emergent events above grade 1. In exploratory analyses, ixazomib treatment was associated with detectable viremia that was below the lower limit of quantification (LLQ) in 9 participants, and viremia that was above LLQ in 4 of 16 participants. While treatment was associated with reduced CD4 counts [baseline 783 cells/ mm3 vs. week-24 724 cells/ mm3 p=0.003], there were no changes in markers of cellular activation, exhaustion or inflammation. Total HIV DNA and proviral sequencing were not altered by ixazomib treatment. Intact proviral DNA assay (IPDA) identified intact proviruses in 14 patients pre-treatment, and in 10/14 of those subjects post treatment values were reduced (P=0.068), allowing a calculated intact proviral half life of 0.6 years (95% CI 0.3, 2.5), compared to 7.1 years (95% CI 3.9, 18, p=0.004) in historical controls. Differentiation Quantitative Viral Outgrowth Assays (dQVOA) identified measurable proviruses in 15 subjects pre-treatment; post-treatment values were numerically reduced in 9, but overall differences were not significantly different. INTERPRETATION Our study successfully met its primary endpoint of demonstrating the safety of ixazomib for 24 weeks in HIV infected persons. Exploratory analyses suggest that the effects observed ex vivo of latency reversal and reductions in HIV reservoir size, also occur in vivo. Future controlled studies of ixazomib are warranted. FUNDING This study was funded by Millennium Pharmaceuticals Inc..; the Mayo Clinic Foundation; the National Institutes of Health, including the National Institute of Allergy and Infectious Diseases, Division of AIDS, the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Neurological Disorders and Stroke, and the National Institute on Drug Abuse. Mayo Clinic also acknowledges generous funding support from Mr. Joseph T. and Mrs. Michele P. Betten.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason Baker
- Division of Infectious Diseases, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Rana Chakraborty
- Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, MN
| | - Patrick G Dean
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ashton Krogman
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yury V Kuzmichev
- Department of Infectious Disease Research, Southern Research, Frederick, Maryland, USA
| | | | - Alan Landay
- Division of Geriatrics, Rush University Medical Center, Chicago, IL, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard; Brigham and Women's Hospital, Boston, MA, USA
| | - Maryam Mahmood
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey Martinson
- Division of Geriatrics, Rush University Medical Center, Chicago, IL, USA
| | - Mark Maynes
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Yelizaveta Rassadkina
- Ragon Institute of MGH, MIT, and Harvard; Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Stacey A Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Krupa Subramanian
- Department of Infectious Disease Research, Southern Research, Frederick, Maryland, USA
| | - Aaron J Tande
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jennifer A Whitaker
- Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - John Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Corresponding author.
| |
Collapse
|
3
|
The Superimposed Deubiquitination Effect of OTULIN and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nsp11 Promotes Multiplication of PRRSV. J Virol 2018; 92:JVI.00175-18. [PMID: 29444948 DOI: 10.1128/jvi.00175-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV.IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs.
Collapse
|
4
|
Passeri E, Mocchetti I, Moussa C. Is human immunodeficiency virus-mediated dementia an autophagic defect that leads to neurodegeneration? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1571-9. [PMID: 25106633 DOI: 10.2174/1871527313666140806125841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
Abstract
Autophagy is a cellular process that mediates selective degradation of cellular components in lysosomes. Autophagy may protect against neuronal apoptosis, which is induced in a number of neurodegenerative diseases. Thus, compounds that modulate autophagy could be beneficial to treat neurological disorders characterized by apoptosis such as Parkinson's and Alzheimer's diseases, as well as human-immunodeficiency virus-dementia complex. In this paper, we review new and old evidence on the role of autophagy in neuronal cell survival and we present evidence that humanimmunodeficiency virus may have adapted strategies to alter autophagic pathways in neurons. Moreover, we discuss the usefulness of drugs that facilitate autophagic clearance of proteins that are associated with neurodegeneration.
Collapse
Affiliation(s)
| | | | - Charbel Moussa
- Georgetown University Medical Center, Department of Neuroscience, NRB WP13, 3970 Reservoir Rd, NW, Washington, DC 20057, USA.
| |
Collapse
|
5
|
Bohl CR, Abrahamyan LG, Wood C. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner. PLoS One 2013; 8:e69359. [PMID: 23861967 PMCID: PMC3704627 DOI: 10.1371/journal.pone.0069359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023] Open
Abstract
The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.
Collapse
Affiliation(s)
- Christopher R. Bohl
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Levon G. Abrahamyan
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
6
|
Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C, Kappes JC, Zhang HG. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1415-25. [PMID: 19246649 DOI: 10.2353/ajpath.2009.080861] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitinated endosomal proteins that are deposited into the lumens of multivesicular bodies are either sorted for lysosomal-mediated degradation or secreted as exosomes into the extracellular milieu. The mechanisms that underlie the sorting of cellular cargo proteins are currently unknown. In this study, we show that the COP9 signalosome (CSN)-associated protein CSN5 quantitatively regulated proteins that were sorted into exosomes. Western blot analysis of exosomal proteins indicated that small interfering (si)RNA knockdown of CSN5 results in increased levels of both ubiquitinated and non-ubiquitinated exosomal proteins, including heat shock protein 70, in comparison with exosomes isolated from the supernatants of 293 cells transfected with scrambled siRNA. Furthermore, 293 cells transfected with JAB1/MPN/Mov34 metalloenzyme domain-deleted CSN5 produced exosomes with higher levels of ubiquitinated heat shock protein 70, which did not affect non-ubiquitinated heat shock protein 70 levels. The loss of COP9-associated deubiquitin activity of CSN5 also led to the enhancement of HIV Gag that was sorted into exosomes as well as the promotion of HIV-1 release, suggesting that COP9-associated CSN5 regulates the sorting of a number of exosomal proteins in both a CSN5 JAB1/MPN/Mov34 metalloenzyme domain-dependent and -independent manner. We propose that COP9-associated CSN5 regulates exosomal protein sorting in both a deubiquitinating activity-dependent and -independent manner, which is contrary to the current idea of ubiquitin-dependent sorting of proteins to exosomes.
Collapse
Affiliation(s)
- Yuelong Liu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ren Q, Zhang W, Zhao XF, Wang JX. Gene cloning and expression analysis of ubiquitin derived from Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:89-99. [PMID: 18481301 DOI: 10.1002/arch.20251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ubiquitin (Ub) is a highly conserved 8-kDa protein that was first identified as a tag for protein degradation. Recently, its role in nonproteolytic cellular processes such as DNA repair and endocytosis has also been reported. An ubiquitin-fusion gene was cloned from Musca domestica. The complete length of this ubiquitin-fusion gene is 531 bp, of which 471 bp is an open reading frame (ORF) encoding a 156-amino acid peptide, and 60 bp is a 3'-untranslated region with the polyadenylation sequence AATAAA and a poly(A) tail. The ubiquitin-fusion protein includes an ubiquitin monomer of 76 amino acids with a 6-amino acid motif (LRLRGG) and 3 conserved lysine functional sites, which participate in the formation of the ubiquitin-protease complex. The ubiquitin-fusion protein also contains an 80-amino acid carboxyl extension protein, namely, ribosomal protein S27 with a classical zinc finger motif C-X(4)-C-X(14)-C-X(2)-C. Because of its carboxyl extension protein S27, the M. domestica ubiquitin-fusion protein was named Mub(S27). It has a predicted molecular weight of 18 kDa and a theoretical isoelectric point of 9.82. No signal peptides were predicted for the protein. Northern blot analysis revealed that Mub(S27) transcript level is higher at the embryo stage than that at any other developmental stages. When houseflies develop into 5-day pupae, the Ub mRNA level is relatively low. After infection with gram-negative and gram-positive bacteria, Mub(S27) transcript level was upregulated. Mub(S27) transcript level was also regulated by heat or cold stress.
Collapse
Affiliation(s)
- Qian Ren
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | |
Collapse
|
8
|
Liu J, Wei L, Jiang T, Shi L, Wang J. Reduction of infectious bursal disease virus replication in cultured cells by proteasome inhibitors. Virus Genes 2007; 35:719-27. [PMID: 17680216 PMCID: PMC7089216 DOI: 10.1007/s11262-007-0147-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/21/2006] [Indexed: 12/03/2022]
Abstract
Infectious bursal disease virus (IBDV) is the etiological agent of a highly contagious disease in chickens. In a recent report, proteasome inhibitor MG132 has been shown to completely inhibit IBDV-induced apoptosis. This raises the possibility that the ubiquitin–proteasome pathway may be used by the virus to promote viral replication. In this study, we examined the interplay between IBDV replication and the ubiquitin–proteasome pathway in cultured cells. Treatment of DF-1 cells with the proteasome inhibitors MG132 or lactacystin significantly decreased virus release in the supernatant and prevented virus-induced cytopathic effect. Inhibition of the ubiquitin–proteasome pathway did reduce markedly viral RNA transcription and protein translation but not affect virus internalization. We also demonstrated that IBDV activates caspase pathway via triggering the efflux of cytochrome c in mitochondria into cytosol of infected cells. This activity was dose-dependently reduced by proteasome inhibitor treatment. Taken together, our data suggest that proteasome inhibitor reduces IBDV replication through inhibition of viral RNA transcription and protein synthesis, and thus preventing IBDV-induced apoptosis.
Collapse
Affiliation(s)
- Jue Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Central Road, Haidian District, Beijing 100097, PR China.
| | | | | | | | | |
Collapse
|
9
|
Stanke N, Stange A, Lüftenegger D, Zentgraf H, Lindemann D. Ubiquitination of the prototype foamy virus envelope glycoprotein leader peptide regulates subviral particle release. J Virol 2006; 79:15074-83. [PMID: 16306578 PMCID: PMC1316034 DOI: 10.1128/jvi.79.24.15074-15083.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM), derived from a precursor protein by posttranslational proteolysis mediated by furin or furinlike proteases. Previously at least three LP products of different molecular weights were detected in purified FV particles. Here we demonstrate that the higher-molecular-weight forms gp28LP and gp38LP are ubiquitinated variants of the major gp18LP cleavage product, which has a type II membrane topology. Furthermore, we show that all five lysine residues located within the N-terminal 60-amino-acid cytoplasmic domain of gp18LP can potentially be ubiquitinated, however, there seems to be a preference for using the first three. Inactivation of ubiquitination sites individually resulted in no obvious phenotype. However, simultaneous inactivation of the first three or all five ubiquitination sites in gp18LP led to a massive increase in subviral particles released by these mutant glycoproteins that were readily detectable by electron microscopy analysis upon expression of the ubiquitination-deficient glycoprotein by itself or in a proviral context. Surprisingly, only the quintuple ubiquitination mutant showed a two- to threefold increase in single-cycle infectivity assays, whereas all other mutants displayed infectivities similar to that of the wild type. Taken together, these data suggest that the balance between viral and subviral particle release of FVs is regulated by ubiquitination of the glycoprotein LP.
Collapse
Affiliation(s)
- Nicole Stanke
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus," Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
10
|
Hollier MJ, Dimmock NJ. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function. Virology 2005; 337:284-96. [PMID: 15913700 PMCID: PMC7111842 DOI: 10.1016/j.virol.2005.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/02/2005] [Accepted: 04/11/2005] [Indexed: 11/17/2022]
Abstract
In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules – those destined for incorporation into virions – has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell.
Collapse
|
11
|
Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 2005; 79:8014-23. [PMID: 15956547 PMCID: PMC1143712 DOI: 10.1128/jvi.79.13.8014-8023.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-L-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xiaoning Si
- Department of Pathology and Laboratory Medicine, The James HoggiCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Piccinini M, Rinaudo MT, Anselmino A, Buccinnà B, Ramondetti C, Dematteis A, Ricotti E, Palmisano L, Mostert M, Tovo PA. The HIV Protease Inhibitors Nelfinavir and Saquinavir, but Not a Variety of HIV Reverse Transcriptase Inhibitors, Adversely Affect Human Proteasome Function. Antivir Ther 2005. [DOI: 10.1177/135965350501000203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background In HIV-infected patients some clinical and immunological benefits of antiretroviral therapy, which frequently include a combination of HIV protease inhibitors (PIs) and reverse transcriptase inhibitors (RTIs), cannot be solely explained by the drugs’ action on viral enzymes. Proteasomes constitute the central protease of the ubiquitin ATP-dependent pathway involved in many cellular processes, as well as in HIV maturation and aggressiveness. Objective: To explore whether the PIs nelfinavir and saquinavir and the RTIs abacavir, nevirapine, delavirdine, stavudine and didanosine affect proteasome function in vitro and in vivo. Methods Peptidase activity of purified human 26S and 20S proteasomes was assayed with and without the drugs at different concentrations. Intracellular proteasome proteolytic activity was evaluated by searching for ubiquitin-tagged proteins in HL60 cells incubated with and without the drugs. Results At therapeutic dosages, nelfinavir and saquinavir inhibited proteasome peptidase activity and caused intracellular accumulation of polyubiquitinated proteins, a hallmark of proteasome proteolytic inhibition in vivo; the RTIs failed to evoke either effect. Conclusion Proteasomes are targeted by the two PIs but not the RTIs. Therefore, in HIV-infected patients the beneficial effect of a therapy including one of the two PIs should partly rely on inhibition of host proteasome function.
Collapse
Affiliation(s)
- Marco Piccinini
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Maria T Rinaudo
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Annalisa Anselmino
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Barbara Buccinnà
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Cristina Ramondetti
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Antonio Dematteis
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Emanuela Ricotti
- Department of Paediatric Sciences, University of Turin, Turin, Italy
| | - Lucia Palmisano
- Department of Paediatric Sciences, University of Turin, Turin, Italy
| | - Michael Mostert
- Department of Paediatric Sciences, University of Turin, Turin, Italy
| | - Pier-Angelo Tovo
- Department of Paediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Maeda A, Lee BH, Yoshimatsu K, Saijo M, Kurane I, Arikawa J, Morikawa S. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology 2003; 305:288-97. [PMID: 12573574 DOI: 10.1006/viro.2002.1767] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9) conjugates SUMO-1 to target proteins and modulates cellular processes such as signal transduction, transcription regulation, and cell growth regulation. We demonstrated here that the nucleocapsid protein (NP) of Hantaan virus (HTNV) was associated with Ubc9 and SUMO-1 in vivo. Analysis of the interaction between the truncated NPs and Ubc9 revealed that the amino acid residues at the positions between 101 and 238 in the NP were responsible for the interaction. Furthermore, a consensus binding motif of Ubc9 and SUMO-1, MKAE, within this region, especially the second amino acid of the motif, K residue, was crucial for the interaction, and the interaction was essential for the NP to be localized in the perinuclear region. These results indicate that the assembly of the HTNV-NP is regulated by the interaction between the NP and Ubc9. This is the first report to demonstrate the interaction of Ubc9 with a structural protein of negative-strand RNA viruses.
Collapse
Affiliation(s)
- Akihiko Maeda
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Okubo K, Yamano K, Qin Q, Aoyagi K, Ototake M, Nakanishi T, Fukuda H, Dijkstra JM. Ubiquitin genes in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2002; 12:335-351. [PMID: 12049169 DOI: 10.1006/fsim.2001.0375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ubiquitin is a small protein involved in intracellular proteolysis. It is highly conserved throughout eukaryotic phyla and has been detected in such diverse species as yeast, barley, Drosophila and man. A previous study showed that chromatin of rainbow trout testis contains free ubiquitin with a sequence similar to that of other phyla. In the present study, which focused on rainbow trout but included eleven other species, it is shown that fish ubiquitin genetic organisation and expression are similar to those of other phylogenetic groups through the following set of observations: (a) Multiple loci were detected, (b) These loci encode repeats of ubiquitin, (c) Although the DNA sequences are not conserved, the encoded amino acid sequences are fully conserved, (d) The expression of ubiquitin was influenced by cell culture conditions and viral infection.
Collapse
Affiliation(s)
- Kazue Okubo
- Department of Aquatic Biosciences, Tokyo University of Fisheries, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Labrijn AF, Koppelman MHGM, Verhagen J, Brouwer MC, Schuitemaker H, Hack CE, Huisman HG. Novel strategy for the selection of human recombinant Fab fragments to membrane proteins from a phage-display library. J Immunol Methods 2002; 261:37-48. [PMID: 11861064 DOI: 10.1016/s0022-1759(01)00542-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traditionally, the selection of phage-display libraries is performed on purified antigens (Ags), immobilized to a solid substrate. However, this approach may not be applicable for some Ags, such as membrane proteins, which for structural integrity strongly rely on their native environment. Here we describe an approach for the selection of phage-libraries against membrane proteins. The envelope glycoproteins (Env) of the Human Immunodeficiency Virus type-1 (HIV-1) were used as a model for a type-1 integral membrane protein. HIV-1IHI Env, expressed on the surface of Rabbit Kidney cells (RK13) with a recombinant vaccinia virus (rVV), was solubilized using the non-ionic detergent n-Octyl beta-D-glucopyranoside (OG). Membrane associated Env was reconstituted into vesicles by the simultaneous removal of detergent and free monomeric Env subunits by gel-filtration. The resulting antigen preparation, termed OG-P1IHI, was captured on microtiter plates coated with Galanthus nivalis agglutinin (GNA) and used for rounds of selection (panning) of a well-characterized phage-display library derived from an HIV-1 seropositive donor. Simultaneously, an identical experiment was performed with OG-P1IHI vesicles disrupted by Nonidet P-40 (NP-P1IHI). Both membrane-associated and soluble Ags were selected for vaccinia-specific clones (OG-P1IHI: 59/75 and NP-P1IHI: 1/75) and HIV-1-specific clones (OG-P1IHI: 11/75 and NP-P1IHI: 65/75) using our approach. Hence, the novel panning strategy described here may be applicable for selection of phage-libraries against membrane proteins.
Collapse
Affiliation(s)
- Aran F Labrijn
- Department of Immunopathology, CLB and Laboratory of Experimental and Clinical Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bültmann A, Muranyi W, Seed B, Haas J. Identification of two sequences in the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein that inhibit cell surface expression. J Virol 2001; 75:5263-76. [PMID: 11333908 PMCID: PMC114932 DOI: 10.1128/jvi.75.11.5263-5276.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2000] [Accepted: 03/03/2001] [Indexed: 11/20/2022] Open
Abstract
During synthesis and export of protein, the majority of the human immunodeficiency virus type 1 (HIV-1) Env glycoprotein gp160 is retained in the endoplasmic reticulum (ER) and subsequently ubiquitinated and degraded by proteasomes. Only a small fraction of gp160 appears to be correctly folded and processed and is transported to the cell surface, which makes it difficult to identify negative sequence elements regulating steady-state surface expression of Env at the post-ER level. Moreover, poorly localized mRNA retention sequences inhibiting the nucleocytoplasmic transport of viral transcripts interfere with the identification of these sequence elements. Using two heterologous systems with CD4 or immunoglobulin extracellular/transmembrane domains in combination with the gp160 cytoplasmic domain, we were able to identify two membrane-distal, neighboring motifs, is1 (amino acids 750 to 763) and is2 (amino acids 764 to 785), which inhibited surface expression and induced Golgi localization of the chimeric proteins. To prove that these two elements act similarly in the homologous context of the Env glycoprotein, we generated a synthetic gp160 gene with synonymous codons, the transcripts of which are not retained within the nucleus. In accordance with the results in heterologous systems, an internal deletion of both elements considerably increased surface expression of gp160.
Collapse
Affiliation(s)
- A Bültmann
- Max von Pettenkofer-Institut, Genzentrum, Ludwig Maximilians Universität München, Munich, Germany
| | | | | | | |
Collapse
|