1
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Jbeli R, Jelassi A. Current vaccine technology with an emphasis on recombinant measles virus as a new perspective for vaccination against SARS-CoV-2. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2021; 6:61. [PMID: 34250222 PMCID: PMC8254859 DOI: 10.1007/s41207-021-00263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) that emerged in China has spread to more than 212 countries to date. COVID-19 can cause serious acute respiratory syndrome (SARS). Therefore, research advances on the associated SARS-coronavirus-2 (CoV-2) may enable the scientific community to establish effective vaccines to prevent SARS-CoV-2 infections by increasing understanding of viral pathogenesis. Measles virus (MV) expressing SARS-CoV-2 spike protein (S) represents a promising class of biotherapeutic agents to combat this virus. The potential of such recombinant viruses has been well recognized for the treatment of many diseases. We summarize and review herein a potential therapeutic intervention strategy against COVID-19 infection based on MVSchw2-SARS-S and MVSchw2-SARS-Ssol with the aim of assessing the suitability of recombinant MV as a potential new candidate SARS vaccine. Such analysis of COVID-19 pathogenesis could also help establish appropriate therapeutic targets for the production of specific antiviral agents against this newly emerged pathogen.
Collapse
Affiliation(s)
- Rim Jbeli
- Department of Biology Sicences, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Awatef Jelassi
- Laboratory of Biochemistry, LR 99 ES 11, Faculty of Medicine, University Tunis Elmanar, Tunis, Tunisia
| |
Collapse
|
3
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
4
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
5
|
Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. J Biol Chem 2020; 295:2771-2786. [PMID: 31949044 DOI: 10.1074/jbc.rev119.009961] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Research in the last decade has uncovered many new paramyxoviruses, airborne agents that cause epidemic diseases in animals including humans. Most paramyxoviruses enter epithelial cells of the airway using sialic acid as a receptor and cause only mild disease. However, others cross the epithelial barrier and cause more severe disease. For some of these viruses, the host receptors have been identified, and the mechanisms of cell entry have been elucidated. The tetrameric attachment proteins of paramyxoviruses have vastly different binding affinities for their cognate receptors, which they contact through different binding surfaces. Nevertheless, all input signals are converted to the same output: conformational changes that trigger refolding of trimeric fusion proteins and membrane fusion. Experiments with selectively receptor-blinded viruses inoculated into their natural hosts have provided insights into tropism, identifying the cells and tissues that support growth and revealing the mechanisms of pathogenesis. These analyses also shed light on diabolically elegant mechanisms used by morbilliviruses, including the measles virus, to promote massive amplification within the host, followed by efficient aerosolization and rapid spread through host populations. In another paradigm of receptor-facilitated severe disease, henipaviruses, including Nipah and Hendra viruses, use different members of one protein family to cause zoonoses. Specific properties of different paramyxoviruses, like neurotoxicity and immunosuppression, are now understood in the light of receptor specificity. We propose that research on the specific receptors for several newly identified members of the Paramyxoviridae family that may not bind sialic acid is needed to anticipate their zoonotic potential and to generate effective vaccines and antiviral compounds.
Collapse
Affiliation(s)
| | - Alex R Generous
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota 55905
| | - Iris Yousaf
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, Minnesota 55905
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
6
|
Bahreyni A, Ghorbani E, Fuji H, Ryzhikov M, Khazaei M, Erfani M, Avan A, Hassanian SM, Azadmanesh K. Therapeutic potency of oncolytic virotherapy-induced cancer stem cells targeting in brain tumors, current status, and perspectives. J Cell Biochem 2018; 120:2766-2773. [PMID: 30321455 DOI: 10.1002/jcb.27661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Brain tumors are the most common form of solid tumors in children and is presently a serious therapeutic challenge worldwide. Traditional treatment with chemotherapy and radiotherapy was shown to be unsuccessful in targeting brain tumor cancer stem cells (CSCs), leading to recurrent, treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is an effective antitumor therapeutic strategy which offers a novel, targeted approach for eradicating pediatric brain tumor CSCs by utilizing mechanisms of cell killing that differ from conventional therapies. A number of studies and some clinical trials have therefore investigated the effects of combined therapy of radiations or chemotherapies with oncolytic viruses which provide new insights regarding the effectiveness and improvement of treatment responses for brain cancer patients. This review summarizes the current knowledge of the therapeutic potency of OVs-induced CSCs targeting in the treatment of brain tumors for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Hamid Fuji
- Department of Biochemistry, Payame-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Erfani
- Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
7
|
Deficiency of the IRE1α-Autophagy Axis Enhances the Antitumor Effects of the Oncolytic Virus M1. J Virol 2018; 92:JVI.01331-17. [PMID: 29263275 DOI: 10.1128/jvi.01331-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancer cells. M1 is a naturally occurring alphavirus (Togaviridae) which shows potent oncolytic activities against many cancers. Accumulation of unfolded proteins during virus replication leads to a transcriptional/translational response known as the unfolded protein response (UPR), which might counteract the antitumor effect of the oncolytic virus. In this report, we show that either pharmacological or biological inhibition of IRE1α or PERK, but not ATF6, substantially increases the oncolytic effects of the M1 virus. Moreover, inhibition of IRE1α blocks M1 virus-induced autophagy, which restricts the antitumor effects of the M1 virus through degradation of viral protein, in glioma cells. In addition, IRE1α suppression significantly increases the oncolytic effect of M1 virus in an orthotopic glioma model. From a molecular pathology study, we found that IRE1α is expressed at lower levels in higher-grade gliomas, suggesting greater antitumor efficacy of the oncolytic virus M1. Taken together, these findings illustrate a defensive mechanism of glioma cells against the oncolytic virus M1 and identify possible approaches to enhance the oncolytic viral protein accumulation and the subsequent lysis of tumor cells.IMPORTANCE Although oncolytic virotherapy is showing great promise in clinical applications, not all patients are benefiting. Identifying inhibitory signals in refractory cancer cells for each oncolytic virus would provide a good chance to increase the therapeutic effect. Here we describe that infection with the oncolytic virus M1 triggers the unfolded protein response (UPR) and subsequent autophagy, while blocking the UPR-autophagy axis significantly potentiates the antitumor efficacy of M1 in vitro and in vivo A survey of cancer tissue banks revealed that IRE1α, a key element in the UPR pathway, is commonly downregulated in higher-grade human gliomas, suggesting favorable prospects for the application of M1. Our work provides a potential predictor and target for enhancement of the therapeutic effectiveness of the M1 virus. We predict that the mechanism-based combination therapy will promote cancer virotherapy in the future.
Collapse
|
8
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
9
|
Engeland CE, Bossow S, Hudacek AW, Hoyler B, Förster J, Veinalde R, Jäger D, Cattaneo R, Ungerechts G, Springfeld C. A Tupaia paramyxovirus vector system for targeting and transgene expression. J Gen Virol 2017; 98:2248-2257. [PMID: 28809150 DOI: 10.1099/jgv.0.000887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.
Collapse
Affiliation(s)
- Christine E Engeland
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Present address: Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Andrew W Hudacek
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN, USA
| | - Birgit Hoyler
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Judith Förster
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Rūta Veinalde
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN, USA
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
De Munck J, Binks A, McNeish IA, Aerts JL. Oncolytic virus-induced cell death and immunity: a match made in heaven? J Leukoc Biol 2017; 102:631-643. [PMID: 28720686 DOI: 10.1189/jlb.5ru0117-040r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the mechanisms responsible for cancer development has increased enormously over the last decades. However, for many cancers, this has not been translated into a significant improvement in overall survival, and overall mortality remains high. Treatment for many malignancies remains based on surgery, chemotherapy, and radiotherapy. Significant progress has been made toward the development of more specific, more potent, and less invasive treatment modalities, but such targeted therapies remain the exception for most cancers. Thus, cancer therapies based on a different mechanism of action should be explored. The immune system plays an important role in keeping tumor growth at bay. However, in many cases, these responses are not strong enough to keep tumor growth under control. Thus, immunotherapy aims to boost the immune system to suppress tumor growth efficiently. This has been demonstrated by the recent successes of immune checkpoint therapy in several cancers. Oncolytic viruses (OVs) are another exciting class of immunotherapy agent. As well as replicating selectively within and killing tumor cells, OVs are able to elicit potent anti-tumor immune responses. Therapeutic vaccination with OVs, also referred to as cancer virotherapy, can thus be tailored to elicit vigorous cellular immune responses and even target individual malignancies in a personalized manner. In this review, we will describe the intricate link among oncolytic virotherapy, tumor immunology, and immunogenic cell death (ICD) and discuss ways to harness optimally their potential for future cancer therapy.
Collapse
Affiliation(s)
- Jolien De Munck
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| | - Alex Binks
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joeri L Aerts
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| |
Collapse
|
11
|
Abstract
INTRODUCTION Oncolytic viruses represent a novel treatment modality that is unencumbered by the standard resistance mechanisms limiting the therapeutic efficacy of conventional antineoplastic agents. Attenuated engineered measles virus strains derived from the Edmonston vaccine lineage have undergone extensive preclinical evaluation with significant antitumor activity observed in a broad range of preclinical tumoral models. These have laid the foundation for several clinical trials in both solid and hematologic malignancies, which have demonstrated safety, biologic activity and the ability to elicit antitumor immune responses. Areas covered: This review examines the published preclinical data which supported the clinical translation of this therapeutic platform, reviews the available clinical trial data and expands on ongoing phase II testing. It also looks at approaches to optimize clinical applicability and offers future perspectives. Expert opinion: Reverse genetic engineering has allowed the generation of oncolytic MV strains retargeted to increase viral tumor specificity, or armed with therapeutic and immunomodulatory genes in order to enhance anti-tumor efficacy. Continuous efforts focusing on exploring methods to overcome resistance pathways and determining optimal combinatorial strategies will facilitate further development of this encouraging antitumor strategy.
Collapse
Affiliation(s)
- Steven Robinson
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| | - Evanthia Galanis
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
12
|
Kratzke RA. Targeting eukaryotic protein translation in mesothelioma. Transl Lung Cancer Res 2017; 6:343-349. [PMID: 28713679 PMCID: PMC5504115 DOI: 10.21037/tlcr.2017.06.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022]
Abstract
The default mechanism for protein translation in eukaryotes involves activation of the eIF4 complex at the 5' end of mRNA. This activity is upregulated in cancers, resulting in the expression of a variety of proteins necessary for the development and maintenance of the neoplastic state. Not surprisingly, mesothelioma demonstrates this same reliance on activation of 5' cap mediated translation. Efforts are ongoing to target and exploit our knowledge of this key molecular switch for cancer therapy. Agents targeting the critical eIF4E cap binding protein, disruption of the eIF4 complex, and exploitation for oncolytic virotherapy are some of the important areas of current research in mesothelioma protein translational research.
Collapse
Affiliation(s)
- Robert A Kratzke
- Division of Hematology-Oncology Transplant, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16003. [PMID: 27119117 PMCID: PMC4824561 DOI: 10.1038/mto.2016.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
Abstract
To target oncolytic measles viruses (MV) to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins). These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC) marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass.
Collapse
|
15
|
Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 2016; 23:479-88. [DOI: 10.1038/gt.2016.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
|
16
|
Zhao X, Cai L, Adogla EA, Guan H, Lin Y, Wang Q. Labeling of Enveloped Virus via Metabolic Incorporation of Azido Sugars. Bioconjug Chem 2015; 26:1868-72. [PMID: 26308754 DOI: 10.1021/acs.bioconjchem.5b00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modification of an enveloped measles virus was achieved by metabolic incorporation of azido sugars in host cells through the protein glycosylation process. Based on this, the resulting measles virus particles could be modified with azido groups on the surface glycoproteins, which could be further labeled with fluorescence dyes using a strain-promoted azide-alkyne cycloaddition reaction. We envision this metabolic labeling approach to be applicable to a wide variety of enveloped viruses, allowing the facile conjugation and surface modification.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Li Cai
- Division of Mathematics and Science, University of South Carolina Salkehatchie , Walterboro, South Carolina 29488, United States
| | - Enoch A Adogla
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hong Guan
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
17
|
Fulton BO, Sachs D, Beaty SM, Won ST, Lee B, Palese P, Heaton NS. Mutational Analysis of Measles Virus Suggests Constraints on Antigenic Variation of the Glycoproteins. Cell Rep 2015; 11:1331-8. [PMID: 26004185 DOI: 10.1016/j.celrep.2015.04.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
Abstract
Measles virus undergoes error-prone replication like other RNA viruses, but over time, it has remained antigenically monotypic. The constraints on the virus that prevent the emergence of antigenic variants are unclear. As a first step in understanding this question, we subjected the measles virus genome to unbiased insertional mutagenesis, and viruses that could tolerate insertions were rescued. Only insertions in the nucleoprotein, phosphoprotein, matrix protein, as well as intergenic regions were easily recoverable. Insertions in the glycoproteins of measles virus were severely under-represented in our screen. Host immunity depends on developing neutralizing antibodies to the hemagglutinin and fusion glycoproteins; our analysis suggests that these proteins occupy very little evolutionary space and therefore have difficulty changing in the face of selective pressures. We propose that the inelasticity of these proteins prevents the sequence variation required to escape antibody neutralization in the host, allowing for long-lived immunity after infection with the virus.
Collapse
Affiliation(s)
- Benjamin O Fulton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shannon M Beaty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sohui T Won
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas S Heaton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015; 479-480:331-44. [PMID: 25702088 DOI: 10.1016/j.virol.2015.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
Abstract
The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-factors. Reverse genetics approaches have answered fundamental questions about the biology of Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these fluorescent proteins have provided important insights about the molecular and cellular basis of tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different receptors and the interactions with cellular proteins governing the innate immune responses. Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as cancer therapeutics.
Collapse
Affiliation(s)
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
SUVANBEKOV AKBAR. Progress toward measles elimination in kyrgyzstan. NAGOYA JOURNAL OF MEDICAL SCIENCE 2015; 77:179-88. [PMID: 25797982 PMCID: PMC4361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/09/2014] [Indexed: 12/04/2022]
Abstract
Measles is one of the most severe infectious diseases of childhood, and one of the major causes of mortali-ty, especially in developing countries. Despite rare measles outbreaks in recent years, Kyrgyzstan seeks to show its commitment towards the global anti-measles campaign. The aim of this article is to summarize the scattered information on the recent status of measles, valid surveillance system, and measles elimination strategies in Kyrgyzstan, based on sources that include non-confidential but usually inaccessible governmental data. Infor-mation was extracted from the reports to the Ministry of Health and documents on the national surveillance system, in addition to outbreak cases extracted from the Republican Infectious Diseases Hospital's archive. To tackle the worsening measles situation in Kyrgyzstan, the Ministry of Health established the Republican Center for Immunoprophylaxis in 1994. Measles related death, which was rampant up until 1992, has not been registered since 2000 due to improved routine vaccination coverage, increasing from 88% in 1994 to 97% and over in 1997. The national surveillance system was modernized thanks to the World Health Organization, helping to detect measles cases and prevent major outbreaks. The system identified 222 cases in the outbreak of 2011, and the case cards in the hospital provided the findings of 69 admitted cases (42 infants, 22 children aged 1 to 14 years, and 5 aged 15 years or over), including 32 severe cases. This article provides a whole view on measles in Kyrgyzstan, which would be useful to control measles worldwide.
Collapse
Affiliation(s)
- AKBAR SUVANBEKOV
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Republican Center for Health System Development and Informational Technology, Ministry of Health, Bishkek, Kyrygz Republic
| |
Collapse
|
20
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
21
|
Mateo M, Navaratnarajah CK, Cattaneo R. Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Curr Opin Virol 2014; 5:16-23. [PMID: 24492202 PMCID: PMC4028398 DOI: 10.1016/j.coviro.2014.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/26/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022]
Abstract
A quartet of attachment proteins and a trio of fusion protein subunits play the cell entry concert of parainfluenza viruses. While many of these viruses bind sialic acid to enter cells, wild type measles binds exclusively two tissue-specific proteins, the lymphatic receptor signaling lymphocytic activation molecule (SLAM), and the epithelial receptor nectin-4. SLAM binds near the stalk-head junction of the hemagglutinin. Nectin-4 binds a hydrophobic groove located between blades 4 and 5 of the hemagglutinin β-propeller head. The mutated vaccine strain hemagglutinin binds in addition the ubiquitous protein CD46, which explains attenuation. The measles virus entry concert has four movements. Andante misterioso: the virus takes over the immune system. Allegro con brio: it rapidly spreads in the upper airway's epithelia. 'Targeting' fugue: the versatile orchestra takes off. Presto furioso: the virus exits the host with thunder. Be careful: music is contagious.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- Humans
- Measles/genetics
- Measles/metabolism
- Measles/virology
- Measles virus/chemistry
- Measles virus/genetics
- Measles virus/metabolism
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
Affiliation(s)
- Mathieu Mateo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
22
|
Abstract
Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments.
Collapse
Affiliation(s)
- Tanner S Miest
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | - Roberto Cattaneo
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| |
Collapse
|
23
|
Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2013; 123:1327-35. [PMID: 24345754 DOI: 10.1182/blood-2013-09-528851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of oncolytic attenuated measles virus (MV) are ongoing, but successful systemic delivery in immune individuals remains a major challenge. We demonstrated high-titer anti-MV antibody in 16 adults with acute lymphoblastic leukemia (ALL) following treatments including numerous immunosuppressive drugs. To resolve this challenge, human bone marrow-derived mesenchymal stromal cells (BM-MSCs) were used to efficiently deliver MV in a systemic xenograft model of precursor B-lineage-ALL. BM-MSCs were successfully loaded with MV ex vivo, and MV was amplified intracellularly, without toxicity. Live cell confocal imaging demonstrated a viral hand-off between BM-MSCs and ALL targets in the presence of antibody. In a murine model of disseminated ALL, successful MV treatment (judged by bioluminescence quantification and survival) was completely abrogated by passive immunization with high-titer human anti-MV antibody. Importantly, no such abrogation was seen in immunized mice receiving MV delivered by BM-MSCs. These data support the use of BM-MSCs as cellular carriers for MV in patients with ALL.
Collapse
|
24
|
Msaouel P, Iankov ID, Dispenzieri A, Galanis E. Attenuated oncolytic measles virus strains as cancer therapeutics. Curr Pharm Biotechnol 2013; 13:1732-41. [PMID: 21740361 DOI: 10.2174/138920112800958896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/18/2010] [Indexed: 12/18/2022]
Abstract
Attenuated measles virus vaccine strains have emerged as a promising oncolytic vector platform, having shown significant anti-tumor activity against a broad range of malignant neoplasms. Measles virus strains derived from the attenuated Edmonston-B (MV-Edm) vaccine lineage have been shown to selectively infect, replicate in and lyse cancer cells while causing minimal cytopathic effect on normal tissues. This review summarizes the preclinical data that led to the rapid clinical translation of oncolytic measles vaccine strains and provides an overview of early clinical data using this oncolytic platform. Furthermore, novel approaches currently under development to further enhance the oncolytic efficacy of MV-Edm strains, including strategies to circumvent immunity or modulate immune system responses, combinatorial approaches with standard treatment modalities, virus retargeting as well as strategies for in vivo monitoring of viral replication are discussed.
Collapse
Affiliation(s)
- P Msaouel
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
25
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
26
|
Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2012; 21:561-9. [PMID: 23070115 DOI: 10.1038/mt.2012.211] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an untreatable human brain malignancy. Despite promising preclinical studies using oncolytic herpes simplex virus (oHSV) vectors, efficacy in patients has been limited by inefficient virus replication in tumor cells. This disappointing outcome can be attributed in part to attenuating mutations engineered into these viruses to prevent replication in normal cells. Alternatively, retargeting of fully replication-competent HSV to tumor-associated receptors has the potential to achieve tumor specificity without impairment of oncolytic activity. Here, we report the establishment of an HSV retargeting system that relies on the combination of two engineered viral glycoproteins, gD and gB, to mediate highly efficient HSV infection exclusively through recognition of the abundantly expressed epidermal growth factor receptor (EGFR) on glioblastoma cells. We demonstrate efficacy in vitro and in a heterotopic tumor model in mice. Evidence for systemically administered virus homing to the tumor mass is presented. Treatment of orthotopic primary human GBM xenografts demonstrated prolonged survival with up to 73% of animals showing a complete response as confirmed by magnetic resonance imaging. Our study describes an approach to HSV retargeting that is effective in a glioma model and may be applicable to the treatment of a broad range of tumor types.
Collapse
|
27
|
Navaratnarajah CK, Miest TS, Carfi A, Cattaneo R. Targeted entry of enveloped viruses: measles and herpes simplex virus I. Curr Opin Virol 2011; 2:43-9. [PMID: 22440965 DOI: 10.1016/j.coviro.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/17/2011] [Accepted: 12/01/2011] [Indexed: 01/11/2023]
Abstract
We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids.
Collapse
Affiliation(s)
- Chanakha K Navaratnarajah
- Department of Molecular Medicine, Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
28
|
Long MA, Rossi FMV. Targeted cell fusion facilitates stable heterokaryon generation in vitro and in vivo. PLoS One 2011; 6:e26381. [PMID: 22039476 PMCID: PMC3200330 DOI: 10.1371/journal.pone.0026381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
Induced cell fusion has enabled several important discoveries, including the phenomenon of nuclear reprogramming and may yet be applied as a novel therapy for degenerative diseases. However, existing fusogens lack the efficiency required to enable investigation of the epigenetic modifications underlying nuclear reprogramming and the specificity required for clinical application. Here we present a chimeric measles hemagglutinin, Hα7, which specifically and efficiently mediates the fusion of diverse cell types with skeletal muscle both in vitro and in vivo. When compared directly to polyethylene glycol, Hα7 consistently generated a substantial increase in heterokaryon yield and exhibited insignificant levels of toxicity. Moreover, this increased fusion efficiency enabled detection of chromatin modifications associated with nuclear reprogramming following Hα7-mediated fusion of human fibroblasts and mouse myotubes. Finally, Hα7 was also capable of increasing the contribution of transplanted fibroblasts to skeletal muscle repair in vivo, suggesting that this strategy could be used for therapeutic gene delivery.
Collapse
Affiliation(s)
- Michael A. Long
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
29
|
Targeted entry via somatostatin receptors using a novel modified retrovirus glycoprotein that delivers genes at levels comparable to those of wild-type viral glycoproteins. J Virol 2011; 86:373-81. [PMID: 22013043 DOI: 10.1128/jvi.05411-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 10(6) transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins.
Collapse
|
30
|
Canine distemper virus infects canine keratinocytes and immune cells by using overlapping and distinct regions located on one side of the attachment protein. J Virol 2011; 85:11242-54. [PMID: 21849439 DOI: 10.1128/jvi.05340-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.
Collapse
|
31
|
Kazuki Y, Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 2011; 19:1591-601. [PMID: 21750534 DOI: 10.1038/mt.2011.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Random integration of conventional gene delivery vectors such as viruses, plasmids, P1 phage-derived artificial chromosomes, bacterial artificial chromosomes and yeast artificial chromosomes can be associated with transgene silencing. Furthermore, integrated viral sequences can activate oncogenes adjacent to the insertion site resulting in cancer. Various human artificial chromosomes (HACs) exhibit several potential characteristics desired for an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci with their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. HACs have been generated mainly using either a "top-down approach" (engineered chromosomes), or a "bottom-up approach" (de novo artificial chromosomes). The recent emergence of stem cell-based tissue engineering has opened up new avenues for gene and cell therapies. This review describes the lessons learned and prospects identified mainly from studies in the construction of HACs and HAC-mediated gene expression systems in cultured cells, as well as in animals.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | | |
Collapse
|
32
|
Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther 2011; 19:1813-20. [PMID: 21610701 DOI: 10.1038/mt.2011.92] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics.
Collapse
|
33
|
Mutations in the stalk region of the measles virus hemagglutinin inhibit syncytium formation but not virus entry. J Virol 2010; 84:10913-7. [PMID: 20702637 DOI: 10.1128/jvi.00789-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide. We show that after binding of MV to its receptor, H-F dissociation is required for productive infection.
Collapse
|
34
|
Affiliation(s)
- Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota, United States of America.
| |
Collapse
|
35
|
Katoh M, Kazuki Y, Kazuki K, Kajitani N, Takiguchi M, Nakayama Y, Nakamura T, Oshimura M. Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC Biotechnol 2010; 10:37. [PMID: 20444293 PMCID: PMC2874513 DOI: 10.1186/1472-6750-10-37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 05/06/2010] [Indexed: 01/30/2023] Open
Abstract
Background Microcell-mediated chromosome transfer (MMCT) is a technique by which a chromosome(s) is moved from donor to recipient cells by microcell fusion. Polyethylene glycol (PEG) has conventionally been used as a fusogen, and has been very successful in various genetic studies. However, PEG is not applicable for all types of recipient cells, because of its cell type-dependent toxicity. The cytotoxicity of PEG limits the yield of microcell hybrids to low level (10-6 to 10-5 per recipient cells). To harness the full potential of MMCT, a less toxic and more efficient fusion protocol that can be easily manipulated needs to be developed. Results Microcell donor CHO cells carrying a human artificial chromosome (HAC) were transfected with genes encoding hemagglutinin (H) and fusion (F) proteins of an attenuated Measles Virus (MV) Edmonston strain. Mixed culture of the CHO transfectants and MV infection-competent human fibrosarcoma cells (HT1080) formed multinucleated syncytia, suggesting the functional expression of the MV-H/F in the CHO cells. Microcells were prepared and applied to HT1080 cells, human immortalized mesenchymal stem cells (hiMSC), and primary fibroblasts. Drug-resistant cells appeared after selection in culture with Blasticidin targeted against the tagged selection marker gene on the HAC. The fusion efficiency was determined by counting the total number of stable clones obtained in each experiment. Retention of the HAC in the microcell hybrids was confirmed by FISH analyses. The three recipient cell lines displayed distinct fusion efficiencies that depended on the cell-surface expression level of CD46, which acts as a receptor for MV. In HT1080 and hiMSC, the maximum efficiency observed was 50 and 100 times greater than that using conventional PEG fusion, respectively. However, the low efficiency of PEG-induced fusion with HFL1 was not improved by the MV fusogen. Conclusions Ectopic expression of MV envelope proteins provides an efficient recipient cell-oriented MMCT protocol, facilitating extensive applications for studies of gene function and genetic corrections.
Collapse
Affiliation(s)
- Motonobu Katoh
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, Kaur JS, Haluska PJ, Aderca I, Zollman PJ, Sloan JA, Keeney G, Atherton PJ, Podratz KC, Dowdy SC, Stanhope CR, Wilson TO, Federspiel MJ, Peng KW, Russell SJ. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70:875-82. [PMID: 20103634 DOI: 10.1158/0008-5472.can-09-2762] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Edmonston vaccine strains of measles virus (MV) have shown significant antitumor activity in preclinical models of ovarian cancer. We engineered MV to express the marker peptide carcinoembryonic antigen (MV-CEA virus) to also permit real-time monitoring of viral gene expression in tumors in the clinical setting. Patients with Taxol and platinum-refractory recurrent ovarian cancer and normal CEA levels were eligible for this phase I trial. Twenty-one patients were treated with MV-CEA i.p. every 4 weeks for up to 6 cycles at seven different dose levels (10(3)-10(9) TCID(50)). We observed no dose-limiting toxicity, treatment-induced immunosuppression, development of anti-CEA antibodies, increase in anti-MV antibody titers, or virus shedding in urine or saliva. Dose-dependent CEA elevation in peritoneal fluid and serum was observed. Immunohistochemical analysis of patient tumor specimens revealed overexpression of measles receptor CD46 in 13 of 15 patients. Best objective response was dose-dependent disease stabilization in 14 of 21 patients with a median duration of 92.5 days (range, 54-277 days). Five patients had significant decreases in CA-125 levels. Median survival of patients on study was 12.15 months (range, 1.3-38.4 months), comparing favorably to an expected median survival of 6 months in this patient population. Our findings indicate that i.p. administration of MV-CEA is well tolerated and results in dose-dependent biological activity in a cohort of heavily pretreated recurrent ovarian cancer patients.
Collapse
Affiliation(s)
- Evanthia Galanis
- Division of Medical Oncology, Department of Molecular Medicine, Mayo Clinic, Gonda 10-141, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Griffin DE, Oldstone MBA. Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Curr Top Microbiol Immunol 2009; 329:59-76. [PMID: 19198562 PMCID: PMC7121846 DOI: 10.1007/978-3-540-70523-9_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measles virus (MV) enters cells by membrane fusion at the cell surface at neutral pH. Two glycoproteins mediate this process: the hemagglutinin (H) and fusion (F) proteins. The H-protein binds to receptors, while the F-protein mediates fusion of the viral and cellular membranes. H naturally interacts with at least three different receptors. The wild-type virus primarily uses the signaling lymphocyte activation molecule (SLAM, CD150) expressed on certain lymphatic cells, while the vaccine strain has gained the ability to also use the ubiquitous membrane cofactor protein (MCP, CD46), a regulator of complement activation. Additionally, MV infects polarized epithelial cells through an unidentified receptor (EpR). The footprints of the three receptors on H have been characterized, and the focus of research is shifting to the characterization of receptor-specific conformational changes that occur in the H-protein dimer and how these are transmitted to the F-protein trimer. It was also shown that MV attachment and cell entry can be readily targeted to designated receptors by adding specificity determinants to the H-protein. These studies have contributed to our understanding of membrane fusion by the glycoprotein complex of paramyxoviruses in general.
Collapse
Affiliation(s)
- Diane E. Griffin
- Department of Molecular Microbiology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037 USA
| |
Collapse
|
38
|
Abstract
Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional so-called spontaneous tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their nontransformed counterparts. For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency, and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of preexisting anti-measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in 50 years of human experience, reversion of attenuated measles to a wild-type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.
Collapse
Affiliation(s)
- Stephen J. Russell
- Mayo Clinic Department of Molecular Medicine, 200 1 Street SW, Rochester, MN 55905, Phone: 507-824-8384, Fax: 507-284-8388,
| | - Kah Whye Peng
- Mayo Clinic Department of Molecular Medicine, 200 1Street SW, Rochester, MN 55905, Phone: 507-824-8357, Fax: 507-284-8388,
| |
Collapse
|
39
|
Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I. Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 2008; 16:44-52. [PMID: 18654610 DOI: 10.1038/cgt.2008.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vesicular stomatitis virus (VSV) is being developed for cancer therapy. We created a recombinant replicating VSV (rrVSV) that preferentially infected Her2/neu expressing breast cancer cells. We now used this rrVSV to treat macroscopic peritoneal tumor implants of a mouse mammary tumor cell line stably transfected to express Her2/neu. rrVSV therapy alone prolonged survival but did not cure any animals. rrVSV therapy combined with antibody to TGFb or antibody to IL-10 receptor (IL-10R) each produced cure in one of six animals. Strikingly, rrVSV therapy combined with anti-CTLA4 monoclonal antibody (MAb) produced cure in four of five animals. Anti-CTLA4 MAb was only effective when administered within one day of rrVSV therapy. Cure required CD4 T-cells early (<7 days) and late (>7 days) after rrVSV therapy whereas CD8 T-cells were required only late (>7 days) after rrVSV therapy. Surviving animals were resistant to re-challenge with D2F2/E2 suggesting a memory immune response. Histopathologic analysis demonstrated a dense inflammatory infiltrate of tumor nodules within days of therapy and foamy histiocytes replacing the tumor nodules 2 weeks following therapy. These studies demonstrate that targeted rrVSV combined with anti-CTLA4 MAb can eliminate established macroscopic tumor implants by eliciting an anti-tumor CD4 and CD8 T-cell immunologic response.
Collapse
Affiliation(s)
- Y Gao
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
40
|
Cattaneo R, Miest T, Shashkova EV, Barry MA. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 2008; 6:529-40. [PMID: 18552863 PMCID: PMC3947522 DOI: 10.1038/nrmicro1927] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Virotherapy is currently undergoing a renaissance, based on our improved understanding of virus biology and genetics and our better knowledge of many different types of cancer. Viruses can be reprogrammed into oncolytic vectors by combining three types of modification: targeting, arming and shielding. Targeting introduces multiple layers of cancer specificity and improves safety and efficacy; arming occurs through the expression of prodrug convertases and cytokines; and coating with polymers and the sequential usage of different envelopes or capsids provides shielding from the host immune response. Virus-based therapeutics are beginning to find their place in cancer clinical practice, in combination with chemotherapy and radiation.
Collapse
Affiliation(s)
- Roberto Cattaneo
- Department of Molecular Medicine, Rochester, MayoClinic, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
41
|
Navaratnarajah CK, Vongpunsawad S, Oezguen N, Stehle T, Braun W, Hashiguchi T, Maenaka K, Yanagi Y, Cattaneo R. Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). J Biol Chem 2008; 283:11763-71. [PMID: 18292085 DOI: 10.1074/jbc.m800896200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of measles virus with its receptor signaling lymphocytic activation molecule (SLAM) controls cell entry and governs tropism. We predicted potential interface areas of the measles virus attachment protein hemagglutinin to begin the investigation. We then assessed the relevance of individual amino acids located in these areas for SLAM-binding and SLAM-dependent membrane fusion, as measured by surface plasmon resonance and receptor-specific fusion assays, respectively. These studies identified one hemagglutinin protein residue, isoleucine 194, which is essential for primary binding. The crystal structure of the hemagglutinin-protein localizes Ile-194 at the interface of propeller blades 5 and 6, and our data indicate that a small aliphatic side chain of residue 194 stabilizes a protein conformation conducive to binding. In contrast, a quartet of residues previously shown to sustain SLAM-dependent fusion is not involved in binding. Instead, our data prove that after binding, this quartet of residues on propeller blade 5 conducts conformational changes that are receptor-specific. Our study sets a structure-based stage for understanding how the SLAM-elicited conformational changes travel through the H-protein ectodomain before triggering fusion protein unfolding and membrane fusion.
Collapse
Affiliation(s)
- Chanakha K Navaratnarajah
- Department of Molecular Medicine and Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
STRAUSS JAMESH, STRAUSS ELLENG. Gene Therapy. VIRUSES AND HUMAN DISEASE 2008. [PMCID: PMC7148746 DOI: 10.1016/b978-0-12-373741-0.50014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Johnston PB, Parker WB, Sorscher EJ, Cattaneo R. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 2007; 67:10939-47. [PMID: 18006839 DOI: 10.1158/0008-5472.can-07-1252] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combination chemotherapy regimen incorporating CD20 antibodies are commonly used in the treatment of CD20-positive non-Hodgkin's lymphoma (NHL). Fludarabine phosphate (F-araAMP), cyclophosphamide, and CD20 antibodies (Rituximab) constitute the FCR regimen for treating selected NHL, including aggressive mantle cell lymphoma (MCL). As an alternative to the CD20 antibody, we generated a CD20-targeted measles virus (MV)-based vector. This vector was also armed with the prodrug convertase purine nucleoside phosphorylase (PNP) that locally converts the active metabolite of F-araAMP to a highly diffusible substance capable of efficiently killing bystander cells. We showed in infected cells that early prodrug administration controls vector spread, whereas late administration enhances cell killing. Control of spread by early prodrug administration was also shown in an animal model: F-araAMP protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Enhanced oncolytic potency after extensive infection was shown in a Burkitt's lymphoma xenograft model (Raji cells): After systemic vector inoculation, prodrug administration enhanced the therapeutic effect synergistically. In a MCL xenograft model (Granta 519 cells), intratumoral (i.t.) vector administration alone had high oncolytic efficacy: All mice experienced complete but temporary tumor regression, and survival was two to four times longer than that of untreated mice. Cells from MCL patients were shown to be sensitive to infection. Thus, synergy of F-araAMP with a PNP-armed and CD20-targeted MV was shown in one lymphoma therapy model after systemic vector inoculation.
Collapse
Affiliation(s)
- Guy Ungerechts
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ungerechts G, Springfeld C, Frenzke ME, Lampe J, Parker WB, Sorscher EJ, Cattaneo R. An Immunocompetent Murine Model for Oncolysis with an Armed and Targeted Measles Virus. Mol Ther 2007; 15:1991-7. [PMID: 17712331 DOI: 10.1038/sj.mt.6300291] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An immunocompetent model is required to test therapeutic regimens for clinical trials with the oncolytic measles virus (MV). Toward developing this model, a retargeted MV that enters murine colon adenocarcinoma cells forming tumors in syngeneic C57BL/6 mice was generated. Since MV infection tends to be less efficient in murine than in human cells, the targeted virus was also armed with the prodrug convertase, purine nucleoside phosphorylase (PNP), and named MV-PNP-antiCEA. We have shown before that in cultured cells, infection with this virus activated the prodrug, 6-methylpurine-2'-deoxyriboside (MeP-dR), causing extensive cytotoxicity. When injected intratumorally (IT), MV-PNP-antiCEA inhibited subcutaneous tumor growth marginally, but subsequent administration of the prodrug enhanced the oncolytic effect. Systemic delivery of MV-PNP-antiCEA alone had no substantial oncolytic effects, but in combination with the prodrug it was therapeutic, revealing synergistic effects between virus and prodrug. Immunosuppression with cyclophosphamide (CPA) retarded the appearance of MV neutralizing antibodies and enhanced oncolytic efficacy: survival was 100%, with 9 out of 10 animals going into complete remission. This immunocompetent murine model facilitates the testing of therapeutic regimens for clinical trials.
Collapse
Affiliation(s)
- Guy Ungerechts
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bergman I, Griffin JA, Gao Y, Whitaker-Dowling P. Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 2007; 121:425-30. [PMID: 17354238 DOI: 10.1002/ijc.22680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vesicular stomatitis virus (VSV) is being developed for cancer therapy. We have created a recombinant replicating VSV (rrVSV) that targeted to Her2/neu expressing breast cancer cells and expresses mouse GM-CSF. We now tested the efficacy of this rrVSV in the treatment of peritoneal tumor implants of D2F2/E2 cells, a BALB/c mouse mammary tumor cell line, which was stably transfected to express Her2/neu. Mice were treated 1 day following tumor implantation with either 2 x 10(8) infectious doses rrVSV or conditioned media (CM). All control animals developed massive peritoneal tumor with a median survival of 16 days. Nine of 10 rrVSV treated mice survived long term with no evidence of tumor. rrVSV had much less efficacy in treating implants of the parent D2F2 cells that did not express Her2/neu. The median survival was 13.5 days in mice treated with CM and 21 days in those treated with rrVSV. There was one long term survivor in the rrVSV treated group. None of the rrVSV treated animals showed evidence of viral toxicity. Three of 7 long term survivors did not develop tumor when rechallenged first with D2F2/E2 and then with D2F2 cells. Both successful therapy and resistance to rechallenge were T-cell dependent. These studies demonstrate that targeted rrVSV eliminated peritoneal implants of Her2/neu expressing tumor and elicited an anti-tumor T-cell immunologic response.
Collapse
Affiliation(s)
- Ira Bergman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
46
|
Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW, Schroeder M, Russell SJ, Galanis E. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther 2007; 15:677-86. [PMID: 17299404 DOI: 10.1038/sj.mt.6300105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A retargeted measles virus strain MV-GFP-H(AA)-scEGFR was generated by engineering the MV-NSe Edmonston vaccine strain to incorporate both CD46 (Y481A) and signaling lymphocyte activation molecule (SLAM) (R533A) ablating mutations in the hemagglutinin protein in combination with the display of a single-chain antibody against epidermal growth factor receptor (EGFR) at the C terminus of hemagglutinin. The unmodified MV-GFP virus was used as a positive control. Specificity of the EGFR retargeted virus was demonstrated in non-permissive Chinese hamster ovary (CHO) cells stably transfected to express either the natural receptors CD46 or SLAM or the target receptors EGFR and EGFRvIII. In vitro, the retargeted virus had potent antitumor activity against EGFR- or EGFRvIII-overexpressing primary glioblastoma multi-forme (GBM) cell lines that was comparable to the activity of the unmodified MV-GFP virus. Intratumoral administration of MV-GFP-H(AA)-scEGFRvIII in orthotopic GBM12 xenografts resulted in tumor regression, as demonstrated by bioluminescence imaging and significant prolongation of survival, that was comparable to the effect of the unmodified strain. In contrast to MV-GFP, central nervous system administration of the targeted MV-GFP-H(AA)-scEGFR virus in measles replication-permissive Ifnar(ko) CD46 transgenic mice resulted in no neurotoxicity. In conclusion, EGFR-retargeted measles virus strains have comparable therapeutic efficacy to the unmodified virus in glioma cells overexpressing EGFR or EGFRvIII in vivo and in vitro, and improved therapeutic index, a finding with potential translational implications in glioma virotherapy.
Collapse
|
47
|
Allen C, Vongpunsawad S, Nakamura T, James CD, Schroeder M, Cattaneo R, Giannini C, Krempski J, Peng KW, Goble JM, Uhm JH, Russell SJ, Galanis E. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 2007; 66:11840-50. [PMID: 17178881 DOI: 10.1158/0008-5472.can-06-1200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the best-characterized genetic alterations in gliomas is the amplification of the epidermal growth factor receptor (EGFR) gene, present in approximately 40% of glioblastoma multiforme, and frequently associated with the EGFRvIII gene rearrangement. We have previously shown that attenuated vaccine strains of measles virus have potent antitumor activity against gliomas, and identified H protein mutations, which ablate recognition of the natural measles virus receptors CD46 and SLAM. Retargeted recombinant viruses were generated from the measles Edmonston-NSe vaccine strain displaying a single-chain antibody against EGFRvIII at the COOH terminus of H and containing the marker green fluorescent protein (GFP) gene in position 1. Two different H mutants were employed: H(SNS) (V451S, Y481N, and A527S)-CD46 blind, and H(AA) (Y481A and R533A)-CD46 and SLAM blind. MV-GFP virus was used as a positive control. Both EGFRvIII-retargeted viruses had significant antitumor activity against EGFRvIII-expressing glioblastoma multiforme but no cytopathic effect against normal cells. In an orthotopic model of EGFRvIII-expressing GBM39 xenografts, there was comparable therapeutic efficacy between retargeted strains and unmodified MV-GFP and statistically significant prolongation of survival in treated animals compared with the control group (P = 0.001). Formation of syncytia was observed in tumors treated with retargeted viruses, with a surrounding infiltrate consisting of macrophages and natural killer cells. In summary, EGFRvIII-retargeted oncolytic measles virus strains have comparable therapeutic efficacy with the unmodified MV-GFP strain against EGFRvIII-expressing glioma lines and xenografts with improved therapeutic index, a finding with potential translational implications in glioma virotherapy.
Collapse
Affiliation(s)
- Cory Allen
- Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Künzi V, Oberholzer PA, Heinzerling L, Dummer R, Naim HY. Recombinant Measles Virus Induces Cytolysis of Cutaneous T-Cell Lymphoma In Vitro and In Vivo. J Invest Dermatol 2006; 126:2525-32. [PMID: 16960554 DOI: 10.1038/sj.jid.5700529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measles virus (MV) has shown promise as an oncolytic virus in the treatment of different tumor models for human B-cell lymphoma, multiple myeloma, ovarian cancer, and glioma. We have shown that, in a phase I clinical trial, MV vaccine induces tumor regression in cutaneous T-cell lymphoma (CTCL) patients. Here, we investigated in detail, the effect of recombinant MV (rMV) vaccine strain in CTCL cell cultures, and in vivo in established CTCL xenografts in nude mice. The susceptibility of three CTCL cell lines, originating from patients, to rMV was tested by determination of cell surface expression of MV receptors. All cell lines expressed the receptors CD150 and CD46 and were easily infected by rMV and induced complete cell lysis. The cytoreductive activity was apparent in cells forming aggregates, indicating a cell-to-cell spread of MV and cytolysis owing to virus infection. Intratumoral (i.t.) injection of rMV, expressing enhanced green fluorescent protein induced complete regression of large established human CTCL tumors in nude mice, whereas tumors with control treatment progressed exponentially. Immunohistochemical analysis of tumor biopsies, after i.t. treatment, for MV-NP protein complex demonstrated replication of MV within the tumors. The data demonstrate the potential of MV as a therapeutic agent against CTCL.
Collapse
|
49
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
50
|
Springfeld C, von Messling V, Frenzke M, Ungerechts G, Buchholz CJ, Cattaneo R. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res 2006; 66:7694-700. [PMID: 16885371 DOI: 10.1158/0008-5472.can-06-0538] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells secrete matrix metalloproteinases (MMP) that degrade the extracellular matrix and are responsible for some hallmarks of malignant cancer. Many viruses, including a few currently used in oncolytic virotherapy clinical trials, depend on intracellular proteases to process their proteins and activate their particles. We show here for measles virus (MV) that particle activation can be made dependent of proteases secreted by cancer cells. The MV depends on the intracellular protease furin to process and activate its envelope fusion (F) protein. To make F protein activation cancer cell specific, we introduced hexameric sequences recognized by an MMP and identified the mutant proteins most effective in fusing MMP-expressing human fibrosarcoma cells (HT1080). We showed that an MMP inhibitor interferes with syncytia formation elicited by mutant F proteins and confirmed MMP-dependent cleavage by Edman degradation sequence analysis. We generated recombinant MVs expressing the modified F proteins in place of furin-activated F. These viruses spread only in cells secreting MMP. In nude mice, an MMP-activated MV retarded HT1080 xenograft growth as efficiently as the furin-activated MV vaccine strain. In MV-susceptible mice, the furin-activated virus caused lethal encephalitis upon intracerebral inoculation, whereas the MMP-activated did not. Thus, MV particle activation can be made dependent of proteases secreted by cancer cells, enhancing safety. This study opens the perspective of combining targeting at the particle activation, receptor recognition, and selective replication levels to improve the therapeutic index of MV and other viruses in ongoing clinical trials of oncolysis.
Collapse
Affiliation(s)
- Christoph Springfeld
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55902, USA
| | | | | | | | | | | |
Collapse
|