1
|
Maeda Y, Toyoda M, Kuwata T, Terasawa H, Tokugawa U, Monde K, Sawa T, Ueno T, Matsushita S. Differential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate ACE2. Int J Mol Sci 2024; 25:1353. [PMID: 38279353 PMCID: PMC10816870 DOI: 10.3390/ijms25021353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) and employs angiotensin-converting enzyme 2 (ACE2) as the receptor. Although the expression of ACE2 is crucial for cellular entry, we found that the interaction between ACE2 and the Spike (S) protein in the same cells led to its downregulation through degradation in the lysosomal compartment via the endocytic pathway. Interestingly, the ability of the S protein from previous variants of concern (VOCs) to downregulate ACE2 was variant-dependent and correlated with disease severity. The S protein from the Omicron variant, associated with milder disease, exhibited a lower capacity to downregulate ACE2 than that of the Delta variant, which is linked to a higher risk of hospitalization. Chimeric studies between the S proteins from the Delta and Omicron variants revealed that both the receptor-binding domain (RBD) and the S2 subunit played crucial roles in the reduced ACE2 downregulation activity observed in the Omicron variant. In contrast, three mutations (L452R/P681R/D950N) located in the RBD, S1/S2 cleavage site, and HR1 domain were identified as essential for the higher ACE2 downregulation activity observed in the Delta variant compared to that in the other VOCs. Our results suggested that dysregulation of the renin-angiotensin system due to the ACE2 downregulation activity of the S protein of SARS-CoV-2 may play a key role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Hiromi Terasawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Umiru Tokugawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| |
Collapse
|
2
|
Maeda Y, Monde K, Terasawa H, Tanaka Y, Sawa T. Interaction of TSG101 with the PTAP Motif in Distinct Locations of Gag Determines the Incorporation of HTLV-1 Env into the Retroviral Virion. Int J Mol Sci 2023; 24:16520. [PMID: 38003710 PMCID: PMC10671467 DOI: 10.3390/ijms242216520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Human T-cell tropic virus type 1 (HTLV-1) is known to be mainly transmitted by cell-to-cell contact due to the lower infectivity of the cell-free virion. However, the reasons why cell-free HTLV-1 infection is poor remain unknown. In this study, we found that the retrovirus pseudotyped with HTLV-1 viral envelope glycoprotein (Env) was infectious when human immunodeficiency virus type 1 (HIV-1) was used to produce the virus. We found that the incorporation of HTLV-1 Env into virus-like particles (VLPs) was low when HTLV-1 Gag was used to produce VLPs, whereas VLPs produced using HIV-1 Gag efficiently incorporated HTLV-1 Env. The production of VLPs using Gag chimeras between HTLV-1 and HIV-1 Gag and deletion mutants of HIV-1 Gag showed that the p6 domain of HIV-1 Gag was responsible for the efficient incorporation of HTLV-1 Env into the VLPs. Further mutagenic analyses of the p6 domain of HIV-1 Gag revealed that the PTAP motif in the p6 domain of HIV-1 Gag facilitates the incorporation of HTLV-1 Env into VLPs. Since the PTAP motif is known to interact with tumor susceptibility gene 101 (TSG101) during the budding process, we evaluated the effect of TSG101 knockdown on the incorporation of HTLV-1 Env into VLPs. We found that TSG101 knockdown suppressed the incorporation of HTLV-1 Env into VLPs and decreased the infectivity of cell-free HIV-1 pseudotyped with HTLV-1 Env. Our results suggest that the interaction of TSG101 with the PTAP motif of the retroviral L domain is involved not only in the budding process but also in the efficient incorporation of HTLV-1 Env into the cell-free virus.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Hiromi Terasawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.M.); (T.S.)
| |
Collapse
|
3
|
Existence of Replication-Competent Minor Variants with Different Coreceptor Usage in Plasma from HIV-1-Infected Individuals. J Virol 2020; 94:JVI.00193-20. [PMID: 32295903 DOI: 10.1128/jvi.00193-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.
Collapse
|
4
|
Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5-tropic HIV-1s. Sci Rep 2019; 9:4828. [PMID: 30886166 PMCID: PMC6423129 DOI: 10.1038/s41598-019-41080-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
CCR5 is a member of the G-protein coupled receptor family that serves as an essential co-receptor for cellular entry of R5-tropic HIV-1, and is a validated target for therapeutics against HIV-1 infections. In the present study, we designed and synthesized a series of novel small CCR5 inhibitors and evaluated their antiviral activity. GRL-117C inhibited the replication of wild-type R5-HIV-1 with a sub-nanomolar IC50 value. These derivatives retained activity against vicriviroc-resistant HIV-1s, but did not show activity against maraviroc (MVC)-resistant HIV-1. Structural modeling indicated that the binding of compounds to CCR5 occurs in the hydrophobic cavity of CCR5 under the second extracellular loop, and amino acids critical for their binding were almost similar with those of MVC, which explains viral cross-resistance with MVC. On the other hand, one derivative, GRL-10018C, less potent against HIV-1, but more potent in inhibiting CC-chemokine binding, occupied the upper region of the binding cavity with its bis-THF moiety, presumably causing greater steric hindrance with CC-chemokines. Recent studies have shown additional unique features of certain CCR5 inhibitors such as immunomodulating properties and HIV-1 latency reversal properties, and thus, continuous efforts in developing new CCR5 inhibitors with unique binding profiles is necessary.
Collapse
|
5
|
Insights into the mechanism of inhibition of CXCR4: identification of Piperidinylethanamine analogs as anti-HIV-1 inhibitors. Antimicrob Agents Chemother 2015; 59:1895-904. [PMID: 25583709 DOI: 10.1128/aac.04654-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular entry of HIV-1 into CD4(+) T cells requires ordered interactions of HIV-1 envelope glycoprotein with C-X-C chemokine receptor type 4 (CXCR4) receptors. However, such interactions, which should be critical for rational structure-based discovery of new CXCR4 inhibitors, remain poorly understood. Here we first determined the effects of amino acid substitutions in CXCR4 on HIV-1NL 4 - 3 glycoprotein-elicited fusion events using site-directed mutagenesis-based fusion assays and identified 11 potentially key amino acid substitutions, including D97A and E288A, which caused >30% reductions in fusion. We subsequently carried out a computational search of a screening library containing ∼604,000 compounds, in order to identify potential CXCR4 inhibitors. The computational search used the shape of IT1t, a known CXCR4 inhibitor, as a reference and employed various algorithms, including shape similarity, isomer generation, and docking against a CXCR4 crystal structure. Sixteen small molecules were identified for biological assays based on their high shape similarity to IT1t, and their putative binding modes formed hydrogen bond interactions with the amino acids identified above. Three compounds with piperidinylethanamine cores showed activity and were resynthesized. One molecule, designated CX6, was shown to significantly inhibit fusion elicited by X4 HIV-1NL 4 - 3 glycoprotein (50% inhibitory concentration [IC50], 1.9 μM), to inhibit Ca(2+) flux elicited by stromal cell-derived factor 1α (SDF-1α) (IC50, 92 nM), and to exert anti-HIV-1 activity (IC50, 1.5 μM). Structural modeling demonstrated that CX6 bound to CXCR4 through hydrogen bond interactions with Asp97 and Glu288. Our study suggests that targeting CXCR4 residues important for fusion elicited by HIV-1 envelope glycoprotein should be a useful and feasible approach to identifying novel CXCR4 inhibitors, and it provides important insights into the mechanism by which small-molecule CXCR4 inhibitors exert their anti-HIV-1 activities.
Collapse
|
6
|
Separate cellular localizations of human T-lymphotropic virus 1 (HTLV-1) Env and glucose transporter type 1 (GLUT1) are required for HTLV-1 Env-mediated fusion and infection. J Virol 2014; 89:502-11. [PMID: 25339765 DOI: 10.1128/jvi.02686-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interaction of the envelope glycoprotein (Env) of human T-lymphotropic virus 1 (HTLV-1) with the glucose transporter type 1 (GLUT1) expressed in target cells is essential for viral entry. This study found that the expression level of GLUT1 in virus-producing 293T cells was inversely correlated with HTLV-1 Env-mediated fusion activity and infectivity. Chimeric studies between GLUT1 and GLUT3 indicated that the extracellular loop 6 (ECL6) of GLUT1 is important for the inhibition of cell-cell fusion mediated by Env. When GLUT1 was translocated into the plasma membrane from intracellular storage sites by bafilomycin A1 (BFLA1) treatment in 293T cells, HTLV-1 Env-mediated cell fusion and infection also were inhibited without the overexpression of GLUT1, indicating that the localization of GLUT1 in intracellular compartments rather than in the plasma membrane is crucial for the fusion activity of HTLV-1 Env. Immunoprecipitation and laser scanning confocal microscopic analyses indicated that under normal conditions, HTLV-1 Env and GLUT1 do not colocalize or interact. BFLA1 treatment induced this colocalization and interaction, indicating that GLUT1 normally accumulates in intracellular compartments separate from that of Env. Western blot analyses of FLAG-tagged HTLV-1 Env in virus-producing cells and the incorporation of HTLV-1 Env in virus-like particles (VLPs) indicate that the processing of Env is inhibited by either overexpression of GLUT1 or BFLA1 treatment in virus-producing 293T cells. This inhibition probably is due to the interaction of the Env with GLUT1 in intracellular compartments. Taken together, separate intracellular localizations of GLUT1 and HTLV-1 Env are required for the fusion activity and infectivity of HTLV-1 Env. IMPORTANCE The deltaretrovirus HTLV-1 is a causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although HTLV-1 is a complex retrovirus that has accessory genes, no HTLV-1 gene product has yet been shown to regulate its receptor GLUT1 in virus-producing cells. In this study, we found that a large amount of GLUT1 or translocation of GLUT1 to the plasma membrane from intracellular compartments in virus-producing cells enhances the colocalization and interaction of GLUT1 with HTLV-1 Env, leading to the inhibition of cell fusion activity and infectivity. The results of our study suggest that GLUT1 normally accumulates in separate intracellular compartments from Env, which is indeed required for the proper processing of Env.
Collapse
|
7
|
Nakano Y, Monde K, Terasawa H, Yuan Y, Yusa K, Harada S, Maeda Y. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. Virology 2014; 452-453:117-24. [DOI: 10.1016/j.virol.2013.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
8
|
Maeda Y, Terasawa H, Nakano Y, Monde K, Yusa K, Oka S, Takiguchi M, Harada S. V3-independent competitive resistance of a dual-X4 HIV-1 to the CXCR4 inhibitor AMD3100. PLoS One 2014; 9:e89515. [PMID: 24586840 PMCID: PMC3929750 DOI: 10.1371/journal.pone.0089515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 12/16/2022] Open
Abstract
A CXCR4 inhibitor-resistant HIV-1 was isolated from a dual-X4 HIV-1 in vitro. The resistant variant displayed competitive resistance to the CXCR4 inhibitor AMD3100, indicating that the resistant variant had a higher affinity for CXCR4 than that of the wild-type HIV-1. Amino acid sequence analyses revealed that the resistant variant harbored amino acid substitutions in the V2, C2, and C4 regions, but no remarkable changes in the V3 loop. Site-directed mutagenesis confirmed that the changes in the C2 and C4 regions were principally involved in the reduced sensitivity to AMD3100. Furthermore, the change in the C4 region was associated with increased sensitivity to soluble CD4, and profoundly enhanced the entry efficiency of the virus. Therefore, it is likely that the resistant variant acquired the higher affinity for CD4/CXCR4 by the changes in non-V3 regions. Taken together, a CXCR4 inhibitor-resistant HIV-1 can evolve using a non-V3 pathway.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| | - Hiromi Terasawa
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Nakano
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yusa
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Shinji Harada
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Tsuchiya K, Ode H, Hayashida T, Kakizawa J, Sato H, Oka S, Gatanaga H. Arginine insertion and loss of N-linked glycosylation site in HIV-1 envelope V3 region confer CXCR4-tropism. Sci Rep 2014; 3:2389. [PMID: 23925152 PMCID: PMC3737504 DOI: 10.1038/srep02389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/24/2013] [Indexed: 12/02/2022] Open
Abstract
The third variable region (V3) of HIV-1 envelope glycoprotein gp120 plays a key role in determination of viral coreceptor usage (tropism). However, which combinations of mutations in V3 confer a tropism shift is still unclear. A unique pattern of mutations in antiretroviral therapy-naive HIV-1 patient was observed associated with the HIV-1 tropism shift CCR5 to CXCR4. The insertion of arginine at position 11 and the loss of the N-linked glycosylation site were indispensable for acquiring pure CXCR4-tropism, which were confirmed by cell-cell fusion assay and phenotype analysis of recombinant HIV-1 variants. The same pattern of mutations in V3 and the associated tropism shift were identified in two of 53 other patients (3.8%) with CD4+ cell count <200/mm3. The combination of arginine insertion and loss of N-linked glycosylation site usually confers CXCR4-tropism. Awareness of this rule will help to confirm the tropism prediction from V3 sequences by conventional rules.
Collapse
Affiliation(s)
- Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Yuan Y, Yokoyama M, Maeda Y, Terasawa H, Harada S, Sato H, Yusa K. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL) to maraviroc. PLoS One 2013; 8:e65115. [PMID: 23840315 PMCID: PMC3695986 DOI: 10.1371/journal.pone.0065115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/21/2013] [Indexed: 12/22/2022] Open
Abstract
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan) to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel β-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.
Collapse
Affiliation(s)
- Yuzhe Yuan
- Transfusion Transmitted Diseases Center, Institute of Blood Transfusion, Chinese Academy of Medical Science, Chenghua District, Chengdu, Sichuan Province, P. R. China
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromi Terasawa
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, Japan
| | - Keisuke Yusa
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
12
|
Toda T, Kuwahara K, Kondo N, Matsuda Z, Maeda Y, Maeda K, Sakaguchi N. Dynamic appearance of antigenic epitopes effective for viral neutralization during membrane fusion initiated by interactions between HIV-1 envelope proteins and CD4/CXCR4. Immunobiology 2011; 217:864-72. [PMID: 22226668 DOI: 10.1016/j.imbio.2011.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022]
Abstract
HIV-1 entry into cells is mediated by interactions between the envelope (Env) gp120 and gp41 proteins with CD4 and chemokine receptors via an intermediate called the viral fusion complex (vFC). Here, mAbs were used to find the dynamic changes in expression of antigenic epitopes during vFC formation. A CD4-specific mAb (R275) and anti-vFC mAbs, designated F12-1, F13-6 and F18-4 that recognize the epitopes only appeared by the co-culture of env-transfected 293FT and CD4-transfected 293 cells, were developed by immunizing ganp-gene transgenic mice with an vFC-like structure formed by the same co-culture. The epitopes recognized by the mAbs appeared at different time points during vFC formation: F18-4 appeared first, followed by F13-6, and finally F12-1. The anti-vFC mAbs had little effect on vFC formation or virus neutralization; however, interestingly F12-1 and F18-4 increased exposure of the OKT4-epitope on the domain 3 in the extracellular region of CD4. R275, which recognizes the epitope closely associated with the OKT4-determinant on the domain 3, showed the marked inhibition of vFC formation and viral neutralization activity. The Ab binding to the epitopes appeared during viral membrane fusion might reinforce the appearance of the target epitopes for effective neutralization activity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- Cell Line
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Order
- Gene Targeting
- HIV Antibodies/immunology
- HIV Antibodies/metabolism
- HIV-1/immunology
- Humans
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Mice
- Mice, Transgenic
- Neutralization Tests
- Protein Binding
- Receptors, CXCR4/immunology
- Receptors, CXCR4/metabolism
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Teppei Toda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Yuan Y, Maeda Y, Terasawa H, Monde K, Harada S, Yusa K. A combination of polymorphic mutations in V3 loop of HIV-1 gp120 can confer noncompetitive resistance to maraviroc. Virology 2011; 413:293-9. [DOI: 10.1016/j.virol.2011.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/14/2011] [Accepted: 02/24/2011] [Indexed: 11/29/2022]
|
14
|
High CD4+ T-Cell Surface CXCR4 Density as a Risk Factor for R5 to X4 Switch in the Course of HIV-1 Infection. J Acquir Immune Defic Syndr 2010; 55:529-35. [DOI: 10.1097/qai.0b013e3181f25bab] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Maeda Y, Yusa K, Nakano Y, Harada S. Involvement of inhibitory factors in the inefficient entry of HIV-1 into the human CD4 positive HUT78 cell line. Virus Res 2010; 155:368-71. [PMID: 20969902 DOI: 10.1016/j.virusres.2010.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/26/2022]
Abstract
Little is known about whether human CD4 positive T cells, the principal natural target of HIV-1, have intrinsic factors, other than the receptor/coreceptor molecules, which modulate the entry efficiency of HIV-1. In the present study, we found that human T cell lines, HUT78 and PM1, were less permissive to VSV-G-mediated HIV-1 infection compared with the Jurkat cell line. Furthermore, HUT78 cells were also less sensitive to HIV-1 Env-mediated infection, while PM1 cells became susceptible to HIV-1. Real-time PCR analyses showed that less susceptibility of the cells to HIV-1 was due to block at, or prior to, reverse transcription of viral RNA. To clarify the entry efficiency of HIV-1 into these cell lines, we analyzed the internalization of p24 Ag into the cytosolic and vesicular fractions of post-nuclear extracts at 4h post-infection. When the cells were infected with HIV-1 pseudotyped with VSV-G, the amount of p24 Ag in the cytosolic fractions in both HUT78 and PM1 cells was lower than that observed in Jurkat cells. In the case of HIV-1 Env-mediated infection, however, PM1 cells exhibited comparable amounts of p24 Ag in the cytosolic fraction compared with Jurkat cells, while the amount of p24 Ag in HUT78 cells remained low. Heterokaryon experiments between susceptible and less susceptible cell lines suggested that some inhibitory factors counteracted VSV-G-mediated viral entry in PM1 and HUT78 cells, and HIV-1 Env-mediated viral entry in HUT78 cells.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| | | | | | | |
Collapse
|
16
|
Nakata H, Kruhlak M, Kamata W, Ogata-Aoki H, Li J, Maeda K, Ghosh AK, Mitsuya H. Effects of CC chemokine receptor 5 (CCR5) inhibitors on the dynamics of CCR5 and CC-chemokine-CCR5 interactions. Antivir Ther 2010; 15:321-31. [PMID: 20516552 DOI: 10.3851/imp1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This study aimed to examine how CC chemokine receptor 5 (CCR5) inhibitors (aplaviroc [APL], TAK779 and maraviroc [MVC]) interact with CCR5 and affect its dynamics and physiological CC-chemokine-CCR5 interactions. METHODS A yellow fluorescent protein (YFP)-tagged CCR5-expressing U373-MAGI cell line was generated and a stable CCR5-expressing clonal population, (YFP)CCR5-UM16, was prepared. (YFP)CCR5-UM16 cells were exposed to RANTES, macrophage inflammatory protein (MIP)-1alpha or MIP-1beta (all 100 ng/ml) with or without CCR5 inhibitors and (YFP)CCR5 internalization was visualized with real-time by laser scanning confocal microscopy. The mobility of (YFP)CCR5 was also examined in the presence of CCR5 inhibitors with fluorescence recovery after photobleaching (FRAP) imaging. RESULTS Following the addition of each CC chemokine, intracellular fluorescence intensity increased whereas membranous fluorescence decreased, signifying (YFP)CCR5 internalization. All three CCR5 inhibitors failed to induce (YFP)CCR5 internalization. All three CCR5 inhibitors blocked the CC-chemokine-induced internalization at a high concentration of 1 microM; however, the ratio of APL concentration that blocked RANTES-induced internalization by 50% over APL concentration that blocked HIV type-1 (HIV-1) replication by 50% was 16.4, indicating that APL permits CC-chemokine-induced internalization to a much greater extent compared with TAK779 and MVC, having ratios of 1.1 and 0.9, respectively. The examination of (YFP)CCR5 mobility with FRAP imaging revealed that (YFP)CCR5 continuously underwent rapid redistribution, which none of the three inhibitors blocked. CONCLUSIONS The finding that APL moderately blocked the RANTES-triggered (YFP)CCR5 internalization despite the highly potent anti-HIV-1 activity of APL strongly suggests that development of CCR5 inhibitors, which do not overly inhibit physiological CC-chemokine-CCR5 interactions, is practically feasible.
Collapse
Affiliation(s)
- Hirotomo Nakata
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Murakami T, Yamamoto N. Role of CXCR4 in HIV infection and its potential as a therapeutic target. Future Microbiol 2010; 5:1025-39. [DOI: 10.2217/fmb.10.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chemokine receptors CCR5 and CXCR4 are the two major coreceptors for HIV entry. Numerous efforts have been made to develop a new class of anti-HIV agents that target these coreceptors as an additional or alternative therapy to standard HAART. Among the CCR5 inhibitors developed so far, maraviroc is the first drug that has been approved by the US FDA for treating patients with R5 HIV-1. Although many CXCR4 inhibitors, some of which are highly active and orally bioavailable, have also been studied, they are still at preclinical stages or have been suspended during development. Importantly, the interaction between CXCR4 and its ligand SDF-1 is involved in various disease conditions, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis and pulmonary fibrosis. Therefore, CXCR4 inhibitors have potential as novel therapeutics for the treatment of these diseases as well as HIV infection.
Collapse
Affiliation(s)
- Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1–23–1 Toyama, Shinjuku-ku, Tokyo 162–8640 Japan
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore 5 Science Drive 2, Blk MD4A, Level 5, 117597 Singapore
| |
Collapse
|
18
|
Psomas KC, Corbeau P, Reynes J. [CCR5 antagonists and HIV-1 infection: Bases and consequences of this therapeutic approach]. ACTA ACUST UNITED AC 2010; 12:27-41. [PMID: 32288525 PMCID: PMC7146793 DOI: 10.1016/j.antib.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
La molécule CCR5 est un récepteur de chimiokines qui joue un rôle important en pathologie infectieuse : corécepteur des souches du VIH-1 à tropisme R5, il est également impliqué dans la défense immunitaire contre certains agents transmissibles. Les antagonistes de CCR5 constituent une nouvelle approche thérapeutique antirétrovirale. Trois inhibiteurs du CCR5 ont atteint les phases IIb et III de développement clinique : aplaviroc (GlaxoSmithKine), vicriviroc (Schering-Plough) et maraviroc (Pfizer). Le développement de l’aplaviroc a été interrompu pour toxicité hépatique. Les essais ACTG 5211 et Motivate ont démontré une amélioration de la réponse antirétrovirale par l’addition respectivement de vicriviroc (actuellement en phase III) et de maraviroc (ayant déjà obtenu l’Autorisation de Mise sur le Marché) à un traitement optimisé chez des patients en échec thérapeutique. Le rôle de cette nouvelle cible thérapeutique dans les stratégies de traitement initial, de substitution ou de sauvetage reste à préciser, de même que leur intérêt chez des patients ayant une réponse immunovirologique dissociée, en immunodépresssion sévère ou infectés par des souches à tropisme non-R5. Plusieurs points sont également à éclaircir comme la tolérance à long terme, le risque d’induire une commutation R5-X4, en particulier dans les tissus, le risque d’interférer avec les réponses immunitaires, ainsi que l’impact d’une discordance de tropisme entre le plasma et les autres compartiments de l’organisme.
Collapse
Affiliation(s)
- K C Psomas
- Institut de génétique humaine, CNRS, 142, rue de la Cardonille, 34396 Montpellier cedex 5, France.,Service des maladies infectieuses et tropicales, CHU Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - P Corbeau
- Institut de génétique humaine, CNRS, 142, rue de la Cardonille, 34396 Montpellier cedex 5, France.,Fonctionnelle d'immunologie, hôpital Carémeau, place du Pr-Robert-Debré, 30029 Nîmes cedex, France.,Faculté de médecine, université Montpellier 1, 2, rue École-de-Médecine, 34060 Montpellier cedex 2, France
| | - J Reynes
- Faculté de médecine, université Montpellier 1, 2, rue École-de-Médecine, 34060 Montpellier cedex 2, France.,Service des maladies infectieuses et tropicales, CHU Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.,UMR 145, 911, avenue Agropolis, 34394 Montpellier cedex 5, France
| |
Collapse
|
19
|
|
20
|
A novel yeast-based recombination method to clone and propagate diverse HIV-1 isolates. Biotechniques 2009; 46:458-67. [PMID: 19480640 DOI: 10.2144/000113119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Replication studies on human immunodeficiency virus 1 (HIV-1) rely on a few laboratory strains that are divergent from dominant HIV-1 subtypes in the epidemic. Several phenotypic differences between diverse HIV-1 isolates and subtypes could affect vaccine development and treatment, but this research field lacks robust cloning/virus production systems to study drug sensitivity, replication kinetics, or to develop personalized vaccines. Extreme HIV-1 heterogeneity leaves few restriction enzyme sites for bacterial cloning strategies. In this study, we describe an alternative approach that involves direct introduction of any HIV-1 coding regions (e.g., any gene from a patient sample) into an HIV-1 DNA vector using yeast recombination. This technique uses positive and negative selectable markers in yeast and avoids the need for purification and screening of the DNA substrates and cloning products. Replication-competent virus is then produced from a modified mammalian 293T packaging cell line transfected with this yeast-derived HIV-1 vector. Although HIV-1 served as the prototype, this cloning strategy is now being developed for other diverse virus species such as hepatitis C virus and influenza virus.
Collapse
|
21
|
Nishikawa H, Nakamura S, Kodama E, Ito S, Kajiwara K, Izumi K, Sakagami Y, Oishi S, Ohkubo T, Kobayashi Y, Otaka A, Fujii N, Matsuoka M. Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int J Biochem Cell Biol 2009; 41:891-9. [DOI: 10.1016/j.biocel.2008.08.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 11/25/2022]
|
22
|
Abstract
The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein-protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in Env sequences both temporally and between patients. Two drugs that target HIV-1 entry, enfuvirtide and maraviroc, are now licensed for treatment of HIV-1 infection. The efficacy of these drugs validates entry as a point of intervention in viral life cycles and, in the context of HIV treatment, contributes to the growing armamentarium of antivirals which, in multidrug combinations, can effectively inhibit viral replication and prevent disease progression.
Collapse
Affiliation(s)
- Tom Melby
- Clinical Virology Associates, 101 E. Ellerbee St. Durham, NC 27704, USA.
| | | |
Collapse
|
23
|
Maeda K, Das D, Yin PD, Tsuchiya K, Ogata-Aoki H, Nakata H, Norman RB, Hackney LA, Takaoka Y, Mitsuya H. Involvement of the second extracellular loop and transmembrane residues of CCR5 in inhibitor binding and HIV-1 fusion: insights into the mechanism of allosteric inhibition. J Mol Biol 2008; 381:956-74. [PMID: 18590744 DOI: 10.1016/j.jmb.2008.06.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 11/25/2022]
Abstract
C-C chemokine receptor 5 (CCR5), a member of G-protein-coupled receptors, serves as a coreceptor for human immunodeficiency virus type 1 (HIV-1). In the present study, we examined the interactions between CCR5 and novel CCR5 inhibitors containing the spirodiketopiperazine scaffolds AK530 and AK317, both of which were lodged in the hydrophobic cavity located between the upper transmembrane domain and the second extracellular loop (ECL2) of CCR5. Although substantial differences existed between the two inhibitors--AK530 had 10-fold-greater CCR5-binding affinity (K(d)=1.4 nM) than AK317 (16.7 nM)-their antiviral potencies were virtually identical (IC(50)=2.1 nM and 1.5 nM, respectively). Molecular dynamics simulations for unbound CCR5 showed hydrogen bond interactions among transmembrane residues Y108, E283, and Y251, which were crucial for HIV-1-gp120/sCD4 complex binding and HIV-1 fusion. Indeed, AK530 and AK317, when bound to CCR5, disrupted these interhelix hydrogen bond interactions, a salient molecular mechanism enabling allosteric inhibition. Mutagenesis and structural analysis showed that ECL2 consists of a part of the hydrophobic cavity for both inhibitors, although AK317 is more tightly engaged with ECL2 than AK530, explaining their similar anti-HIV-1 potencies despite the difference in K(d) values. We also found that amino acid residues in the beta-hairpin structural motif of ECL2 are critical for HIV-1-elicited fusion and binding of the spirodiketopiperazine-based inhibitors to CCR5. The direct ECL2-engaging property of the inhibitors likely produces an ECL2 conformation, which HIV-1 gp120 cannot bind to, but also prohibits HIV-1 from utilizing the "inhibitor-bound" CCR5 for cellular entry--a mechanism of HIV-1's resistance to CCR5 inhibitors. The data should not only help delineate the dynamics of CCR5 following inhibitor binding but also aid in designing CCR5 inhibitors that are more potent against HIV-1 and prevent or delay the emergence of resistant HIV-1 variants.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harada S, Monde K, Tanaka Y, Kimura T, Maeda Y, Yusa K. Neutralizing antibodies decrease the envelope fluidity of HIV-1. Virology 2008; 370:142-50. [PMID: 17900650 DOI: 10.1016/j.virol.2007.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/06/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
Abstract
For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 degrees C after viral adsorption at 25 degrees C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5beta and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1(C-2(MT-2)). The anti-V3 antibodies suppressed the fluidity of the HIV-1(C-2) envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1(C-2(MT-2)), but not that of HIV-1(C-2). Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
TOMINAGA M, NAGAISHI S, KUMAGAI E, HARADA S, TANIGUCHI I. Effects of the Expansion Time of Alternating Potential Loading and Temperature on Cell Membrane Damage in HeLa Cells Cultured on an Electrode Surface. ELECTROCHEMISTRY 2008. [DOI: 10.5796/electrochemistry.76.538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Altered sensitivity of an R5X4 HIV-1 strain 89.6 to coreceptor inhibitors by a single amino acid substitution in the V3 region of gp120. Antiviral Res 2007; 77:128-35. [PMID: 18160142 DOI: 10.1016/j.antiviral.2007.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/17/2007] [Accepted: 11/05/2007] [Indexed: 11/22/2022]
Abstract
The replication of several R5X4 strains is blocked by single CXCR4 inhibitors such as AMD3100 or T140 although the target cells express both CXCR4 and CCR5 in vitro. To identify which region(s) of the Env are involved in the increased sensitivity to CXCR4 inhibitors, we isolated a T140-escape mutant using R5X4 HIV-1 strain 89.6. An isolated mutant harbored a single amino acid substitution in the V3 region of the Env (arginine 308 to serine R308S). Luciferase-reporter HIV-1 pseudotyped with the mutant Env showed that the substitution conferred total resistance to CXCR4 antagonists but increased sensitivity to a CCR5 antagonist TAK-779 in the infection of the cells expressing both CCR5 and CXCR4. Analyses using the cells expressing a single coreceptor showed that the mutant Env predominantly and efficiently utilized CCR5 rather than CXCR4 while retaining R5X4 phenotype. These results indicated that the sensitivities of the R5X4 strain to coreceptor inhibitors were altered by a single amino acid substitution in the V3 region of gp120.
Collapse
|
27
|
Monde K, Maeda Y, Tanaka Y, Harada S, Yusa K. Gp120 V3-dependent impairment of R5 HIV-1 infectivity due to virion-incorporated CCR5. J Biol Chem 2007; 282:36923-32. [PMID: 17971448 DOI: 10.1074/jbc.m705298200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entry of R5 human immunodeficiency virus type 1 (HIV-1) into target cells requires sequential interactions of the envelope glycoprotein gp120 with the receptor CD4 and the coreceptor CCR5. We investigated replication of 45 R5 viral clones derived from the HIV-1JR-FLan library carrying 0-10 random amino acid substitutions in the gp120 V3 loop. It was found that 6.7% (3/45) of the viruses revealed >or=10-fold replication suppression in PM1/CCR5 cells expressing high levels of CCR5 compared with PM1 cells expressing low levels of CCR5. In HIV-1V3L#08, suppression of replication was not associated with entry events and viral production but with a marked decrease in infectivity of nascent progeny virus. HIV-1V3L#08, generated from infected PM1/CCR5 cells, was 98% immunoprecipitated by anti-CCR5 monoclonal antibody T21/8, whereas the other infectious viruses were only partially precipitated, suggesting that incorporation of larger amounts of CCR5 into the virions caused impairment of viral infectivity in HIV-1V3L#08. The results demonstrate the implications of an alternative influence of CCR5 on HIV-1 replication.
Collapse
Affiliation(s)
- Kazuaki Monde
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
28
|
Kumagai E, Tominaga M, Nagaishi S, Harada S. Effect of electrical stimulation on human immunodeficiency virus type-1 infectivity. Appl Microbiol Biotechnol 2007; 77:947-53. [PMID: 17940763 DOI: 10.1007/s00253-007-1214-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 09/12/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
We examined the effects of electrical stimulation on HIV-1-adsorbed MAGIC-5 (MAGIC-5/HIV-1) cells and unadsorbed MAGIC-5 (MAGIC-5) cells. When MAGIC-5 cells were stimulated by a constant d.c. potential of 1.0 V (vs Ag/Agcl) immediately after HIV-1(LAI) infection, infectivity was more affected by electrical stimulation than by cell membrane damage. In particular, after application of potential at 1.0 V for 5 min, about 1% of the membranes of the MAGIC-5/HIV-1(LAI) cells were damaged, but the infectivities of both HIV-1(LAI) and HIV-1(NL43-luc) cells decreased about 37 and 44%, respectively (p < 0.05). After application of potential at 1.0 V for 5 min, the mean fluorescence intensities (MFIs) of highly reactive oxygen species (hROS) and nitric oxide (NO) in MAGIC-5/HIV-1(NL43-Luc) cells were significantly increased compared with that of unstimulated MAGIC-5/HIV-1(NL43-Luc) cells (p < 0.01). However, the MFIs of hROS and NO in MAGIC-5 cells were also increased, to the same level, by electrical stimulation for 5 min. These results suggest that HIV-1 adsorbed onto or invading cells is damaged by direct or indirect effects of electrical stimulation, resulting in a decrease in HIV-1 infectivity. It is also suggested that hROS and NO induced by electrical stimulation are important factors for inhibiting HIV-1 infection.
Collapse
Affiliation(s)
- Etsuko Kumagai
- Department of Health Science, Kumamoto University School of Medicine, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan.
| | | | | | | |
Collapse
|
29
|
Nakata H, Amano M, Koh Y, Kodama E, Yang G, Bailey CM, Kohgo S, Hayakawa H, Matsuoka M, Anderson KS, Cheng YC, Mitsuya H. Activity against human immunodeficiency virus type 1, intracellular metabolism, and effects on human DNA polymerases of 4'-ethynyl-2-fluoro-2'-deoxyadenosine. Antimicrob Agents Chemother 2007; 51:2701-8. [PMID: 17548498 PMCID: PMC1932487 DOI: 10.1128/aac.00277-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 microM [(3)H]EFdA or [(3)H]3'-azido-2',3'-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.6 pmol/10(9) cells, while that of AZT was 396.5 pmol/10(9) cells. When CEM cells were exposed to 10 microM [(3)H]EFdA, the amount of EFdA-TP increased by 22-fold (2,090 pmol/10(9) cells), while the amount of [(3)H]AZT-TP increased only moderately by 2.4-fold (970 pmol/10(9) cells). The intracellular half-life values of EFdA-TP and AZT-TP were approximately 17 and approximately 3 h, respectively. When MT-4 cells were cultured with 0.01 microM EFdA for 24 h, thoroughly washed to remove EFdA, further cultured without EFdA for various periods of time, exposed to HIV-1(NL4-3), and cultured for an additional 5 days, the protection values were 75 and 47%, respectively, after 24 and 48 h with no drug incubation, while those with 1 microM AZT were 55 and 9.2%, respectively. The 50% inhibitory concentration values of EFdA-TP against human polymerases alpha, beta, and gamma were >100 microM, >100 microM, and 10 microM, respectively, while those of ddA-TP were >100 microM, 0.2 microM, and 0.2 microM, respectively. These data warrant further development of EFdA as a potential therapeutic agent for those patients who harbor wild-type HIV-1 and/or multidrug-resistant variants.
Collapse
Affiliation(s)
- Hirotomo Nakata
- Department of Infectious, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Entry of human immunodeficiency virus (HIV) into target cells is mediated by the viral Envelope glycoprotein (Env) and its coordinated interaction with a receptor (CD4) and a coreceptor (usually the chemokine receptors CCR5 or CXCR4). This review describes the identification of chemokine receptors as coreceptors for HIV-1 Env-mediated fusion, the determinants of chemokine receptor usage, and the impact of nonfunctional chemokine receptor alleles on HIV-1 resistance and disease progression. Due to the important role of chemokine receptors in HIV-1 entry, inhibitors of these coreceptors are good candidates for blocking entry and development of antiretroviral therapies. We discuss the different CCR5- and CXCR4-based antiretroviral drugs that have been developed thus far, highlighting the most promising drug candidates. Resistance to these coreceptor inhibitors as well as the impact of these drugs on clinical monitoring and treatment are also discussed.
Collapse
Affiliation(s)
- N Ray
- Department of Microbiology, University of Pennsylvania, 301A Johnson Pavilion, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
31
|
Tominaga M, Nagaishi S, Kirihara M, Kumagai E, Harada S, Taniguchi I. Frequency change-induced alternative potential waveform dependence of membrane damage to cells cultured on an electrode surface. J Biotechnol 2007; 129:498-501. [PMID: 17368608 DOI: 10.1016/j.jbiotec.2007.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
In the present study, alternative potential stimulation with rectangular pulse, sine and triangular waveforms at 10 and 100Hz was applied to cells cultured on an ITO electrode. As a result, we found that the alternating potential waveform dependence induced by the frequency on membrane damage of cells cultured on an electrode surface. The cell membrane damage was promoted by a rectangular pulse wave in comparison with sine and triangular waves, when alternating electrical potentials of 0 to +1.0V at 100Hz were loaded. In contrast, this waveform dependence was not observed when the frequency was 10Hz. Furthermore, it was found that cell membrane damage was induced at positive potentials more than +0.8V under the present experimental conditions.
Collapse
Affiliation(s)
- Masato Tominaga
- Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kumamoto 860-8555, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Perros M. CCR5 antagonists for the treatment of HIV infection and AIDS. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007. [DOI: 10.1016/s1075-8593(06)05005-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Baba M, Miyake H, Wang X, Okamoto M, Takashima K. Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 2006; 51:707-15. [PMID: 17116673 PMCID: PMC1797735 DOI: 10.1128/aac.01079-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAK-652, a novel small-molecule chemokine receptor antagonist, is a highly potent and selective inhibitor of CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) replication in vitro. Since TAK-652 is orally bioavailable and has favorable pharmacokinetic profiles in humans, it is considered a promising candidate for an entry inhibitor of HIV-1. To investigate the resistance to TAK-652, peripheral blood mononuclear cells were infected with the R5 HIV-1 primary isolate KK and passaged in the presence of escalating concentrations of the compound for more than 1 year. After 67 weeks of cultivation, the escape virus emerged even in the presence of a high concentration of TAK-652. This virus displayed more than 200,000-fold resistance to TAK-652 compared with the wild type. The escape virus appeared to have cross-resistance to the structurally related compound TAK-779 but retained full susceptibility to TAK-220, which is from a different class of CCR5 antagonists. Furthermore, the escape virus was unable to use CXCR4 as a coreceptor. Analysis for Env amino acid sequences of escape viruses at certain points of passage revealed that amino acid changes accumulated with an increasing number of passages. Several amino acid changes not only in the V3 region but also in other Env regions seemed to be required for R5 HIV-1 to acquire complete resistance to TAK-652.
Collapse
Affiliation(s)
- Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan.
| | | | | | | | | |
Collapse
|
35
|
Yoshimura K, Shibata J, Kimura T, Honda A, Maeda Y, Koito A, Murakami T, Mitsuya H, Matsushita S. Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors. AIDS 2006; 20:2065-73. [PMID: 17053352 DOI: 10.1097/01.aids.0000247587.31320.fe] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The high-affinity humanized monoclonal antibody (MAb) KD-247 reacts with a tip region in gp120-V3 and cross-neutralizes primary isolates with a matching neutralization sequence motif. METHODS We induced an HIV-1 variant that was resistant to KD-247 by exposing the JR-FL virus to increasing concentrations of KD-247 in PM1/CCR5 cells, which expressed high levels of CCR5 in vitro. We determined the amino acid sequence of the gp120-encoding region of the JR-FL escape mutant from KD-247. To confirm that this substitution was responsible for the KD-247-resistance, a single-round replication assay was performed. We further evaluated the anti-HIV-1 interactions between KD-247 and various CCR5 inhibitors in vitro. RESULTS At passage 8 of the culture in the presence of 1000 mug/ml KD-247, one amino acid substitution, Gly to Glu at position 314 (G314E), was identified in the V3-tip of gp120. A pseudotyped virus with the G314E mutation was highly resistant to KD-247. Unexpectedly, this mutant virus was sensitive to CCR5 inhibitors, RANTES, recombinant human soluble CD4 (rsCD4) and an anti-CCR5 MAb, but resistant to an anti-CD4 MAb, compared with the wild-type virus. We also found that combinations of KD-247 and CCR5 inhibitors were highly synergistic. CONCLUSIONS The present data suggest that KD-247 has certain advantages for possible passive immunotherapy. They are: high concentrations of KD-247 are needed for viral acquisition of KD-247 resistance; the escape variants are more sensitive to CCR5 inhibitors and rsCD4; and there are high levels of synergism between KD-247 and CCR5 inhibitors at all concentrations tested.
Collapse
Affiliation(s)
- Kazuhisa Yoshimura
- Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research, Graduate School of Medical Sciences, Kumamoto, University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Westby M, van der Ryst E. CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother 2006; 16:339-54. [PMID: 16329283 DOI: 10.1177/095632020501600601] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human chemokine receptors, CCR5 and CXCR4, are potential host targets for exogenous, small-molecule antagonists for the inhibition of HIV-1 infection. HIV-1 strains can be categorised by co-receptor tropism - their ability to utilise CCR5 (CCR5-tropic), CXCR4 (CXCR4-tropic) or both (dual-tropic) as a co-receptor for entry into susceptible cells. CCR5 may be the more suitable co-receptor target for small-molecule antagonists because a natural deletion in the CCR5 gene preventing its expression on the cell surface is not associated with any obvious phenotype, but can confer resistance to infection by CCR5-tropic strains - the most frequently sexually-transmitted strains. The current leading CCR5 antagonists in clinical development include maraviroc (UK-427,857, Pfizer), aplaviroc (873140, GlaxoSmithKline) and vicriviroc (SCH-D, Schering-Plough), which have demonstrated efficacy and tolerability in HIV-infected patients. Pharmacodynamic data also suggest that these compounds have a long plasma half-life and/or prolonged CCR5 occupancy, which may explain the delay in viral rebound observed following compound withdrawal in short-term monotherapy studies. A switch from CCR5 to CXCR4 tropism occurs spontaneously in approximately 50% of HIV-infected patients and has been associated with, but is not required for, disease progression. The possibility of a co-receptor tropism switch occurring under selection pressure by CCR5 antagonists is discussed. The completion of ongoing Phase lib/Ill studies of maraviroc, aplaviroc and vicriviroc will provide further insight into co-receptor tropism, HIV pathogenesis and the suitability of CCR5 antagonists as a potent new class of antiyirals for the treatment of HIV infection.
Collapse
|
37
|
Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. Biochem J 2006; 392:191-9. [PMID: 16053446 PMCID: PMC1317678 DOI: 10.1042/bj20051069] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell entry of enveloped viruses requires a wide-fusion-pore mechanism, involving clustering of fusion-activated proteins and fluidization of the plasma membrane and viral envelope. In the present study, GL (glycyrrhizin) is reported to lower membrane fluidity, thus suppressing infection by HIV, influenza A virus and vesicular stomatitis virus, but not by poliovirus. GL-treated HIV-1 particles showed reduced infectivity. GL also inhibited cell-to-cell fusion induced by HIV-1 and HTLV-I (human T-cell leukaemia virus type I). However, when cells treated with 1 mg/ml GL were placed in GL-free medium, they showed increased susceptibility to HIV-1 infection and HTLV-I fusion due to enhancement of membrane fluidity. The membrane dependence of GL and GL removal experiments suggest that GL does affect the cell entry of viruses. HIVs with more gp120 were less dependent on temperature and less sensitive to GL treatment than those with less gp120, indicating that the existence of more gp120 molecules resulted in a higher probability of forming a cluster of fusion-activated proteins.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
38
|
Maeda K, Das D, Ogata-Aoki H, Nakata H, Miyakawa T, Tojo Y, Norman R, Takaoka Y, Ding J, Arnold GF, Arnold E, Mitsuya H. Structural and molecular interactions of CCR5 inhibitors with CCR5. J Biol Chem 2006; 281:12688-98. [PMID: 16476734 DOI: 10.1074/jbc.m512688200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the structural and molecular interactions of CC-chemokine receptor 5 (CCR5) with three CCR5 inhibitors active against R5 human immunodeficiency virus type 1 (HIV-1) including the potent in vitro and in vivo CCR5 inhibitor aplaviroc (AVC). The data obtained with saturation binding assays and structural analyses delineated the key interactions responsible for the binding of CCR5 inhibitors with CCR5 and illustrated that their binding site is located in a predominantly lipophilic pocket in the interface of extracellular loops and within the upper transmembrane (TM) domain of CCR5. Mutations in the CCR5 binding sites of AVC decreased gp120 binding to CCR5 and the susceptibility to HIV-1 infection, although mutations in TM4 and TM5 that also decreased gp120 binding and HIV-1 infectivity had less effects on the binding of CC-chemokines, suggesting that CCR5 inhibition targeting appropriate regions might render the inhibition highly HIV-1-specific while preserving the CC chemokine-CCR5 interactions. The present data delineating residue by residue interactions of CCR5 with CCR5 inhibitors should not only help design more potent and more HIV-1-specific CCR5 inhibitors, but also give new insights into the dynamics of CC-chemokine-CCR5 interactions and the mechanisms of CCR5 involvement in the process of cellular entry of HIV-1.
Collapse
Affiliation(s)
- Kenji Maeda
- Department of Hematology, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pastore C, Nedellec R, Ramos A, Pontow S, Ratner L, Mosier DE. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 2006; 80:750-8. [PMID: 16378977 PMCID: PMC1346864 DOI: 10.1128/jvi.80.2.750-758.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by the virus envelope binding to CD4 and the conformationally altered envelope subsequently binding to one of two chemokine receptors. HIV-1 envelope glycoprotein (gp120) has five variable loops, of which three (V1/V2 and V3) influence the binding of either CCR5 or CXCR4, the two primary coreceptors for virus entry. Minimal sequence changes in V3 are sufficient for changing coreceptor use from CCR5 to CXCR4 in some HIV-1 isolates, but more commonly additional mutations in V1/V2 are observed during coreceptor switching. We have modeled coreceptor switching by introducing most possible combinations of mutations in the variable loops that distinguish a previously identified group of CCR5- and CXCR4-using viruses. We found that V3 mutations entail high risk, ranging from major loss of entry fitness to lethality. Mutations in or near V1/V2 were able to compensate for the deleterious V3 mutations and may need to precede V3 mutations to permit virus survival. V1/V2 mutations in the absence of V3 mutations often increased the capacity of virus to utilize CCR5 but were unable to confer CXCR4 use. V3 mutations were thus necessary but not sufficient for coreceptor switching, and V1/V2 mutations were necessary for virus survival. HIV-1 envelope sequence evolution from CCR5 to CXCR4 use is constrained by relatively frequent lethal mutations, deep fitness valleys, and requirements to make the right amino acid substitution in the right place at the right time.
Collapse
Affiliation(s)
- C Pastore
- The Scripps Research Institute, Dept. of Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Takashima K, Miyake H, Kanzaki N, Tagawa Y, Wang X, Sugihara Y, Iizawa Y, Baba M. Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob Agents Chemother 2005; 49:3474-82. [PMID: 16048963 PMCID: PMC1196284 DOI: 10.1128/aac.49.8.3474-3482.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAK-220 is a member of a novel class of chemokine receptor antagonists and is highly specific to CCR5, as determined by receptor binding and calcium mobilization assays. The compound selectively inhibited coreceptor-mediated entry of human immunodeficiency virus type 1 (HIV-1) into host cells and HIV-1 infection mediated by CCR5. TAK-220 inhibited the replication of six CCR5-using (R5) HIV-1 clinical isolates in peripheral blood mononuclear cells (PBMCs) with a mean 90% effective concentration of 13 nM. The anti-HIV-1 activity of TAK-220 was not affected by addition of high concentrations of human serum. It equally inhibited R5 HIV-1 replication in PBMCs obtained from eight different donors, irrespective of the levels of viral production. Furthermore, the anti-HIV-1 activity of TAK-220 was found to be subtype independent. TAK-220 did not induce CCR5 internalization but blocked the binding of two monoclonal antibodies that recognize the second extracellular loop of CCR5 in CCR5-expressing cells. These results suggest that TAK-220 selectively inhibits R5 HIV-1 replication by interfering with coreceptor-mediated entry of the virus into host cells. At a dose of 5 mg/kg of body weight, TAK-220 showed oral bioavailabilities of 9.5 and 28.9% in rats and monkeys, respectively. Thus, TAK-220 is a promising candidate for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Katsunori Takashima
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakata H, Maeda K, Miyakawa T, Shibayama S, Matsuo M, Takaoka Y, Ito M, Koyanagi Y, Mitsuya H. Potent anti-R5 human immunodeficiency virus type 1 effects of a CCR5 antagonist, AK602/ONO4128/GW873140, in a novel human peripheral blood mononuclear cell nonobese diabetic-SCID, interleukin-2 receptor gamma-chain-knocked-out AIDS mouse model. J Virol 2005; 79:2087-96. [PMID: 15681411 PMCID: PMC546550 DOI: 10.1128/jvi.79.4.2087-2096.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We established human peripheral blood mononuclear cell (PBMC)-transplanted R5 human immunodeficiency virus type 1 isolate JR-FL (HIV-1(JR-FL))-infected, nonobese diabetic-SCID, interleukin 2 receptor gamma-chain-knocked-out (NOG) mice, in which massive and systemic HIV-1 infection occurred. The susceptibility of the implanted PBMC to the infectivity and cytopathic effect of R5 HIV-1 appeared to stem from hyperactivation of the PBMC, which rapidly proliferated and expressed high levels of CCR5. When a novel spirodiketopiperazine-containing CCR5 inhibitor, AK602/ONO4128/GW873140 (molecular weight, 614), was administered to the NOG mice 1 day after R5 HIV-1 inoculation, the replication and cytopathic effects of R5 HIV-1 were significantly suppressed. In saline-treated mice (n = 7), the mean human CD4(+)/CD8(+) cell ratio was 0.1 on day 16 after inoculation, while levels in mice (n = 8) administered AK602 had a mean value of 0.92, comparable to levels in uninfected mice (n = 7). The mean number of HIV-RNA copies in plasma in saline-treated mice were approximately 10(6)/ml on day 16, while levels in AK602-treated mice were 1.27 x 10(3)/ml (P = 0.001). AK602 also significantly suppressed the number of proviral DNA copies and serum p24 levels (P = 0.001). These data suggest that the present NOG mouse system should serve as a small-animal AIDS model and warrant that AK602 be further developed as a potential therapeutic for HIV-1 infection.
Collapse
Affiliation(s)
- Hirotomo Nakata
- Department of Infectious Diseases, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yusa K, Maeda Y, Fujioka A, Monde K, Harada S. Isolation of TAK-779-resistant HIV-1 from an R5 HIV-1 GP120 V3 Loop Library. J Biol Chem 2005; 280:30083-90. [PMID: 15983047 DOI: 10.1074/jbc.m414360200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (GP) 120 interacts with CD4 and the CCR5 coreceptor for viral entry. The V3 loop in GP120 is a crucial region for determining coreceptor usage during viral entry, and a variety of amino acid substitutions has been observed in clinical isolates. To construct an HIV-1 V3 loop library, we chose 10 amino acid positions in the V3 loop and incorporated random combinations (27,648 possibilities) of the amino acid substitutions derived from 31 R5 viruses into the V3 loop of HIV-1(JR-FL) proviral DNA. The constructed HIV-1 library contained 6.6 x 10(6) independent clones containing a set of 0-10 amino acid substitutions in the V3 loop. To address whether restricted steric alteration in the V3 loop could confer resistance to an entry inhibitor, TAK-779, we selected entry inhibitor-resistant HIV-1 by increasing the concentration of TAK-779 from 0.10 to 0.30 microM in PM1-CCR5 cells with high expression of CCR5. The selected viruses at passage 8 contained five amino acid substitutions in the V3 loop without any other mutations in GP120 and showed 15-fold resistance compared with the parental virus. These results indicated that a certain structure of the V3 loop containing amino acid substitutions derived from 31 R5 viruses can contribute to the acquisition of resistance to entry inhibitors binding to CCR5. Taken together, this type of HIV-1 V3 loop library is useful for isolating and analyzing the specific biological features of HIV-1 with respect to alterations of the V3 loop structure.
Collapse
Affiliation(s)
- Keisuke Yusa
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, 2-1-1 Honjo, Kumamoto 860-8556, Japan.
| | | | | | | | | |
Collapse
|
43
|
Harada S, Yusa K, Monde K, Akaike T, Maeda Y. Influence of membrane fluidity on human immunodeficiency virus type 1 entry. Biochem Biophys Res Commun 2005; 329:480-6. [PMID: 15737612 DOI: 10.1016/j.bbrc.2005.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 11/25/2022]
Abstract
For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 degrees C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 degrees C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | |
Collapse
|
44
|
Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J, Koyanagi Y, Mitsuya H. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 2004; 78:8654-62. [PMID: 15280474 PMCID: PMC479103 DOI: 10.1128/jvi.78.16.8654-8662.2004] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We identified a novel spirodiketopiperazine (SDP) derivative, AK602/ONO4128/GW873140, which specifically blocked the binding of macrophage inflammatory protein 1alpha (MIP-1alpha) to CCR5 with a high affinity (K(d) of approximately 3 nM), potently blocked human immunodeficiency virus type 1 (HIV-1) gp120/CCR5 binding and exerted potent activity against a wide spectrum of laboratory and primary R5 HIV-1 isolates, including multidrug-resistant HIV-1 (HIV-1(MDR)) (50% inhibitory concentration values of 0.1 to 0.6 nM) in vitro. AK602 competitively blocked the binding to CCR5 expressed on Chinese hamster ovary cells of two monoclonal antibodies, 45523, directed against multidomain epitopes of CCR5, and 45531, specific against the C-terminal half of the second extracellular loop (ECL2B) of CCR5. AK602, despite its much greater anti-HIV-1 activity than other previously published CCR5 inhibitors, including TAK-779 and SCH-C, preserved RANTES (regulated on activation normal T-cell expressed and secreted) and MIP-1beta binding to CCR5(+) cells and their functions, including CC-chemokine-induced chemotaxis and CCR5 internalization, while TAK-779 and SCH-C fully blocked the CC-chemokine/CCR5 interactions. Pharmacokinetic studies revealed favorable oral bioavailability in rodents. These data warrant further development of AK602 as a potential therapeutic for HIV-1 infection.
Collapse
Affiliation(s)
- Kenji Maeda
- Department of Hematology, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harada S, Yusa K, Maeda Y. Heterogeneity of envelope molecules shown by different sensitivities to anti-V3 neutralizing antibody and CXCR4 antagonist regulates the formation of multiple-site binding of HIV-1. Microbiol Immunol 2004; 48:357-65. [PMID: 15107547 DOI: 10.1111/j.1348-0421.2004.tb03517.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increased temperature enhances the infectivity of human immunodeficiency virus type 1 (HIV-1), and this enhancement is inhibited by anti-CXCR4 peptide T140, implying that multiple-site binding is required to proceed to infection. Here, we tested whether the augmented infectivity induced by increased temperature could account for the heterogeneity of envelope molecules in the effectiveness of anti-V3 neutralization and anti-CXCR4 blocking. Pseudoviruses with the X4 envelope which were infectious at room temperature (RT) were more resistant to both anti-V3 neutralizing antibody 0.5beta and T140 than viruses infectious at 37 C and 40 C. Viruses infectious to cells treated with T140 were also resistant to 0.5beta. Based on the hypothesis that the HIV-1 viruses were carrying heterogeneity of functional and nonfunctional gp120 and required the formation of sufficient multiple-site binding of functional gp120 with receptors to proceed to infection, viruses with many functional gp120 which were infectious at RT and infectious to cells with reduced numbers of CXCR4 by T140 treatment were resistant to 0.5beta. Although viruses with many functional gp120 are a minority (less than 5%) of the infectious HIV-1 fraction, they are regarded as able to escape from neutralizing antibodies and coreceptor antagonists.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | |
Collapse
|
46
|
Harada S, Akaike T, Yusa K, Maeda Y. Adsorption and infectivity of human immunodeficiency virus type 1 are modified by the fluidity of the plasma membrane for multiple-site binding. Microbiol Immunol 2004; 48:347-55. [PMID: 15107546 DOI: 10.1111/j.1348-0421.2004.tb03516.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Based on the assumption that fluidity of the plasma membrane and viral envelope is necessary for recruiting additional receptors and ligands to the initial attachment site for "multiple-site binding," we determined the effect of increased temperature on viral infectivity. Infection of human immunodeficiency virus type 1 (HIV-1) and a pseudotyped luciferase-expressing chimeric virus using MAGI and GHOST/CXCR4 cells showed that in 1 hr of viral adsorption the extent of virus infection and the amount of tightly adsorbed viruses depended on temperature; and that membrane fluidity increased according to increased temperature. Augmented infection was observed as post-attachment enhancement (PAE) when cells were washed and incubated at 40 C for 1 hr after viral adsorption. PAE was completely inhibited by 1 micro M of anti-CXCR4 peptide T140, and addition of T140 at 20 min resulted in a gradual loss of inhibition of PAE, indicating the need for a 30 to 40 min timelag to ensure tight multiple-site binding. These data suggest that the accumulation of gp120 and receptor complex (multiple-site binding) was needed to complete the infection. Treatments of cells with 0.05% Tween 20 or 2 micro g/ml of anti-HLA-II antibody resulted in increases or decreases, respectively, of attached viruses and the infectivity. As well, Tween 20 and anti-HLAII antibody enhanced and suppressed the fluidity of the plasma membrane, respectively. Amounts of adsorbed viruses and degrees of viral infectivity correlated with the intensity of fluidity of the plasma membrane, probably due to the formation of multiple-site binding.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Japan.
| | | | | | | |
Collapse
|
47
|
Kuhmann SE, Pugach P, Kunstman KJ, Taylor J, Stanfield RL, Snyder A, Strizki JM, Riley J, Baroudy BM, Wilson IA, Korber BT, Wolinsky SM, Moore JP. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78:2790-807. [PMID: 14990699 PMCID: PMC353740 DOI: 10.1128/jvi.78.6.2790-2807.2004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have described previously the generation of an escape variant of human immunodeficiency virus type 1 (HIV-1), under the selection pressure of AD101, a small molecule inhibitor that binds the CCR5 coreceptor (A. Trkola, S. E. Kuhmann, J. M. Strizki, E. Maxwell, T. Ketas, T. Morgan, P. Pugach, S. X. L. Wojcik, J. Tagat, A. Palani, S. Shapiro, J. W. Clader, S. McCombie, G. R. Reyes, B. M. Baroudy, and J. P. Moore, Proc. Natl. Acad. Sci. USA 99:395-400, 2002). The escape mutant, CC101.19, continued to use CCR5 for entry, but it was at least 20,000-fold more resistant to AD101 than the parental virus, CC1/85. We have now cloned the env genes from the the parental and escape mutant isolates and made chimeric infectious molecular clones that fully recapitulate the phenotypes of the corresponding isolates. Sequence analysis of the evolution of the escape mutants suggested that the most relevant changes were likely to be in the V3 loop of the gp120 glycoprotein. We therefore made a series of mutant viruses and found that full AD101 resistance was conferred by four amino acid changes in V3. Each change individually caused partial resistance when they were introduced into the V3 loop of a CC1/85 clone, but their impact was dependent on the gp120 context in which they were made. We assume that these amino acid changes alter how the HIV-1 Env complex interacts with CCR5. Perhaps unexpectedly, given the complete dependence of the escape mutant on CCR5 for entry, monomeric gp120 proteins expressed from clones of the fully resistant isolate failed to bind to CCR5 on the surface of L1.2-CCR5 cells under conditions where gp120 proteins from the parental virus and a partially AD101-resistant virus bound strongly. Hence, the full impact of the V3 substitutions may only be apparent at the level of the native Env complex.
Collapse
Affiliation(s)
- Shawn E Kuhmann
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moore JP, Kitchen SG, Pugach P, Zack JA. The CCR5 and CXCR4 coreceptors--central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 2004; 20:111-26. [PMID: 15000703 DOI: 10.1089/088922204322749567] [Citation(s) in RCA: 327] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this review, we will discuss what is known, what is suspected, and what still remains obscure about the central role played by coreceptor expression and usage in the transmission and pathogenic consequences of human immunodeficiency virus type 1 (HIV-1) infection. An emphasis will be on the HIV-1 phenotypic variants that are defined by their usage of the CCR5 or CXCR4 coreceptors, and how the different cellular tropism of these variants influences how and where HIV-1 replicates in vivo. We will also review what might happen when coreceptor antagonists are used clinically to treat HIV-1 infection.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
49
|
Moore JP, Doms RW. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A 2003; 100:10598-602. [PMID: 12960367 PMCID: PMC196849 DOI: 10.1073/pnas.1932511100] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For HIV-1 to enter a cell, its envelope protein (Env) must sequentially engage CD4 and a chemokine coreceptor, triggering conformational changes in Env that ultimately lead to fusion between the viral and host cell membranes. Each step of the virus entry pathway is a potential target for novel antiviral agents termed entry inhibitors. A growing number of entry inhibitors are under clinical development, with one having already been licensed by the Food and Drug Administration. With the emergence of virus strains that are largely resistant to existing reverse transcriptase and protease inhibitors, the development of entry inhibitors comes at an opportune time. Nonetheless, because all entry inhibitors target in some manner the highly variable Env protein of HIV-1, there are likely to be challenges in their efficient application that are unique to this class of drugs. Env density, receptor expression levels, and differences in affinity and receptor presentation are all factors that could influence the clinical response to this promising class of new antiviral agents.
Collapse
Affiliation(s)
- John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, W-805, New York, NY 10021, USA.
| | | |
Collapse
|
50
|
Abstract
Two strains of human immunodeficiency virus type 1 (HIV-1) expressing different reporters, human placental alkaline phosphatase (PLAP) and murine heat stable antigen (HSA, CD24), were used for dual infection. Flow cytometric analysis enabled us to distinguish cells not only infected with individual reporter virus but also superinfected with both reporter viruses. When the CD4 positive T cell line, PM1, was dually infected by both reporter viruses with different coreceptor utilization, coinfection with CXCR4-tropic HIV-1 (X4 HIV-1) expressing one reporter increased the rate of cells infected with HIV-1 expressing another reporter. This enhancement was accompanied by an increased level of p24 antigen Gag in culture supernatant, indicating that infectivity of HIV-1 was augmented by X4 HIV-1 coinfection. The CXCR4 antagonist, T140 eliminated this enhancement, suggesting the role of X4 envelope via CXCR4. These results imply the role of X4 HIV-1 at the late stage of infection.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | |
Collapse
|