1
|
Chen A, Fang N, Zhang Z, Wen Y, Shen Y, Zhang Y, Zhang L, Zhao G, Ding J, Li J. Structural basis of the monkeypox virus mRNA cap N7 methyltransferase complex. Emerg Microbes Infect 2024; 13:2369193. [PMID: 38873898 PMCID: PMC11212559 DOI: 10.1080/22221751.2024.2369193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
The global outbreak of Mpox, caused by the monkeypox virus (MPXV), has attracted international attention and become another major infectious disease event after COVID-19. The mRNA cap N7 methyltransferase (RNMT) of MPXV methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs and plays a vital role in evading host antiviral immunity. MPXV RNMT is composed of the large subunit E1 and the small subunit E12. How E1 and E12 of MPXV assembly remains unclear. Here, we report the crystal structures of E12, the MTase domain of E1 with E12 (E1CTD-E12) complex, and the E1CTD-E12-SAM ternary complex, revealing the detailed conformations of critical residues and the structural changes upon E12 binding to E1. Functional studies suggest that E1CTD N-terminal extension (Asp545-Arg562) and the small subunit E12 play an essential role in the binding process of SAM. Structural comparison of the AlphaFold2-predicted E1, E1CTD-E12 complex, and the homologous D1-D12 complex of vaccinia virus (VACV) indicates an allosteric activating effect of E1 in MPXV. Our findings provide the structural basis for the MTase activity stimulation of the E1-E12 complex and suggest a potential interface for screening the anti-poxvirus inhibitors.
Collapse
Affiliation(s)
- Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Zhifei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yiqing Wen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yajie Shen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yanjie Zhang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Functional genomic analyses reveal an open pan-genome for the chloroviruses and a potential for genetic innovation in new isolates. J Virol 2021; 96:e0136721. [PMID: 34669449 DOI: 10.1128/jvi.01367-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroviruses (family Phycodnaviridae) are large dsDNA viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. 368, 268 and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportion of functionally characterized COGs composing the pan- and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core-genome. Bipartite network construction evidencing the COG-sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core-genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. Importance Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.
Collapse
|
3
|
Takagi Y, Kuwabara N, Dang TT, Furukawa K, Ho CK. Crystal structures of the RNA triphosphatase from Trypanosoma cruzi provide insights into how it recognizes the 5'-end of the RNA substrate. J Biol Chem 2020; 295:9076-9086. [PMID: 32381506 PMCID: PMC7335777 DOI: 10.1074/jbc.ra119.011811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Indexed: 11/06/2022] Open
Abstract
RNA triphosphatase catalyzes the first step in mRNA cap formation, hydrolysis of the terminal phosphate from the nascent mRNA transcript. The RNA triphosphatase from the protozoan parasite Trypanosoma cruzi, TcCet1, belongs to the family of triphosphate tunnel metalloenzymes (TTMs). TcCet1 is a promising antiprotozoal drug target because the mechanism and structure of the protozoan RNA triphosphatases are completely different from those of the RNA triphosphatases found in mammalian and arthropod hosts. Here, we report several crystal structures of the catalytically active form of TcCet1 complexed with a divalent cation and an inorganic tripolyphosphate in the active-site tunnel at 2.20-2.51 Å resolutions. The structures revealed that the overall structure, the architecture of the tunnel, and the arrangement of the metal-binding site in TcCet1 are similar to those in other TTM proteins. On the basis of the position of three sulfate ions that cocrystallized on the positively charged surface of the protein and results obtained from mutational analysis, we identified an RNA-binding site in TcCet1. We conclude that the 5'-end of the triphosphate RNA substrate enters the active-site tunnel directionally. The structural information reported here provides valuable insight into designing inhibitors that could specifically block the entry of the triphosphate RNA substrate into the TTM-type RNA triphosphatases of T. cruzi and related pathogens.
Collapse
Affiliation(s)
- Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Truong Tat Dang
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - C Kiong Ho
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki Japan.
| |
Collapse
|
4
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
5
|
Seitzer P, Jeanniard A, Ma F, Van Etten JL, Facciotti MT, Dunigan DD. Gene Gangs of the Chloroviruses: Conserved Clusters of Collinear Monocistronic Genes. Viruses 2018; 10:E576. [PMID: 30347809 PMCID: PMC6213493 DOI: 10.3390/v10100576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses (family Phycodnaviridae) are dsDNA viruses found throughout the world's inland waters. The open reading frames in the genomes of 41 sequenced chloroviruses (330 ± 40 kbp each) representing three virus types were analyzed for evidence of evolutionarily conserved local genomic "contexts", the organization of biological information into units of a scale larger than a gene. Despite a general loss of synteny between virus types, we informatically detected a highly conserved genomic context defined by groups of three or more genes that we have termed "gene gangs". Unlike previously described local genomic contexts, the definition of gene gangs requires only that member genes be consistently co-localized and are not constrained by strand, regulatory sites, or intervening sequences (and therefore represent a new type of conserved structural genomic element). An analysis of functional annotations and transcriptomic data suggests that some of the gene gangs may organize genes involved in specific biochemical processes, but that this organization does not involve their coordinated expression.
Collapse
Affiliation(s)
- Phillip Seitzer
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
- Proteome Software, Portland, OR 97219, USA
| | - Adrien Jeanniard
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - Fangrui Ma
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
| | - James L. Van Etten
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| | - Marc T. Facciotti
- Department of Biomedical Engineering, One Shields Ave, University of California, Davis, CA 95616, USA;
- Genome Center, One Shields Ave, University of California, Davis, CA 95616, USA
| | - David D. Dunigan
- Nebraska Center for Virology, Morrison Research Center, University of Nebraska, Lincoln, NE 68583-0900, USA; (F.M.); (J.L.V.E.)
- Department of Plant Pathology, Plant Science Hall, University of Nebraska, Lincoln, NE 68583-0722, USA
| |
Collapse
|
6
|
Smith P, Ho CK, Takagi Y, Djaballah H, Shuman S. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase. mBio 2016; 7:e00058-16. [PMID: 26908574 PMCID: PMC4791841 DOI: 10.1128/mbio.00058-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals-including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics-that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. IMPORTANCE The stark differences between the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus in pathogenic protozoa, fungi, and viruses and those of their metazoan hosts highlight RTPase as a target for anti-infective drug discovery. Protozoan, fungal, and DNA virus RTPases belong to the triphosphate tunnel metalloenzyme family. This study shows that a protozoan RTPase, TbCet1 from Trypanosoma brucei, is essential for growth of the parasite in culture and identifies, via in vitro screening of chemical libraries, several classes of potent small-molecule inhibitors of TbCet1 phosphohydrolase activity.
Collapse
Affiliation(s)
- Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - C Kiong Ho
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yuko Takagi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hakim Djaballah
- High Throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA
| |
Collapse
|
7
|
Antczak C, Shum D, Radu C, Seshan VE, Djaballah H. Development and validation of a high-density fluorescence polarization-based assay for the trypanosoma RNA triphosphatase TbCet1. Comb Chem High Throughput Screen 2009; 12:258-68. [PMID: 19275531 DOI: 10.2174/138620709787581729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RNA triphosphatases are attractive and mostly unexplored therapeutic targets for the development of broad spectrum antiprotozoal, antiviral and antifungal agents. The use of malachite green as a readout for phosphatases is well characterized and widely employed. However, the reaction depends on high quantities of inorganic phosphate to be generated, which makes this assay not easily amenable to screening in 1536-well format. The overly long reading times required also prohibit its use to screen large chemical libraries. To overcome these limitations, we sought to develop a fluorescence polarization (FP) -based assay for triphosphatases, compatible with miniaturization and fast readouts. For this purpose, we took advantage of the nucleoside triphosphatase activity of this class of enzyme to successfully adapt the Transcreener ADP assay based on the detection of generated ADP by immunocompetition fluorescence polarization to the RNA triphosphatase TbCet1 in 1536-well format. We also tested the performance of this newly developed assay in a pilot screen of 3,000 compounds and we confirmed the activity of the obtained hits. We present and discuss our findings and their importance for the discovery of novel drugs by high throughput screening.
Collapse
Affiliation(s)
- Christophe Antczak
- High Throughput Screening Core Facility, Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
8
|
Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure 2008; 16:501-12. [PMID: 18400173 DOI: 10.1016/j.str.2008.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 01/26/2023]
Abstract
The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.
Collapse
|
9
|
Soulière MF, Perreault JP, Bisaillon M. Kinetic and thermodynamic characterization of the RNA guanylyltransferase reaction. Biochemistry 2008; 47:3863-74. [PMID: 18298088 DOI: 10.1021/bi702054a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.
Collapse
Affiliation(s)
- Marie F Soulière
- RNA Group/Grpe ARN, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | |
Collapse
|
10
|
Soulière MF, Perreault JP, Bisaillon M. Magnesium-binding studies reveal fundamental differences between closely related RNA triphosphatases. Nucleic Acids Res 2007; 36:451-61. [PMID: 18039706 PMCID: PMC2241848 DOI: 10.1093/nar/gkm1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Chlorella virus RNA triphosphatase (cvRTPase) is involved in the formation of the RNA cap structure found at the 5′-end of the viral mRNAs and requires magnesium ions to mediate its catalytic activity. To extend our studies on the role of metal ions in phosphohydrolysis, we have used a combination of fluorescence spectroscopy, circular dichroism, denaturation studies and thermodynamic analyses to monitor the binding of magnesium ions to the cvRTPase. Using these techniques, the thermodynamic forces responsible for the interaction of metal ions with an RNA triphosphatase were also evaluated for the first time. Our thermodynamic analyses indicate that the initial association of magnesium with the cvRTPase is dominated by a favorable entropic effect and is accompanied by the release of eight water molecules from the enzyme. Moreover, both fluorescence spectroscopy and circular dichroism assays indicated that minor conformational changes were occurring upon magnesium binding. Mutational studies were also performed and confirmed the importance of three specific glutamate residues located in the active site of the enzyme for the binding of magnesium ions. Finally, in contrast to the yeast RNA triphosphatase, we demonstrate that the binding of magnesium ions to the cvRTPase does not lead to the stabilization of the ground state binding of the RNA substrate. Based on the results of the present study, we hypothesize that the binding of magnesium ions induces local conformational perturbations in the active site residues that ultimately positions the lateral chains of critical amino acids involved in catalysis. Our results highlight fundamental differences in the role of magnesium ions in the phosphohydrolase reactions catalyzed by the cvRTPase and the closely related yeast RNA triphosphatase.
Collapse
Affiliation(s)
- Marie F Soulière
- Département de Biochimie, RNA Group, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
11
|
Bougie I, Bisaillon M. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Biochem J 2006; 398:557-67. [PMID: 16761952 PMCID: PMC1559470 DOI: 10.1042/bj20060198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paramecium bursaria chlorella virus, a large DNA virus that replicates in unicellular Chlorella-like algae, encodes an RNA triphosphatase which is involved in the synthesis of the RNA cap structure found at the 5' end of the viral mRNAs. The Chlorella virus RNA triphosphatase is the smallest member of the metal-dependent RNA triphosphatases that include enzymes from fungi, DNA viruses, protozoans and microsporidian parasites. In the present study, we investigated the ability of various vanadate oxoanions to inhibit the phosphohydrolase activity of the enzyme. Fluorescence spectroscopy and CD studies were used to directly monitor the binding of decavanadate to the enzyme. Moreover, competition assays show that decavanadate is a potent non-competitive inhibitor of the phosphohydrolase activity, and mutagenesis studies indicate that the binding of decavanadate does not involve amino acids located in the active site of the enzyme. In order to provide additional insight into the relationship between the enzyme structure and decavanadate binding, we correlated the effect of decavanadate binding on protein structure using both CD and guanidinium chloride-induced denaturation as structural indicators. Our data indicated that no significant modification of the overall protein architecture was occurring upon decavanadate binding. However, both fluorescence spectroscopy and CD experiments clearly revealed that the binding of decavanadate to the enzyme significantly decreased the structural stability of the enzyme. Taken together, these studies provide crucial insights into the inhibition of metal-dependent RNA triphosphatases by decavanadate.
Collapse
Affiliation(s)
- Isabelle Bougie
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Abstract
Chlorella viruses or chloroviruses are large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330-kbp genome of Paramecium bursaria chlorella virus 1 (PBCV-1), the prototype of this virus family (Phycodnaviridae), predict approximately 366 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site-specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus-encoded K(+) channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV-1 has three types of introns; a self-splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV-1 as well as other related viruses.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi, Japan
| | | | | |
Collapse
|
13
|
Kang M, Dunigan DD, VAN Etten JL. Chlorovirus: a genus of Phycodnaviridae that infects certain chlorella-like green algae. MOLECULAR PLANT PATHOLOGY 2005; 6:213-224. [PMID: 20565652 DOI: 10.1111/j.1364-3703.2005.00281.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Taxonomy: Chlorella viruses are assigned to the family Phycodnaviridae, genus Chlorovirus, and are divided into three species: Chlorella NC64A viruses, Chlorella Pbi viruses and Hydra viridis Chlorella viruses. Chlorella viruses are large, icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorella-like green algae. The type member is Paramecium bursaria chlorella virus 1 (PBCV-1). Physical properties: Chlorella virus particles are large (molecular weight approximately 1 x 10(9) Da) and complex. The virion of PBCV-1 contains more than 100 different proteins; the major capsid protein, Vp54, comprises approximately 40% of the virus protein. Cryoelectron microscopy and three-dimensional image reconstruction of PBCV-1 virions indicate that the outer glycoprotein-containing capsid shell is icosahedral and surrounds a lipid bilayered membrane. The diameter of the viral capsid ranges from 1650 A along the two- and three-fold axes to 1900 A along the five-fold axis. The virus contains 5040 copies of Vp54, and the triangulation number is 169. The PBCV-1 genome is a linear, 330 744-bp, non-permuted dsDNA with covalently closed hairpin ends. The PBCV-1 genome contains approximately 375 protein-encoding genes and 11 tRNA genes. About 50% of the protein-encoding genes match proteins in the databases. Hosts: Chlorella NC64A and Chlorella Pbi, the hosts for NC64A viruses and Pbi viruses, respectively, are endosymbionts of the protozoan Paramecium bursaria. However, they can be grown in the laboratory free of both the paramecium and the virus. These two chlorella species are hosts to viruses that have been isolated from fresh water collected around the world. The host for hydra chlorella virus, a symbiotic chlorella from Hydra viridis, has not been grown independently of its host; thus the virus can only be obtained from chlorella cells freshly released from hydra.
Collapse
Affiliation(s)
- Ming Kang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|
14
|
Abstract
Paramecium bursaria chlorella virus (PBCV-1) is the prototype of a family of large, icosahedral, plaque-forming, dsDNA viruses that replicate in certain unicellular, eukaryotic chlorella-like green algae. Its 330-kb genome contains approximately 373 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are unexpected for a virus, e.g., ornithine decarboxylase, hyaluronan synthase, GDP-D-mannose 4,6 dehydratase, and a potassium ion channel protein. In addition to their large genome size, the chlorella viruses have other features that distinguish them from most viruses. These features include: (a) The viruses encode multiple DNA methyltransferases and DNA site-specific endonucleases. (b) The viruses encode at least some, if not all, of the enzymes required to glycosylate their proteins. (c) PBCV-1 has at least three types of introns, a self-splicing intron in a transcription factor-like gene, a spliceosomal processed intron in its DNA polymerase gene, and a small intron in one of its tRNA genes. (d) Many chlorella virus-encoded proteins are either the smallest or among the smallest proteins of their class. (e) Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history.
Collapse
Affiliation(s)
- James L Van Etten
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA.
| |
Collapse
|
15
|
Gong C, Martins A, Shuman S. Structure-Function Analysis of Trypanosoma brucei RNA Triphosphatase and Evidence for a Two-metal Mechanism. J Biol Chem 2003; 278:50843-52. [PMID: 14525979 DOI: 10.1074/jbc.m309188200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Trypanosoma brucei RNA triphosphatase TbCet1 is a 252-amino acid polypeptide that catalyzes the first step in mRNA cap formation. By performing an alanine scan of TbCet1, we identified six amino acids that are essential for triphosphatase activity (Glu-52, Arg-127, Glu-168, Arg-186, Glu-216, and Glu-218). These results consolidate the proposal that protozoan, fungal, and Chlorella virus RNA triphosphatases belong to a single family of metal-dependent NTP phosphohydrolases with a unique tunnel active site composed of eight beta strands. Limited proteolysis of TbCet1 suggests that the hydrophilic N terminus is surface-exposed, whereas the catalytic core domain is tightly folded with the exception of a protease-sensitive loop (76WKGRRARKT84) between two of the putative tunnel strands. The catalytic domain of TbCet1 is extraordinarily thermostable. It remains active after heating for 2 h at 75 degrees C. Analysis by zonal velocity sedimentation indicates that TbCet1 is a monomeric enzyme, unlike fungal RNA triphosphatases, which are homodimers. We show that tripolyphosphate is a potent competitive inhibitor of TbCet1 (Ki 1.4 microm) that binds more avidly to the active site than the ATP substrate (Km 25 microm). We present evidence of synergistic activation of the TbCet1 triphosphatase by manganese and magnesium, consistent with a two-metal mechanism of catalysis. Our findings provide new insight to the similarities (in active site tertiary structure and catalytic mechanism) and differences (in quaternary structure and thermal stability) among the different branches of the tunnel enzyme family.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
16
|
Bisaillon M, Bougie I. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase. J Biol Chem 2003; 278:33963-71. [PMID: 12819229 DOI: 10.1074/jbc.m303007200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae RNA triphosphatase (Cet1) requires the presence of metal ion cofactors to catalyze its phosphohydrolase activity, the first step in the formation of the 5'-terminal cap structure of mRNAs. We have used endogenous tryptophan fluorescence studies to elucidate both the nature and the role(s) of the metal ions in the Cet1-mediated phosphohydrolase reaction. The association of Mg2+, Mn2+, and Co2+ ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was then used to determine the apparent dissociation constants for these ions. Subsequent dual ligand titration experiments demonstrated that the metal ions bind to a common site, for which they compete. The kinetics of real-time metal ion binding to the Cet1 protein were also investigated, and the effects on RNA and nucleotide binding were evaluated. To provide additional insight into the relationship between Cet1 structure and metal ion binding, we correlated the effect of ion binding on protein structure using both circular dichroism and guanidium hydrochloride-induced denaturation as structural indicators. Our data indicate that binding of RNA, nucleotides, and metal ion cofactors does not lead to significant structural modifications of the Cet1 architecture. This suggests a model in which Cet1 possesses a preformed active site, and where major domain rearrangements are not required to form an active catalytic site. Finally, denaturation studies demonstrate that the metal ion cofactors can act by stabilizing the ground state binding of the phosphohydrolase substrate.
Collapse
Affiliation(s)
- Martin Bisaillon
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | | |
Collapse
|
17
|
Shuman S. The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:301-12. [PMID: 12762032 DOI: 10.1101/sqb.2001.66.301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| |
Collapse
|
18
|
Takagi T, Cho EJ, Janoo RTK, Polodny V, Takase Y, Keogh MC, Woo SA, Fresco-Cohen LD, Hoffman CS, Buratowski S. Divergent subunit interactions among fungal mRNA 5'-capping machineries. EUKARYOTIC CELL 2002; 1:448-57. [PMID: 12455993 PMCID: PMC118010 DOI: 10.1128/ec.1.3.448-457.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 03/25/2002] [Indexed: 02/02/2023]
Abstract
The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5'-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1+) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.
Collapse
Affiliation(s)
- Toshimitsu Takagi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 021151, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gong C, Shuman S. Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate. J Biol Chem 2002; 277:15317-24. [PMID: 11844801 DOI: 10.1074/jbc.m200532200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site. Twelve residues (Glu(24), Glu(26), Asp(64), Arg(76), Lys(90), Glu(112), Arg(127), Lys(129), Arg(131), Asp(142), Glu(163), and Glu(165)) were deemed essential for catalysis by cvRtp1, insofar as their replacement by alanine reduced phosphohydrolase activity to <5% of the wild-type value. Structure-activity relationships were elucidated by introducing conservative substitutions at the essential positions. The mutational results suggest that the active site of cvRtp1 is likely to adopt a tunnel fold like that of Cet1 and that a similar constellation of side chains within the tunnel is responsible for metal binding and reaction chemistry. Nonetheless, there are several discordant mutational effects in cvRtp1 versus Cet1, which suggest that different members of the phosphohydrolase family vary in their reliance on certain residues within the active site tunnel. We found that tripolyphosphate and pyrophosphate were potent competitive inhibitors of cvRtp1 (K(i) = 0.6 microm tripolyphosphate and 2.4 microm pyrophosphate, respectively), whereas phosphate had little effect. cvRtp1 displayed a weak intrinsic tripolyphosphatase activity (3% of its ATPase activity) but was unable to hydrolyze pyrophosphate.
Collapse
Affiliation(s)
- Chunling Gong
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
20
|
Hausmann S, Vivarès CP, Shuman S. Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi. J Biol Chem 2002; 277:96-103. [PMID: 11687593 DOI: 10.1074/jbc.m109649200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the enzymes that catalyze mRNA cap formation. Here we show that the intracellular parasite Encephalitozoon cuniculi encodes a complete mRNA capping apparatus consisting of separate triphosphatase (EcCet1), guanylyltransferase (EcCeg1), and methyltransferase (Ecm1) enzymes, which we characterize biochemically and genetically. The triphosphatase EcCet1 belongs to a metal-dependent phosphohydrolase family that includes the triphosphatase components of the capping apparatus of fungi, DNA viruses, and the malaria parasite Plasmodium falciparum. These enzymes are structurally and mechanistically unrelated to the metal-independent cysteine phosphatase-type RNA triphosphatases found in metazoans and plants. Our findings support the proposed evolutionary connection between microsporidia and fungi, and they place fungi and protozoa in a common lineage distinct from that of metazoans and plants. RNA triphosphatase presents an attractive target for antiprotozoal/antifungal drug development.
Collapse
Affiliation(s)
- Stephane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
21
|
Martins A, Shuman S. Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity. J Biol Chem 2001; 276:45522-9. [PMID: 11553638 DOI: 10.1074/jbc.m107615200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 464-amino acid baculovirus Lef4 protein is a bifunctional mRNA capping enzyme with triphosphatase and guanylyltransferase activities. The hydrolysis of 5'-triphosphate RNA and free NTPs by Lef4 is dependent on a divalent cation cofactor. RNA triphosphatase activity is optimal at pH 7.5 with either magnesium or manganese, yet NTP hydrolysis at neutral pH is activated only by manganese or cobalt. Here we show that Lef4 possesses an intrinsic magnesium-dependent ATPase with a distinctive alkaline pH optimum and a high K(m) for ATP (4 mm). Lef4 contains two conserved sequences, motif A ((8)IEKEISY(14)) and motif C ((180)LEYEF(184)), which define the fungal/viral/protozoal family of metal-dependent RNA triphosphatases. We find by mutational analysis that Glu(9), Glu(11), Glu(181), and Glu(183) are essential for phosphohydrolase chemistry and likely comprise the metal-binding site of Lef4. Conservative mutations E9D and E183D abrogate the magnesium-dependent triphosphatase activities of Lef4 and transform it into a strictly manganese-dependent RNA triphosphatase. Limited proteolysis of Lef4 and ensuing COOH-terminal deletion analysis revealed that the NH(2)-terminal 236-amino acid segment of Lef4 constitutes an autonomous triphosphatase catalytic domain.
Collapse
Affiliation(s)
- A Martins
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
22
|
Ho CK, Shuman S. Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny. J Biol Chem 2001; 276:46182-6. [PMID: 11553645 DOI: 10.1074/jbc.m108706200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNA capping apparatus of the protozoan parasite Trypanosoma brucei consists of separately encoded RNA triphosphatase and RNA guanylyltransferase enzymes. The triphosphatase TbCet1 is a member of a new family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and the malaria parasite Plasmodium falciparum. The protozoal/fungal enzymes are structurally and mechanistically unrelated to the RNA triphosphatases of metazoans and plants. These results highlight the potential for discovery of broad spectrum antiprotozoal and antifungal drugs that selectively block the capping of pathogen-encoded mRNAs. We propose a scheme of eukaryotic phylogeny based on the structure of RNA triphosphatase and its physical linkage to the guanylyltransferase component of the capping apparatus.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
23
|
Pei Y, Schwer B, Saiz J, Fisher RP, Shuman S. RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiol 2001; 1:29. [PMID: 11737862 PMCID: PMC60989 DOI: 10.1186/1471-2180-1-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Accepted: 11/20/2001] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The first two steps in the capping of cellular mRNAs are catalyzed by the enzymes RNA triphosphatase and RNA guanylyltransferase. Although structural and mechanistic differences between fungal and mammalian RNA triphosphatases recommend this enzyme as a potential antifungal target, it has not been determined if RNA triphosphatase is essential for the growth of fungal species that cause human disease. RESULTS We show by classical genetic methods that the triphosphatase (Pct1) and guanylyltransferase (Pce1) components of the capping apparatus in the fission yeast Schizosaccharomyces pombe are essential for growth. We were unable to disrupt both alleles of the Candida albicans RNA triphosphatase gene CaCET1, implying that the RNA triphosphatase enzyme is also essential for growth of C. albicans, a human fungal pathogen. CONCLUSIONS Our results provide the first genetic evidence that cap synthesis is essential for growth of an organism other than Saccharomyces cerevisiae and they validate RNA triphosphatase as a target for antifungal drug discovery.
Collapse
Affiliation(s)
- Yi Pei
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julia Saiz
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Robert P Fisher
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| |
Collapse
|
24
|
Bisaillon M, Shuman S. Functional groups required for the stability of yeast RNA triphosphatase in vitro and in vivo. J Biol Chem 2001; 276:30514-20. [PMID: 11395522 DOI: 10.1074/jbc.m104936200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cet1, the RNA triphosphatase component of the yeast mRNA capping apparatus, catalyzes metal-dependent gamma-phosphate hydrolysis within the hydrophilic interior of an eight-strand beta barrel (the "triphosphate tunnel"), which rests upon a globular protein core (the "pedestal"). We performed a structure-guided alanine scan of 17 residues located in the tunnel (Ser(373), Thr(375), Gln(405), His(411), Ser(429), Glu(488), Thr(490)), on the tunnel's outer surface (Ser(378), Ser(487), Thr(489), His(491)), at the tunnel-pedestal interface (Ile(304), Met(308)) and in the pedestal (Asp(315), Lys(317), Arg(321), Asp(425)). Alanine mutations at 14 positions had no significant effect on Cet1 phosphohydrolase activity in vitro and had no effect on Cet1 function in vivo. Two of the mutations (R321A and D425A) elicited a thermosensitive (ts) yeast growth phenotype. The R321A and D425A proteins had full phosphohydrolase activity in vitro, but were profoundly thermolabile. Arg(321) and Asp(425) interact to form a salt bridge within the pedestal that tethers two of the strands of the tunnel. Mutations R321Q and D411N resulted in ts defects in vivo and in vitro, as did the double-mutant R321A-D435A, whereas the R321K protein was fully stable in vivo and in vitro. These results highlight the critical role of the buried salt bridge in Cet1 stability. Replacement of Ser(429) by alanine or valine elicited a cold-sensitive (cs) yeast growth phenotype. The S429A and S429V proteins were fully active when produced in bacteria at 37 degrees C, but were inactive when produced at 17 degrees C. Replacement of Ser(429) by threonine partially suppressed the cold sensitivity of the Cet1 phosphohydrolase, but did not suppress the cs growth defect in yeast.
Collapse
Affiliation(s)
- M Bisaillon
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
25
|
Bisaillon M, Shuman S. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase. J Biol Chem 2001; 276:17261-6. [PMID: 11279161 DOI: 10.1074/jbc.m100980200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cet1, the RNA triphosphatase component of the yeast mRNA capping apparatus, catalyzes metal-dependent gamma phosphate hydrolysis within the hydrophilic interior of a topologically closed 8-strand beta barrel (the "triphosphate tunnel"). We used structure-guided alanine scanning to identify 6 side chains within the triphosphate tunnel that are essential for phosphohydrolase activity in vitro and in vivo: Arg393, Glu433, Arg458, Arg469, Asp471 and Thr473. Alanine substitutions at two positions, Asp377 and Lys409, resulted in partial catalytic defects and a thermosensitive growth phenotype. Structure-function relationships were clarified by introducing conservative substitutions. Five residues were found to be nonessential: Lys309, Ser395, Asp397, Lys427 Asn431, and Lys474. The present findings, together with earlier mutational analyses, reveal an unusually complex active site in which 15 individual side chains in the tunnel cavity are important for catalysis, and each of the 8 strands of the beta barrel contributes at least one functional constituent. The active site residues fall into three classes: (i) those that participate directly in catalysis via coordination of the gamma phosphate or the metal; (ii) those that make critical water-mediated contacts with the gamma phosphate or the metal; and (iii) those that function indirectly via interactions with other essential side chains or by stabilization of the tunnel structure.
Collapse
Affiliation(s)
- M Bisaillon
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Ho CK, Shuman S. A yeast-like mRNA capping apparatus in Plasmodium falciparum. Proc Natl Acad Sci U S A 2001; 98:3050-5. [PMID: 11248030 PMCID: PMC30605 DOI: 10.1073/pnas.061636198] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the mRNA capping apparatus of the malaria parasite Plasmodium falciparum illuminates an evolutionary connection to fungi rather than metazoans. We show that P. falciparum encodes separate RNA guanylyltransferase (Pgt1) and RNA triphosphatase (Prt1) enzymes and that the triphosphatase component is a member of the fungal/viral family of metal-dependent phosphohydrolases, which are structurally and mechanistically unrelated to the cysteine-phosphatase-type RNA triphosphatases found in metazoans and plants. These results highlight the potential for discovery of mechanism-based antimalarial drugs designed to specifically block the capping of Plasmodium mRNAs. A simple heuristic scheme of eukaryotic phylogeny is suggested based on the structure and physical linkage of the triphosphatase and guanylyltransferase enzymes that catalyze cap formation.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|