1
|
Vallbracht M, Schnell M, Seyfarth A, Fuchs W, Küchler R, Mettenleiter TC, Klupp BG. A Single Amino Acid Substitution in the Transmembrane Domain of Glycoprotein H Functionally Compensates for the Absence of gL in Pseudorabies Virus. Viruses 2023; 16:26. [PMID: 38257727 PMCID: PMC10819001 DOI: 10.3390/v16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Schnell
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Annemarie Seyfarth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin und Humboldt—Universität zu Berlin, 12200 Berlin, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Richard Küchler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| |
Collapse
|
2
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
In Vitro Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. mBio 2021; 12:mBio.00557-21. [PMID: 33947756 PMCID: PMC8262866 DOI: 10.1128/mbio.00557-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.
Collapse
|
4
|
Romero N, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression. J Virol 2020; 94:e00196-20. [PMID: 32132236 PMCID: PMC7199412 DOI: 10.1128/jvi.00196-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-κB, illustrated by proteasome-dependent degradation of the inhibitory NF-κB regulator IκB and nuclear translocation and phosphorylation of the NF-κB subunit p65. PRV-induced persistent activation of NF-κB does not result in expression of negative feedback loop genes, like the gene for IκBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-κB activation. Hence, PRV infection triggers persistent NF-κB activation in an unorthodox way and dramatically modulates the NF-κB signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-κB signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.IMPORTANCE The NF-κB transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-κB, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-κB activation shares some mechanistic features with canonical NF-κB activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IκB kinase (IKK) and even renders infected cells resistant to canonical NF-κB activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-κB activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-κB activation.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
6
|
Li ML, Chen JH, Zhao ZY, Zhang KJ, Li Z, Li J, Mai JY, Zhu XM, Cai MS. Molecular cloning and characterization of the pseudorabies virus US1 gene. GENETICS AND MOLECULAR RESEARCH 2013; 12:85-98. [PMID: 23359028 DOI: 10.4238/2013.january.22.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using polymerase chain reaction, a 1050-bp sequence of the US1 gene was amplified from the pseudorabies virus (PRV) Becker strain genome; identification of the US1 gene was confirmed by further cloning and sequencing. Bioinformatics analysis indicated that the PRV US1 gene encodes a putative polypeptide with 349 amino acids. The encoded protein, designated PICP22, had a conserved Herpes_IE68 domain, which was found to be closely related with the herpes virus immediate early regulatory protein family and is highly conserved among the counterparts encoded by Herpes_IE68 genes. Multiple nucleic acid sequence and amino acid sequence alignments suggested that the product of PRV US1 has a relatively higher homology with ICP22-like proteins of genus Varicellovirus than with those of other genera of Alphaherpesvirinae. In addition, phylogenetic analysis showed that PRV US1 has a close evolutionary relationship with members of the genus Varicellovirus, especially Equid herpes virus 1 (EHV-1), EHV-4 and EHV-9. Antigen prediction indicated that several potential B-cell epitopes are located in PICP22. Also, subcellular localization analysis demonstrated that PICP22 is predominantly located in the cytoplasm, suggesting that it might function as a cytoplasmic-targeted protein.
Collapse
Affiliation(s)
- M L Li
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus. J Virol 2009; 83:7796-804. [PMID: 19494011 DOI: 10.1128/jvi.00745-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is not required for the sorting of virions into axons of infected neurons, anterograde transport, or the release of virions from the axon. trans or cis expression of gB on the cell surface was not sufficient for transneuronal spread of the virus; instead, efficient incorporation of gB into virions was required. Additionally, neuron-to-cell spread of PRV most likely does not proceed through syncytial connections. We conclude that, upon gB-independent release of virions at the site of neuron-cell contacts, the virion-incorporated gB/gH/gL fusion complex mediates entry into the axonally contacted cell by fusion of the closely apposed membranes.
Collapse
|
8
|
McShane MP, Longnecker R. Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci U S A 2004; 101:17474-9. [PMID: 15583133 PMCID: PMC536015 DOI: 10.1073/pnas.0404535101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) infects human B lymphocytes and epithelial cells. We have compared the requirements for EBV glycoprotein-induced cell fusion between Chinese hamster ovary effecter cells and human B lymphoblasts or epithelial cells by using a virus-free cell fusion assay. EBV-encoded gB, gH, gL, and gp42 glycoproteins were required for efficient B cell fusion, whereas EBV gB, gH, and gL glycoproteins were required for Chinese hamster ovary effecter cell fusion with epithelial cell lines (AGS and SCC68) or the human embryonic kidney cell line 293-P. Fusion with human embryonic kidney 293-P cells was greater than fusion observed with B cells, indicative of an important role for cell contact. An antibody directed against the gH and gL complex inhibited epithelial cell fusion. Increased surface expression of gB alone as a result of truncations or point mutants in the carboxyl-terminal tail allowed gB-mediated fusion with epithelial cells, albeit at a lower level than with coexpression of gB, gH, and gL. Overall, gB appears to be the critical component for EBV glycoprotein-mediated cell fusion.
Collapse
Affiliation(s)
- Marisa P McShane
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
9
|
Granzow H, Klupp BG, Mettenleiter TC. The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 2004; 78:1314-23. [PMID: 14722286 PMCID: PMC321416 DOI: 10.1128/jvi.78.3.1314-1323.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 10/20/2003] [Indexed: 01/29/2023] Open
Abstract
Herpesviruses acquire a primary envelope by budding of capsids at the inner leaflet of the nuclear membrane. They then traverse into the cytoplasm after fusion of the primary envelope with the outer leaflet of the nuclear membrane. In the alphaherpesvirus pseudorabies virus (PrV), the latter process is impaired when the US3 protein is absent. Acquisition of final tegument and envelope occurs in the cytoplasm. Besides the capsid components, only the UL31 and UL34 gene products of PrV have unequivocally been shown to be part of primary enveloped virions, whereas they lack several tegument proteins present in mature virions (reviewed by T. C. Mettenleiter, J. Virol. 76:1537-1547, 2002). Using immunoelectron microscopy, we show that the US3 protein is present in primary enveloped as well as in mature virions. It is also detectable in intracytoplasmic inclusions produced in the absence of other viral tegument components or envelope-associated glycoproteins. In particular, inclusions formed in the absence of the inner tegument protein UL37 contained the US3 protein. Thus, the US3 protein is a tegument component of both forms of enveloped alphaherpes virions. We hypothesize that US3 protein in primary virions modulates deenvelopment at the outer leaflet of the nuclear membrane and is either lost from primary virions during nuclear egress and subsequently reacquired early during tegumentation or is retained during transit of the nucleocapsid through the nuclear membrane.
Collapse
Affiliation(s)
- Harald Granzow
- Institutes of Infectology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
10
|
Klupp BG, Granzow H, Fuchs W, Mundt E, Mettenleiter TC. Pseudorabies virus UL3 gene codes for a nuclear protein which is dispensable for viral replication. J Virol 2004; 78:464-72. [PMID: 14671126 PMCID: PMC303397 DOI: 10.1128/jvi.78.1.464-472.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the products of the ca. 80 genes encoded by alphaherpesviruses have already been identified and, at least tentatively, functionally characterized. Among the least characterized proteins are the products of the genes homologous to herpes simplex virus UL3, which are present only in the subfamily Alphaherpesvirinae: To identify the UL3 protein of the porcine alphaherpesvirus pseudorabies virus (PrV), the complete PrV UL3 open reading frame was cloned, expressed in Escherichia coli as a glutathione S-transferase fusion protein, and used for immunization of a rabbit. In Western blots, the generated antiserum specifically detected a 34-kDa protein in PrV-infected cells, which was absent from purified virus preparations, indicating that PrV UL3 encodes a nonstructural protein. In indirect immunofluorescence analysis, the anti-UL3 serum produced predominantly nuclear staining in transfected as well as in infected cells, which was not altered in the absence of other virus-encoded nuclear proteins such as the UL31 and UL34 gene products. To investigate UL3 function, a deletion mutant, PrV-DeltaUL3F2, was constructed and characterized. This mutant replicated and formed plaques on noncomplementing cells indistinguishable from wild-type PrV, demonstrating that PrV UL3 is not required for virus propagation in cultured cells. Moreover, ultrastructural examinations revealed no impairment of capsid formation in the nucleus, nuclear egress of capsids, virion maturation in the cytoplasm, or virus release. Thus, the overall properties of PrV UL3 are similar to those described for the homologous herpes simplex virus proteins which may be indicative of a common, yet hitherto unknown, function in alphaherpesvirus replication. However, based on our studies, an involvement of the UL3 homologs in virion formation appears unlikely.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|