1
|
Sharma A, Boyd DF, Overbaugh J. Development of SHIVs with circulating, transmitted HIV-1 variants. J Med Primatol 2015; 44:296-300. [PMID: 26101933 DOI: 10.1111/jmp.12179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 01/06/2023]
Abstract
SHIV/macaque model is critical for pre-clinical HIV-1 research. The ability of this model to predict efficacious intervention(s) in humans depends on how faithfully the model recapitulates key features of HIV-1 transmission and pathogenesis. Here, we provide insights for rationally designing SHIVs with transmitted HIV-1 variants for vaccine and prevention research.
Collapse
Affiliation(s)
- Amit Sharma
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David F Boyd
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Pathobiology Graduate Program, University of Washington, Seattle, WA, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
2
|
A species-specific amino acid difference in the macaque CD4 receptor restricts replication by global circulating HIV-1 variants representing viruses from recent infection. J Virol 2012; 86:12472-83. [PMID: 22973036 DOI: 10.1128/jvi.02176-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
HIV-1 replicates poorly in macaque cells, and this had hindered the advancement of relevant nonhuman primate model systems for HIV-1 infection and pathogenesis. Several host restriction factors have been identified that contribute to this species-specific restriction to HIV-1 replication, but these do not fully explain the poor replication of most strains of HIV-1 in macaque cells. Only select HIV-1 envelope variants, typically those derived from viruses that have been adapted in cell culture, result in infectious chimeric SIVs encoding HIV-1 envelope (SHIVs). Here we demonstrate that most circulating HIV-1 variants obtained directly from infected individuals soon after virus acquisition do not efficiently mediate entry using the macaque CD4 receptor. The infectivity of these viruses is ca. 20- to 50-fold lower with the rhesus and pig-tailed macaque versus the human CD4 receptor. In contrast, culture-derived HIV-1 envelope variants that facilitate efficient replication in macaques showed similar infectivity with macaque and human CD4 receptors (within ∼2-fold). The ability of an envelope to mediate entry using macaque CD4 correlated with its ability to mediate entry of cells expressing low levels of the human CD4 receptor and with soluble CD4 sensitivity. Species-specific differences in the functional capacity of the CD4 receptor to mediate entry mapped to a single amino acid difference at position 39 that is under strong positive selection, suggesting that the evolution of CD4 may have been influenced by its function as a viral receptor. These results also suggest that N39 in human CD4 may be a critical residue for interaction of transmitted HIV-1 variants. These studies provide important insights into virus-host cell interactions that have hindered the development of relevant nonhuman primate models for HIV-1 infection and provide possible markers, such as sCD4 sensitivity, to identify potential HIV-1 variants that could be exploited for development of better SHIV/macaque model systems.
Collapse
|
3
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
4
|
Adaptation of subtype a human immunodeficiency virus type 1 envelope to pig-tailed macaque cells. J Virol 2011; 85:4409-20. [PMID: 21325401 DOI: 10.1128/jvi.02244-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.
Collapse
|
5
|
Abstract
SIV or SHIV infection of nonhuman primates (NHP) has been used to investigate the impact of coreceptor usage on the composition and dynamics of the CD4+ T cell compartment, mechanisms of disease induction and development of clinical syndrome. As the entire course of infection can be followed, with frequent access to tissue compartments, infection of rhesus macaques with CCR5-tropic SHIVs further allows for study of HIV-1 coreceptor switch after intravenous and mucosal inoculation, with longitudinal and systemic analysis to determine the timing, anatomical sites and cause for the change in envelope glycoprotein and coreceptor preference. Here, we review our current understanding of coreceptor use in NHPs and their impact on the pathobiological characteristics of the infection, and discuss recent advances in NHP studies to uncover the underlying selective pressures for the change in coreceptor preference in vivo.
Collapse
Affiliation(s)
- Silvana Tasca Sina
- Aaron Diamond AIDS Research Center, 455 First Ave, 7th Floor, New York, New York, USA
| | | | | |
Collapse
|
6
|
Acute Infection of Chinese Macaques by a CCR5-Tropic SHIV Carrying a Primary HIV-1 Subtype B' Envelope. J Acquir Immune Defic Syndr 2010; 53:285-91. [DOI: 10.1097/qai.0b013e3181cc4f4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA. Gastrointestinal disease in simian immunodeficiency virus-infected rhesus macaques is characterized by proinflammatory dysregulation of the interleukin-6-Janus kinase/signal transducer and activator of transcription3 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1952-65. [PMID: 18055558 DOI: 10.2353/ajpath.2007.070017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrointestinal disease and inflammation are common sequelae of human and simian immunodeficiency virus (SIV) infection. Nevertheless, the molecular mechanisms that lead to gastrointestinal dysfunction remain unclear. We investigated regulation of the interleukin (IL)-6-JAK-STAT3 pathway in jejunum and colon, collected at necropsy, from 10 SIV-infected macaques with diarrhea (group 1), 10 non-SIV-infected macaques with diarrhea (group 2), and 7 control uninfected macaques (group 3). All group 1 and 2 macaques had chronic diarrhea, wasting, and colitis, but group 1 animals had more frequent and severe lesions in the jejunum. A significant increase in IL-6 and SOCS-3 gene expression along with constitutive STAT3 activation was observed in the colon of all group 1 and 2 macaques and in the jejunum of only group 1 macaques compared to controls. Further, in colon, histopathology severity scores correlated significantly with IL-6 (groups 1 and 2) and SOCS-3 (group 2) gene expression. In jejunum, a similar correlation was observed only in group 1 animals. Phosphorylated STAT3 (p-STAT3) was localized to lymphocytes (CD3+) and macrophages (CD68+), with fewer CD3+ lymphocytes expressing p-STAT3 in group 1 macaques. Despite high SOCS-3 expression, STAT3 remained constitutively active, providing a possible explanation for persistent intestinal inflammation and immune activation that may favor viral replication and disease pro-gression.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Rd., Covington, LA 70433, USA
| | | | | | | | | |
Collapse
|
8
|
Role of HIV-1 subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages. Virol J 2007; 4:126. [PMID: 18036244 PMCID: PMC2216014 DOI: 10.1186/1743-422x-4-126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/24/2007] [Indexed: 12/28/2022] Open
Abstract
Background Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3–V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.01 and MT-2), coreceptor cell lines (U373-MAGI-CCR5/CXCR4), primary blood T-lymphocytes (PBL) and monocyte-derived macrophages (MDM). Results We found that subtype C envelope V3–V5 region chimeras failed to replicate in T-lymphocyte cell lines but replicated in PBL and MDM. In addition, these chimeras were able to infect U373MAGI-CD4+-CCR5+ but not U373MAGI-CD4+-CXCR4+ cell line, suggesting CCR5 coreceptor utilization and R5 phenotypes. These subtype C chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium inducing (NSI) phenotypes. More importantly, the subtype C envelope chimeras replicated at higher levels in PBL and MDM compared with subtype B chimeras and isolates. Furthermore, the higher levels subtype C chimeras replication in PBL and MDM correlated with increased virus entry in U373MAGI-CD4+-CCR5+. Conclusion Taken together, these results suggest that the envelope V3 to V5 regions of subtype C contributed to higher levels of HIV-1 replication compared with subtype B chimeras, which may contribute to higher viral loads and faster disease progression in subtype C infected individuals than other subtypes as well as rapid HIV-1 subtype C spread in India.
Collapse
|
9
|
Affiliation(s)
- Josef Vlasak
- Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | |
Collapse
|
10
|
Cayabyab M, Rohne D, Pollakis G, Mische C, Messele T, Abebe A, Etemad-Moghadam B, Yang P, Henson S, Axthelm M, Goudsmit J, Letvin NL, Sodroski J. Rapid CD4+ T-lymphocyte depletion in rhesus monkeys infected with a simian-human immunodeficiency virus expressing the envelope glycoproteins of a primary dual-tropic Ethiopian Clade C HIV type 1 isolate. AIDS Res Hum Retroviruses 2004; 20:27-40. [PMID: 15000696 DOI: 10.1089/088922204322749477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) chimerae with the envelope glycoproteins of X4 or R5/X4 HIV-1 isolates from clade B can cause rapid and severe CD4(+) T cell depletion and AIDS-like illness in infected monkeys. We created a SHIV (SHIV-MCGP1.3) expressing the envelope glycoproteins of a primary R5/X4, clade C HIV-1 isolate. Infection of a rhesus monkey with SHIV-MCGP1.3 resulted in a low level of viremia and no significant alteration in CD4(+) T-lymphocyte counts. However, serial intravenous passage of the virus resulted in the emergence of SHIV-MCGP1.3 variants that replicated efficiently and caused profound CD4(+) T cell depletion during the acute phase of infection. The CD4(+) T cell counts in the infected monkeys gradually returned to normal, and the animals remained healthy. The ability to cause rapid and profound loss of CD4(+) T lymphocytes in vivo is a property shared by passaged, CXCR4-using SHIVs, irrespective of the clade of origin of the HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Mark Cayabyab
- Department of Cancer Immunology/AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
In the absence of antiretroviral treatment, HIV-1 establishes a chronic, progressive infection of the human immune system that invariably, over the course of years, leads to its destruction and fatal immunodeficiency. Paradoxically, while viral replication is extensive throughout the course of infection, deterioration of conventional measures of immunity is slow, including the characteristic loss of CD4(+) T cells that is thought to play a key role in the development of immunodeficiency. This conundrum suggests that CD4(+) T cell-directed viral cytopathicity alone cannot explain the course of disease. Indeed, recent advances now indicate that HIV-1 pathogenesis is likely to result from a complex interplay between the virus and the immune system, particularly the mechanisms responsible for T cell homeostasis and regeneration. We review these data and present a model of HIV-1 pathogenesis in which the protracted loss of CD4(+) T cells results from early viral destruction of selected memory T cell populations, followed by a combination of profound increases in overall memory T cell turnover, damage to the thymus and other lymphoid tissues, and physiological limitations in peripheral CD4(+) T cell renewal.
Collapse
Affiliation(s)
- Daniel C Douek
- Human Immunology Section Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
12
|
Hsu M, Harouse JM, Gettie A, Buckner C, Blanchard J, Cheng-Mayer C. Increased mucosal transmission but not enhanced pathogenicity of the CCR5-tropic, simian AIDS-inducing simian/human immunodeficiency virus SHIV(SF162P3) maps to envelope gp120. J Virol 2003; 77:989-98. [PMID: 12502815 PMCID: PMC140803 DOI: 10.1128/jvi.77.2.989-998.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through rapid serial transfer in vivo, the chimeric CCR5-tropic simian/human immunodeficiency virus SHIV(SF162) evolved from a virus that is nonpathogenic and poorly transmissible across the vaginal mucosa to a variant that still maintains CCR5 usage but which is now pathogenic and establishes intravaginal infection efficiently. To determine whether envelope glycoprotein gp120 is responsible for increased pathogenesis and transmissibility of the variant SHIV(SF162P3), we cloned and sequenced the dominant envelope gene (encoding P3 gp120) and characterized its functions in vitro. Chimeric SHIV(SF162) virus expressing P3 gp120 of the pathogenic variant, designated SHIV(SF162PC), was also constructed and assessed for its pathogenicity and mucosal transmissibility in vivo. We found that, compared to wild-type SHIV(SF162) gp120, P3 gp120 conferred in vitro neutralization resistance and increased entry efficiency of the virus but was compromised in its fusion-inducing capacity. In vivo, SHIV(SF162PC) infected two of two and two of three rhesus macaques by the intravenous and intravaginal routes, respectively. Nevertheless, although peak viremia reached 10(6) to 10(7) RNA copies per ml of plasma in some infected animals and was associated with depletion of gut-associated CD4(+) lymphocytes, none of the animals maintained a viral set point that would be predictive of progression to disease. Together, the data from this study suggest a lack of correlation between entry efficiency and cytopathic properties of envelope glycoproteins with viral pathogenicity. Furthermore, whereas env gp120 contains the determinant for enhanced mucosal transmissibility of SHIV(SF162P3), the determinant(s) of its increased virulence may require additional sequence changes in env gp41 and/or maps to other viral genes.
Collapse
Affiliation(s)
- Mayla Hsu
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
13
|
Himathongkham S, Douglas GC, Fang A, Yu E, Barnett SW, Luciw PA. Species tropism of chimeric SHIV clones containing HIV-1 subtype-A and subtype-E envelope genes. Virology 2002; 298:189-99. [PMID: 12127782 DOI: 10.1006/viro.2002.1454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To analyze HIV-1 genes in a nonhuman primate model for lentivirus infection and AIDS, recombinant SIV/HIV-1 (SHIV) clones were constructed from two HIV-1 subtype-A isolates (HIV-1(SF170) and HIV-1(Q23-17) from individuals in Africa) and two HIV-1 subtype-E isolates (HIV-1(9466) and HIV-1(CAR402) from AIDS patients in Thailand and Africa), respectively. These four SHIV clones, designated SHIV-A-170, SHIV-A-Q23, SHIV-9466.33, and SHIV-E-CAR, contain envelope (env) genes from the subtype-A or -E viruses. Interestingly, SHIV-A-170, SHIV-A-Q23, and SHIV-9466.33 were restricted for replication in cultures of macaque lymphoid cells, whereas SHIV-E-CAR replicated efficiently in these cells. Additional studies to define the block to replication in macaque cells were focused on the subtype-E clone SHIV-9466.33. A SHIV intragenic env clone, containing sequence-encompassing V1/V2 regions of HIV-1(CAR402) and V3/V4/V5 regions of SHIV-9466.33, infected and replicated in macaque lymphoid cells. These results indicated that the sequence-encompassing V1/V2 region of HIV-1(9466) was responsible for the block of the SHIV-9466.33 replication in macaque cells. Analysis of viral DNA in acutely infected macaque cells revealed that SHIV-9466.33 was blocked at a step at/or before viral DNA synthesis, presumably during the process of virion entry into cells. In a fluorescence-based cell-cell fusion assay, fusion pore formation readily took place in cocultures of cells expressing the SHIV-9466.33 env glycoprotein with macaque T-lymphoid cells. Taken together, these results demonstrated that the block of SHIV-9466.33 replication in macaque cells is at an early step after fusion pore formation but before reverse transcription.
Collapse
Affiliation(s)
- Sunee Himathongkham
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chen Z, Zhao X, Huang Y, Gettie A, Ba L, Blanchard J, Ho DD. CD4+ lymphocytopenia in acute infection of Asian macaques by a vaginally transmissible subtype-C, CCR5-tropic Simian/Human Immunodeficiency Virus (SHIV). J Acquir Immune Defic Syndr 2002; 30:133-45. [PMID: 12045675 DOI: 10.1097/00042560-200206010-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An R5-tropic SHIV(CHN19P4) was previously generated using a primary HIV-1 subtype-C envelope. We have further characterized this SHIV in two species of macaques. To determine whether this isolate is transmissible vaginally, female pig-tailed macaques were inoculated with 2 x 10(3) TCID50 of SHIV(CHN19P4) by the vaginal route. Animals became infected with a high peak plasma viremia (>10(7) viral copies/mL) and rapid seroconversion. The viremia was accompanied by CD4+ lymphocytopenia in the gut lamina propria lymphocyte (LPL) population. Comparable CD4+ T-cell loss was not seen in peripheral blood and colonic lymph nodes. These findings demonstrate a unique R5-tropic SHIV that can be used to study envelope-related issues in vaginal transmission of the most prevalent subtype of HIV-1. We also found that rhesus macaques intravenously inoculated with 1 x 10(3) TCID50 of SHIV(CHN19P4) became infected and showed CD4+ lymphocytopenia in the gut LPL population. Despite inactivation of the vpu gene in SHIV(CHN19P4), the virus appears to target mainly gut-associated lymphoid tissues during the initial stage of infection as has been described for SHIV(SF162P), another R5-tropic (subtype B) recombinant virus. Our data indicate that the R5-mediated CD4+ lymphocytopenia in the gut is likely independent of HIV-1 genotypes and of the function of vpu at the acute phase of viral infection.
Collapse
Affiliation(s)
- Zhiwei Chen
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Chakrabarti LA, Ivanovic T, Cheng-Mayer C. Properties of the surface envelope glycoprotein associated with virulence of simian-human immunodeficiency virus SHIV(SF33A) molecular clones. J Virol 2002; 76:1588-99. [PMID: 11799153 PMCID: PMC135897 DOI: 10.1128/jvi.76.4.1588-1599.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo adaptation of simian-human immunodeficiency virus (SHIV) clone SHIV(SF33) resulted in the emergence of pathogenic isolate SHIV(SF33A), which caused a rapid and severe CD4(+) T-cell depletion when inoculated into rhesus macaques. Two molecular clones generated by inserting the env V1-to-V5 region amplified from SHIV(SF33A)-infected animals into the parental SHIV(SF33) genome retained a pathogenic phenotype. The gp120 envelope glycoproteins of pathogenic clones SHIV(SF33A2) and SHIV(SF33A5) conferred a threefold increase in viral entry and fusogenicity compared to the parental glycoprotein. Changes in gp120 were also responsible for a higher replication capacity and cytopathicity in primary CD4(+) T-cell cultures. Last, gp120 carried the determinants of SHIV(SF33A) neutralization resistance. Thus, changes in SHIV(SF33A) gp120 produced a set of properties that could account for the pathogenic phenotype observed in vivo. Measurement of antibody binding to SHIV(SF33A) viral particles revealed an increased exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody in a region that was shown to contribute to coreceptor binding. Exposure of this epitope occurred in the absence of CD4 binding, suggesting that the envelope glycoprotein of pathogenic SHIV(SF33A) clones folded in a conformation that was primed for interaction with CXCR4 or for the subsequent step of fusion.
Collapse
Affiliation(s)
- Lisa A Chakrabarti
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | |
Collapse
|
16
|
Abstract
The use of chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques has made it possible to analyze the pathogenicity of HIV-1 in vivo, and to evaluate the efficacy of candidate vaccines in macaques. In addition, we believe that gene-deleted SHIVs could potentially be used as anti-HIV-1 live-attenuated vaccines. Gene-deleted SHIVs replicate transiently, are non-pathogenic and induce strong protection against challenge infection. The most important advantage of gene-deleted SHIVs is that their efficacy and safety can be evaluated in macaques before they are used in humans.
Collapse
Affiliation(s)
- T Kuwata
- Institute for Virus Research, Kyoto University, Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
17
|
Leutenegger CM, Higgins J, Matthews TB, Tarantal AF, Luciw PA, Pedersen NC, North TW. Real-time TaqMan PCR as a specific and more sensitive alternative to the branched-chain DNA assay for quantitation of simian immunodeficiency virus RNA. AIDS Res Hum Retroviruses 2001; 17:243-51. [PMID: 11177407 DOI: 10.1089/088922201750063160] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a rapid and highly reproducible assay based on real-time PCR (TaqMan, Applied Biosystems, Foster City, CA) to quantitate simian immunodeficiency virus (SIV) RNA in plasma samples. This assay was compared with the current branched-chain DNA assay (Bayer, Emeryville, CA). Results obtained with the real-time TaqMan PCR assay were comparable to those obtained with the branched-chain DNA assay in overlapping ranges of sensitivities (r = 0.9429, p < 0.05). However, the real-time TaqMan PCR assay was capable of detecting as few as 50 copies of RNA/ml, whereas branched-chain DNA was only sensitive to 1,500 copies of RNA/ml. Therefore, several animals that tested negative by branched-chain DNA were positive by realtime TaqMan PCR. Two false positive tests were also recorded for the branched-chain DNA test. False negative and positive tests were confirmed by cell culture isolation and conventional nested RT-PCR. The SIV TaqMan assay detected a wide range of wild-type, cloned, and recombinant SIV strains with similar amplification efficiency, including SIVmac251, SIVmac239, SIVmac239 containing the 184V mutation in RT, SIV1A11, SIVmac239 delta3, SIVmac-M4, and chimeras (SHIVs) containing specific HIV-1 genes, such as reverse transcriptase (RT-SHIV) or Env (SHIV-E). In conclusion, the high sensitivity, increased specificity, wide dynamic range, simplicity, and reproducibility of the real-time SIV RNA quantitation allow the screening of large numbers of samples and make this method especially suitable for measuring both viral DNA and RNA levels during vaccine and therapy studies.
Collapse
Affiliation(s)
- C M Leutenegger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|