1
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
3
|
Camarasa MJ, Velázquez S, San-Félix A, Pérez-Pérez MJ. TSAO Derivatives the First Non-Peptide Inhibitors of HIV-1 RT Dimerization. ACTA ACUST UNITED AC 2016; 16:147-53. [PMID: 16004078 DOI: 10.1177/095632020501600301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of different anti-HIV agents has become the standard of care for AIDS or HIV-infected individuals. Important progress has been made in the development of drugs for the clinical treatment of HIV infection. To date, 20 drugs have been approved for the treatment of AIDS. However, viral rebound during therapy, the emergence of HIV drug resistance and the need for long-term treatment modalities are the main causes for the failure of current antiretroviral therapy. There is still a need for the development of new drugs that are either less toxic, active against the growing number of drug-resistant HIV strains or directed to novel targets in the viral life cycle. Eleven of the approved anti-HIV drugs target the reverse transcriptase (RT). Among the so-called non-nucleoside RT inhibitors (NNRTIs) TSAO derivatives are an unusual class of compounds that exert their unique selectivity for HIV-1 through a specific interaction with the p51 subunit of HIV-1 RT. They are the only NNRTIs for which amino acids at both subunits (p66 and p51) of HIV-1 RT are needed for optimal interaction with the enzyme. Moreover, the TSAO compounds are the first non-peptide molecules that interfere with the dimerization of the enzyme.
Collapse
|
4
|
Zhabokritsky A, Mansouri S, Hudak KA. Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production. RNA (NEW YORK, N.Y.) 2014; 20:1238-1247. [PMID: 24951553 PMCID: PMC4105749 DOI: 10.1261/rna.043141.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Processing of HIV-1 transcripts results in three populations in the cytoplasm of infected cells: full-length RNA, singly spliced, and multiply spliced RNAs. Rev, regulator of virion expression, is an essential regulatory protein of HIV-1 required for transporting unspliced and singly spliced viral transcripts from the nucleus to the cytoplasm. Export allows these RNAs to be translated and the full-length RNA to be packaged into virus particles. In our study, we investigate the activity of pokeweed antiviral protein (PAP), a glycosidase isolated from the pokeweed plant Phytolacca americana, on the processing of viral RNAs. We show that coexpression of PAP with a proviral clone alters the splicing ratio of HIV-1 RNAs. Specifically, PAP causes the accumulation of multiply spliced 2-kb RNAs at the expense of full-length 9-kb and singly spliced 4-kb RNAs. The change in splicing ratio is due to a decrease in activity of Rev. We show that PAP depurinates the rev open reading frame and that this damage to the viral RNA inhibits its translation. By decreasing Rev expression, PAP indirectly reduces the availability of full-length 9-kb RNA for packaging and translation of the encoded structural proteins required for synthesis of viral particles. The decline we observe in virus protein expression is not due to cellular toxicity as PAP did not diminish translation rate. Our results describing the reduced activity of a regulatory protein of HIV-1, with resulting change in virus mRNA ratios, provides new insight into the antiviral mechanism of PAP.
Collapse
Affiliation(s)
- Alice Zhabokritsky
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Katalin A Hudak
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
McCallum M, Oliveira M, Ibanescu RI, Kramer VG, Moisi D, Asahchop EL, Brenner BG, Harrigan PR, Xu H, Wainberg MA. Basis for early and preferential selection of the E138K mutation in HIV-1 reverse transcriptase. Antimicrob Agents Chemother 2013; 57:4681-8. [PMID: 23856772 PMCID: PMC3811420 DOI: 10.1128/aac.01029-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/13/2022] Open
Abstract
E138K, a G→A mutation in HIV-1 reverse transcriptase (RT), is preferentially selected by etravirine (ETR) and rilpivirine over other substitutions at position E138 that offer greater drug resistance. We hypothesized that there was a mutational bias for the E138K substitution and designed an allele-specific PCR to monitor the emergence of E138A/G/K/Q/R/V during ETR selection experiments. We also performed competition experiments using mutated viruses and quantified the prevalence of E138 minority species in drug-naive patients. E138K, as well as E138G, consistently emerged first during ETR selection experiments, followed by E138A and E138Q; E138R was never selected. Surprisingly, E138K was identified as a tiny minority in 23% of drug-naive subtype B patients, a result confirmed by ultradeep sequencing (UDS). This result could reflect a low fitness cost of E138K; however, E138K was one of the least fit substitutions at codon E138, even after taking into account the deoxynucleoside triphosphate pools of the cells used in competition experiments. Further UDS analysis revealed other minority species in a pattern consistent with the mutational bias of HIV RT. There was no evidence of APOBEC3-hypermutation in these selection experiments or in patients. Our results confirm the mutational bias of HIV-1 in patients and highlight the importance of G→A mutations in HIV-1 drug resistance evolution.
Collapse
Affiliation(s)
- Matthew McCallum
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Victor G. Kramer
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniela Moisi
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Eugene L. Asahchop
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Bluma G. Brenner
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - P. Richard Harrigan
- BC Center for Excellence in HIV/AIDS, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Subunit-selective mutational analysis and tissue culture evaluations of the interactions of the E138K and M184I mutations in HIV-1 reverse transcriptase. J Virol 2012; 86:8422-31. [PMID: 22623801 DOI: 10.1128/jvi.00271-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of HIV-1 drug resistance remains a major obstacle in antiviral therapy. M184I/V and E138K are signature mutations of clinical relevance in HIV-1 reverse transcriptase (RT) for the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine (3TC) and emtricitabine (FTC) and the second-generation (new) nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV), respectively, and the E138K mutation has also been shown to be selected by etravirine in cell culture. The E138K mutation was recently shown to compensate for the low enzyme processivity and viral fitness associated with the M184I/V mutations through enhanced deoxynucleoside triphosphate (dNTP) usage, while the M184I/V mutations compensated for defects in polymerization rates associated with the E138K mutations under conditions of high dNTP concentrations. The M184I mutation was also shown to enhance resistance to RPV and ETR when present together with the E138K mutation. These mutual compensatory effects might also enhance transmission rates of viruses containing these two mutations. Therefore, we performed tissue culture studies to investigate the evolutionary dynamics of these viruses. Through experiments in which E138K-containing viruses were selected with 3TC-FTC and in which M184I/V viruses were selected with ETR, we demonstrated that ETR was able to select for the E138K mutation in viruses containing the M184I/V mutations and that the M184I/V mutations consistently emerged when E138K viruses were selected with 3TC-FTC. We also performed biochemical subunit-selective mutational analyses to investigate the impact of the E138K mutation on RT function and interactions with the M184I mutation. We now show that the E138K mutation decreased rates of polymerization, impaired RNase H activity, and conferred ETR resistance through the p51 subunit of RT, while an enhancement of dNTP usage as a result of the simultaneous presence of both mutations E138K and M184I occurred via both subunits.
Collapse
|
7
|
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) is one of the leading causes of death worldwide. Although the combination therapies of highly active antiretroviral therapy (HAART) have significantly contributed to virological suppression, improved immune function and quality of life, issues such as tolerability, drug-drug interactions and cross-resistance amongst members of a particular drug class still pose a significant barrier to long-term successful treatment. There is a constant need for newer anti HIV drugs with increased potency and improved pharmacokinetic properties either in the existing classes or drugs from new classes that target several new steps in HIV replication cycle. AREAS COVERED IN THIS REVIEW The authors have discussed newer antiretroviral drugs belonging to second-generation nucleoside analog reverse transcriptase inhibitors (amdoxovir, elvucitabine, apricitabine, racivir), non-nucleoside analog reverse transcriptase inhibitors (etravirine, rilpivirine), protease inhibitors (darunavir, tipranavir) as well as emerging new classes, i.e., fusion inhibitors (enfuvirtide, sifuvirtide), CCR5 inhibitors (maraviroc, vicriviroc, PRO 140, PRO 542), CD4-receptor inhibitors (ibalizumab), integrase inhibitors (raltegravir, elvitegravir, GSK-1349572), maturation inhibitors (bevirimat), cobicistat (pharmacoenhancer), lens epithelium-derived growth factor inhibitors and capsid assembly inhibitors. WHAT THE READER WILL GAIN The reader will gain an understanding of the mechanism of action, mechanism of resistance, stages of development and important clinical trials related to the newer antiretroviral drugs and future potential of these drugs. TAKE HOME MESSAGE The initial clinical trial data of these newer drugs are very encouraging for the long-term successful control of HIV in both treatment-naïve and treatment-experienced patients.
Collapse
Affiliation(s)
- Raktim Kumar Ghosh
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India.
| | | | | |
Collapse
|
8
|
Menéndez-Arias L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 2009; 1:1137-65. [PMID: 21994586 PMCID: PMC3185545 DOI: 10.3390/v1031137] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022] Open
Abstract
Retroviruses are RNA viruses that replicate through a DNA intermediate, in a process catalyzed by the viral reverse transcriptase (RT). Although cellular polymerases and host factors contribute to retroviral mutagenesis, the RT errors play a major role in retroviral mutation. RT mutations that affect the accuracy of the viral polymerase have been identified by in vitro analysis of the fidelity of DNA synthesis, by using enzymological (gel-based) and genetic assays (e.g., M13mp2 lacZ forward mutation assays). For several amino acid substitutions, these observations have been confirmed in cell culture using viral vectors. This review provides an update on studies leading to the identification of the major components of the fidelity center in retroviral RTs.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" [Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid], Campus de Cantoblanco, 28049 Madrid, Spain; E-Mail: ; Tel.: +34 91 196 4494
| |
Collapse
|
9
|
Deforche K, Camacho R, Laethem KV, Shapiro B, Moreau Y, Rambaut A, Vandamme AM, Lemey P. Estimating the relative contribution of dNTP pool imbalance and APOBEC3G/3F editing to HIV evolution in vivo. J Comput Biol 2007; 14:1105-14. [PMID: 17985990 DOI: 10.1089/cmb.2007.0073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human immunodeficiency virus (HIV) has a genome that is rich in adenine, and its rapid evolution shows an observed bias of guanine (G) to adenine (A) mutations. Two mechanisms have been proposed to explain these properties: (1) an imbalance in dNTP pool concentrations which drives the misincorporation process during reverse transcription, and (2) cytidine deamination by the APOBEC3G/3F restriction factor, causing G to A mutations most notably in specific dinucleotide contexts. Although crucial to understanding HIV evolution, current estimates on misincorporation bias during the replication cycle are based on scarce in vitro measurements. In this work, HIV partial pol sequences obtained for drug resistance testing purposes are analyzed using likelihood methods to estimate various models of HIV misincorporation bias in vivo. The technique is robust to selection on the amino acid sequence and selection against CpG dinucleotides. A model where misincorporations are explained only by an imbalance in dNTP pool concentrations, together with a preference for transitions versus transversions, explained 98% (95% confidence interval [C.I.] 93-100) of the observed variation in freely estimated misincorporation rates. Although dinucleotide context was responsible for variation in misincorporation probabilities, this variation was not specific for G to A mutations implying that the footprint of APOBEC3G/3F editing could not be detected. These results indicate that an imbalance in dNTP pool concentrations explains most of the bias in HIV nucleotide misincorporations, while the effect of editing by APOBEC3G/3F on HIV evolution, based on its dinucleotide specificity, could not be observed in this study.
Collapse
Affiliation(s)
- Koen Deforche
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Turner D, Brenner B, Moisi D, Liang C, Wainberg MA. Substitutions in the reverse transcriptase and protease genes of HIV-1 subtype B in untreated individuals and patients treated with antiretroviral drugs. MEDGENMED : MEDSCAPE GENERAL MEDICINE 2005; 7:69. [PMID: 16369374 PMCID: PMC1681388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The nucleotide transition G-->A is known as a hypermutation due to its high prevalence in HIV-1 and other pathogens. However, the contribution of the G-->A transition in the generation of drug resistance mutations is unknown . Our objective was to ascertain the rate of nucleotide substitutions in protease (PR) and reverse transcriptase (RT) in both untreated and treated HIV-1 patients. Genotypic analysis was performed on viruses from both treated and untreated patients with subtype B infections. Nucleotide genomic diversity was compared with a consensus subtype B reference virus. Then, the prevalence of resistance-associated mutations in different subgroups of treated patients was evaluated in relation to the patterns of nucleotide transitions. In untreated patients (n = 50) G-->A was most prevalent, followed by A-->G, C-->T, and T-->C transitions. In treated patients (n = 51), the prevalence of A-->G was similar to that of G-->A. Among mutations that confer resistance to antiretroviral drugs, M184V was present in 76% of treated patients and K70R in 31% (A-->G transitions). Other frequent mutations in RT included T215Y (C-->A and A-->T substitutions), which was prevalent in 31% of treated patients. In PR, a L90M (T-->A substitution) was prevalent in 47% of protease inhibitor (PI)-treated patients. In conclusion, the G-->A transition was most prevalent in RT and PR among untreated patients. In contrast, A-->G was the most prevalent transition in patients treated with antiretroviral drugs.
Collapse
Affiliation(s)
- Dan Turner
- McGill University, Montreal, Quebec, Canada
| | - Bluma Brenner
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | - Chen Liang
- Department of Microbiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Turner D, Brenner B, Moisi D, Liang C, Wainberg MA. Substitutions in the Reverse Transcriptase and Protease Genes of HIV-1 Subtype B in Untreated Individuals and Patients Treated With Antiretroviral Drugs. J Int AIDS Soc 2005; 7:69. [PMID: 19825125 PMCID: PMC2804718 DOI: 10.1186/1758-2652-7-1-69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nucleotide transition G→A is known as a hypermutation due to its high prevalence in HIV-1 and other pathogens. However, the contribution of the G→A transition in the generation of drug resistance mutations is unknown. Our objective was to ascertain the rate of nucleotide substitutions in protease (PR) and reverse transcriptase (RT) in both untreated and treated HIV-1 patients. Genotypic analysis was performed on viruses from both treated and untreated patients with subtype B infections. Nucleotide genomic diversity was compared with a consensus subtype B reference virus. Then, the prevalence of resistance-associated mutations in different subgroups of treated patients was evaluated in relation to the patterns of nucleotide transitions. In untreated patients (n = 50) G→A was most prevalent, followed by A→G, C→T, and T→C transitions. In treated patients (n = 51), the prevalence of A→G was similar to that of G→A. Among mutations that confer resistance to antiretroviral drugs, M184V was present in 76% of treated patients and K70R in 31% (A→G transitions). Other frequent mutations in RT included T215Y (C→A and A→T substitutions), which was prevalent in 31% of treated patients. In PR, a L90M (T→A substitution) was prevalent in 47% of protease inhibitor (PI)-treated patients. In conclusion, the G→A transition was most prevalent in RT and PR among untreated patients. In contrast, A→G was the most prevalent transition in patients treated with antiretroviral drugs.
Collapse
Affiliation(s)
- Dan Turner
- Fellow in HIV Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Berkhout B, de Ronde A. APOBEC3G versus reverse transcriptase in the generation of HIV-1 drug-resistance mutations. AIDS 2004; 18:1861-3. [PMID: 15316354 DOI: 10.1097/00002030-200409030-00022] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
The viral infectivity factor (Vif) of HIV type-1 (HIV-1) is essential for efficient viral replication, yet was, until recently, enigmatic. This resulted from the complexity and cellular specificity of its function and the correspondingly complex systems that are required for its investigation. These limitations have been overcome and Vif function has been rapidly elucidated, with implications for the development of drugs to block its activity. These studies have revealed a novel component of the innate immune system, APOBEC3G, that lethally hypermutates retroviruses, including HIV-1. For HIV-1, the competition between the virus and APOBEC3G is tipped in favor of the invader by Vif, which binds to APOBEC3G and triggers its polyubiquitination and rapid degradation, thereby preventing its entry into progeny virions.
Collapse
Affiliation(s)
- Kristine M Rose
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University Portland, Oregon 97239-3098, USA
| | | | | | | |
Collapse
|
14
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
15
|
O'Neil PK, Sun G, Yu H, Ron Y, Dougherty JP, Preston BD. Mutational analysis of HIV-1 long terminal repeats to explore the relative contribution of reverse transcriptase and RNA polymerase II to viral mutagenesis. J Biol Chem 2002; 277:38053-61. [PMID: 12151398 DOI: 10.1074/jbc.m204774200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 evolves rapidly, which is thought to result from one or more error-prone steps in the virus life cycle. Because HIV-1 reverse transcriptase (RT) does not possess 3'- to 5'-exonucleolytic proofreading activity and because RT has been shown to be error-prone in cell free systems, it should be an important contributor to the high rate of HIV-1 mutation. However, because RNA polymerase II (pol II) synthesizes viral RNA, it might also contribute significantly to HIV-1 mutagenesis. To assess the relative contributions of RT and RNA pol II to HIV-1 mutagenesis, a system was established to study the rate and nature of mutations in HIV-1 long terminal repeats (LTRs). Owing to the unique nature of replication at the ends of the viral genome, mutational analysis of retroviral LTRs provides an opportunity to evaluate the relative contribution of HIV-1 RT and RNA pol II to viral mutagenesis. Mutational analysis was performed on both LTRs of 215 proviruses, restricted to a single cycle of replication, employing single-stranded conformational polymorphism and DNA sequencing allowing direct identification of mutations in the absence of selection and within autologous viral sequences. A total of 21 independent mutations was identified. Ten mutations were observed in both LTRs, which could have been introduced by either RT or RNA pol II, whereas the other eleven mutations were only present in a single LTR and could only have been introduced by RT. This provides the first direct evidence that HIV-1 RT contributes significantly to HIV-1 mutagenesis and is likely to be the primary engine for HIV-1 mutagenesis. Moreover, mutations were observed at the U3-R border, but the nature of the mutations and their frequency differed from experiments performed using cell-free systems suggesting that other viral and/or cellular factors contribute to fidelity at the ends of the viral genome.
Collapse
Affiliation(s)
- Patrick K O'Neil
- Department of Biochemistry and Radiation Oncology, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
16
|
Berkhout B, Grigoriev A, Bakker M, Lukashov VV. Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res Hum Retroviruses 2002; 18:133-41. [PMID: 11839146 DOI: 10.1089/08892220252779674] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retroviral RNA genomes are known to have a biased nucleotide composition. For instance, the plus-strand RNA of human immunodeficiency virus (HIV) is A-rich, and the genome of human T cell leukemia virus (HTLV) is C-rich, and other retroviruses have a U-rich or G-rich genome. The biased composition of these genomes is most likely caused by directional mutational pressure of the respective reverse transcriptase enzymes. Using a set of retroviral genomes with a distinct nucleotide composition, we performed skew analyses of the nucleotide bias along the complete viral genome. Distinct nucleotide signatures were apparent, and these typical patterns were generally conserved across the viral genome. Furthermore, it is demonstrated that this typical nucleotide bias, combined with a profound discrimination against the CpG dinucleotide sequence, strongly influences the codon usage of the retroviruses in a direct manner, and their amino acid usage in an indirect manner. The fact that both codon usage and amino acid usage are so closely entwined with the genome composition has important practical implications. For instance, the typical trends in nucleotide usage could influence the molecular phylogenetic reconstruction of the family Retroviridae.
Collapse
Affiliation(s)
- Ben Berkhout
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Laurence J. Clinical AIDS updates: disease trends, new drug-resistance concerns. AIDS Patient Care STDS 2001; 15:499-502. [PMID: 11689135 DOI: 10.1089/108729101753205649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Laurence J. Designing an AIDS vaccine. AIDS Patient Care STDS 2001; 15:449-51. [PMID: 11587629 DOI: 10.1089/108729101753145420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|