1
|
Ruhanya V, Jacobs GB, Paul RH, Joska JA, Seedat S, Nyandoro G, Glashoff RH, Engelbrecht S. HIV-1 subtype C Tat exon-1 amino acid residue 24K is a signature for neurocognitive impairment. J Neurovirol 2022; 28:392-403. [PMID: 35394614 DOI: 10.1007/s13365-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Variation and differential selection pressures on Tat genes have been shown to alter the biological function of the protein, resulting in pathological consequences in a number of organs including the brain. We evaluated the impact of genetic variation and selection pressure on 147 HIV-1 subtype C Tat exon 1 sequences from monocyte-depleted peripheral lymphocytes on clinical diagnosis of neurocognitive impairment. Genetic analyses identified two signature amino acid residues, lysine at codon 24 (24K) with a frequency of 43.4% and arginine at codon 29 (29R) with a frequency of 34.0% in individuals with HIV-associated neurocognitive impairment. The analyses also revealed two signature residues, asparagine, 24 N (31.9%), and histidine, 29H (21.3%), in individuals without neurocognitive impairment. Both codons, 24 and 29, were associated with high entropy but only codon 29 was under positive selection. The presence of signature K24 increased by 2.08 times the risk of neurocognitive impairment, 3.15 times higher proviral load, and 69% lower absolute CD4 T-cell count compared to those without the signature. The results support a linkage between HIV-1 C Tat N24K polymorphism, proviral load, immunosuppression, and neurocognitive impairment. The signature may induce more neurotoxic effects, which contributes to establishment and severity of HIV-associated neurocognitive impairment.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa. .,Department of Medical Microbiology, Harare, Zimbabwe.
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa
| | - Robert H Paul
- Department of Psychology and Behavioral Neuroscience, University of Missouri-St Louis, University Boulevard, St Louis, USA
| | - John A Joska
- MRC Unit of Anxiety & Stress Disorders, Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- MRC Unit of Anxiety & Stress Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | | | - Richard H Glashoff
- Division of Medical Microbiology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unit, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unit, Cape Town, South Africa
| |
Collapse
|
2
|
Genome-wide association study reveals genetic variants associated with HIV-1C infection in a Botswana study population. Proc Natl Acad Sci U S A 2021; 118:2107830118. [PMID: 34782459 DOI: 10.1073/pnas.2107830118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Although there have been many studies of gene variant association with different stages of HIV/AIDS progression in United States and European cohorts, few gene-association studies have assessed genic determinants in sub-Saharan African populations, which have the highest density of HIV infections worldwide. We carried out genome-wide association studies on 766 study participants at risk for HIV-1 subtype C (HIV-1C) infection in Botswana. Three gene associations (AP3B1, PTPRA, and NEO1) were shown to have significant association with HIV-1C acquisition. Each gene association was replicated within Botswana or in the United States-African American or United States-European American AIDS cohorts or in both. Each associated gene has a prior reported influence on HIV/AIDS pathogenesis. Thirteen previously discovered AIDS restriction genes were further replicated in the Botswana cohorts, extending our confidence in these prior AIDS restriction gene reports. This work presents an early step toward the identification of genetic variants associated with and affecting HIV acquisition or AIDS progression in the understudied HIV-1C afflicted Botswana population.
Collapse
|
3
|
Salwe S, Padwal V, Nagar V, Patil P, Patel V. T cell functionality in HIV-1, HIV-2 and dually infected individuals: correlates of disease progression and immune restoration. Clin Exp Immunol 2019; 198:233-250. [PMID: 31216050 PMCID: PMC6797902 DOI: 10.1111/cei.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 01/07/2023] Open
Abstract
The role of suppressive anti-retroviral therapy (ART) in eliciting restoration of dysregulated immune function remains unclear in HIV-1 infection. Also, due to tailoring of therapeutic regimens towards HIV-1, this possible impairment of therapy may be even more pronounced in HIV-2 and dual (HIV-D) infection. Thus, we evaluated the impact of ART on immune restoration by assessing T cell functions, including HIV specific responses in HIV-1-, HIV-2- and HIV-D-infected individuals. Both ART-treated and naive infected subjects showed persistently altered frequency of CD4+ T cell subsets [regulatory T cells (Treg ), naive/central memory, effector memory], increased immune activation, cytoxicity and decreased frequency of natural killer T (NKT)- like cells and T helper type 17 (Th17)/Treg ratio with elevated microbial translocation. Further, HIV-specific responses were dominated by gag-specific CD4+ T cells in virologically suppressed HIV-D individuals, suggesting retention of T cell memory for both viruses. Increased antigen-specific responses, including dual-functional interleukin (IL)-2/interferon (IFN)-γ CD4+ T cells, were detected in therapy receiving HIV-2-infected individuals indicative of a greater and more functionally diverse T cell memory repertoire. We delineated immune signatures specific to therapy-naive single HIV infection, as well as a unique signature associated with HIV-2 disease progression and immune restoration. Circulating Treg frequency, T cell activation and microbial translocation levels correlated with disease progression and immune restoration among all types of HIV infection. Also, memory responses negatively correlated, irrespective of type of infection, in ART receiving infected individuals, with CD4 rebound and decreased pan T cell activation. Our data highlight the need for adjunct immunomodulatory therapeutic strategies to achieve optimal immune restoration in HIV infection.
Collapse
Affiliation(s)
- S. Salwe
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| | - V. Padwal
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| | - V. Nagar
- Department of MedicineGrant Medical College and Sir J. J. Group of HospitalsMumbaiIndia
| | - P. Patil
- Department of MedicineGrant Medical College and Sir J. J. Group of HospitalsMumbaiIndia
| | - V. Patel
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| |
Collapse
|
4
|
Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. J Virol 2019; 93:JVI.00814-19. [PMID: 31375576 DOI: 10.1128/jvi.00814-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
BLT (bone marrow-liver-thymus) humanized mice, which reconstitute a functional human immune system, develop prototypic human virus-specific CD8+ T cell responses following infection with human immunodeficiency virus type 1 (HIV-1). We explored the utility of the BLT model for HIV-1 vaccine development by immunizing BLT mice against the conserved viral Gag protein, utilizing a rapid prime-boost protocol of poly(lactic-co-glycolic) acid microparticles and a replication-defective herpes simplex virus (HSV) recombinant vector. After HIV-1 challenge, the mice developed broad, proteome-wide gamma interferon-positive (IFN-γ+) T cell responses against HIV-1 that reached magnitudes equivalent to what is observed in HIV-1-infected individuals. The functionality of these responses was underscored by the consistent emergence of escape mutations in multiple CD8+ T cell epitopes during the course of infection. Although prechallenge vaccine-induced responses were largely undetectable, the Gag immunization increased both the magnitude and the kinetics of anamnestic Gag-specific T cell responses following HIV-1 infection, and the magnitude of these postchallenge Gag-specific responses was inversely correlated with acute HIV-1 viremia. Indeed, Gag immunization was associated with a modest but significant 0.5-log reduction in HIV-1 viral load when analyzed across four experimental groups of BLT mice. Notably, the HSV vector induced elevated plasma concentrations of polarizing cytokines and chemotactic factors, including interleukin-12p70 (IL-12p70) and MIP-1α, which were positively correlated with the magnitude of Gag-specific responses. Overall, these results support the ability of BLT mice to recapitulate human pathogen-specific T cell responses and to respond to immunization; however, additional improvements to the model are required to develop a robust system for testing HIV-1 vaccine efficacy.IMPORTANCE Advances in the development of humanized mice have raised the possibility of a small-animal model for preclinical testing of an HIV-1 vaccine. Here, we describe the capacity of BLT humanized mice to mount broadly directed HIV-1-specific human T cell responses that are functionally active, as indicated by the rapid emergence of viral escape mutations. Although immunization of BLT mice with the conserved viral Gag protein did not result in detectable prechallenge responses, it did increase the magnitude and kinetics of postchallenge Gag-specific T cell responses, which was associated with a modest but significant reduction in acute HIV-1 viremia. Additionally, the BLT model revealed immunization-associated increases in the plasma concentrations of immunomodulatory cytokines and chemokines that correlated with more robust T cell responses. These data support the potential utility of the BLT humanized mouse for HIV-1 vaccine development but suggest that additional improvements to the model are warranted.
Collapse
|
5
|
Impact of APOBEC Mutations on CD8+ T Cell Recognition of HIV Epitopes Varies Depending on the Restricting HLA. J Acquir Immune Defic Syndr 2015; 70:172-8. [PMID: 26035050 DOI: 10.1097/qai.0000000000000689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously showed that APOBEC-mediated mutations in HIV CD8 T-cell epitopes generally reduce recognition by CD8 T cells. Here, we examined this effect in the context of histocompatibility-linked leukocyte antigen (HLA) alleles differentially associated with disease progression rates. For HLA-B57-restricted epitopes, APOBEC mutations generally diminished CD8 T cell recognition. Conversely, recognition of HLA-B35-restricted epitopes was consistently enhanced. For epitopes that can be presented by either HLA-A2 or A3, the same APOBEC mutation had differential effects on CD8 T cell recognition, depending on the individual's HLA genotype. The pattern of HLA dependence provides additional evidence that APOBEC action is channeled toward cytotoxic CD8 T-cell escape.
Collapse
|
6
|
Wu JW, Patterson-Lomba O, Novitsky V, Pagano M. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections. Medicine (Baltimore) 2015; 94:e1865. [PMID: 26496342 PMCID: PMC4620842 DOI: 10.1097/md.0000000000001865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving accuracy when identifying recent HIV-1 infections.
Collapse
Affiliation(s)
- Julia Wei Wu
- From the Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (JWW); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA (OP-L, MP); and Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA (VN)
| | | | | | | |
Collapse
|
7
|
Armitage AE, Deforche K, Welch JJ, Van Laethem K, Camacho R, Rambaut A, Iversen AKN. Possible footprints of APOBEC3F and/or other APOBEC3 deaminases, but not APOBEC3G, on HIV-1 from patients with acute/early and chronic infections. J Virol 2014; 88:12882-94. [PMID: 25165112 PMCID: PMC4248940 DOI: 10.1128/jvi.01460-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Members of the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sublethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3 activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies, since a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined "footprints" of APOBEC3G and APOBEC3F activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. In contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sublethal mutations that might facilitate viral diversification. Therefore, Vif-specific cytotoxic T lymphocyte (CTL) responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3 family.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kristel Van Laethem
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Ricardo Camacho
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrew Rambaut
- Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom
| | - Astrid K N Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
8
|
Mugaba S, Nakiboneka R, Nanyonjo M, Bugembe-Lule D, Kaddu I, Nanteza B, Tweyongyere R, Kaleebu P, Serwanga J. Group M consensus Gag and Nef peptides are as efficient at detecting clade A1 and D cross-subtype T-cell functions as subtype-specific consensus peptides. Vaccine 2014; 32:3787-95. [PMID: 24837770 DOI: 10.1016/j.vaccine.2014.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/05/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Evaluating HIV-1 specific T-cell response in African populations is sometimes compromised by extensive virus diversity and paucity of non-clade B reagents. We evaluated whether consensus group M (ConM) peptides could serve as comparable substitutes for detecting immune responses in clade A and clade D HIV-1 infection. METHODS Frequencies, breadths and polyfunctionality (≥ 3 functions: IFN-γ, IL-2, TNF-α and Perforin) of HIV-specific responses utilizing ConM, ConA and ConD Gag and Nef peptides was compared. RESULTS Median genetic distances of infecting gag sequences from consensus group M were (8.9%, IQR 8.2-9.7 and 9%, IQR 3.3-10) for consensus A and D, respectively. Of 24 subjects infected with A and D clade virus, Gag responses were detected in comparable proportions of subjects when using ConM peptides 22/24, ConA peptides 17/24, and ConD peptides 21/24; p=0.12. Nef responses were also detected at similar proportions of subjects when using ConM peptides 15/23, ConA peptides 19/23, and ConD peptides 16/23, p=0.39. Virus-specific CD4+ and CD8+ T-cell polyfunctionality were also detected in similar proportions of infected individuals when using different peptide sets. CONCLUSIONS These data support the use of consensus group M overlapping peptide sets as reagents for detecting HIV-specific responses in a clade A and D infected population, but underscore the limitations of utilizing these reagents when evaluating the breadth of virus-specific responses.
Collapse
Affiliation(s)
- S Mugaba
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - R Nakiboneka
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - M Nanyonjo
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | - I Kaddu
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - B Nanteza
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - R Tweyongyere
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - P Kaleebu
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda; London School of Hygiene and Tropical Medicine, United Kingdom
| | - J Serwanga
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda.
| |
Collapse
|
9
|
Monajemi M, Woodworth CF, Zipperlen K, Gallant M, Grant MD, Larijani M. Positioning of APOBEC3G/F mutational hotspots in the human immunodeficiency virus genome favors reduced recognition by CD8+ T cells. PLoS One 2014; 9:e93428. [PMID: 24722422 PMCID: PMC3982959 DOI: 10.1371/journal.pone.0093428] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Due to constitutive expression in cells targeted by human immunodeficiency virus (HIV), and immediate mode of viral restriction upon HIV entry into the host cell, APOBEC3G (A3G) and APOBEC3F (A3F) have been considered primarily as agents of innate immunity. Recent bioinformatic and mouse model studies hint at the possibility that mutation of the HIV genome by these enzymes may also affect adaptive immunity but whether this occurs in HIV-infected individuals has not been examined. We evaluated whether APOBEC-mediated mutations within common HIV CD8+ T cell epitopes can potentially enhance or diminish activation of HIV-specific CD8+ T cells from infected individuals. We compared ex vivo activation of CD8+ T lymphocytes from HIV-infected individuals by wild type HIV peptide epitopes and synthetic variants bearing simulated A3G/F-induced mutations by measuring interferon-γ (IFN-γ) production. We found that A3G/F-induced mutations consistently diminished HIV-specific CD8+ T cell responses against the common epitopes we tested. If this reflects a significant trend in vivo, then adaptation by HIV to enrich sequences that are favored for mutation by A3G/F (A3G/F hotspots) in portions of its genome that encode immunogenic CD8+ T cell epitopes would favor CTL escape. Indeed, we found the most frequently mutated A3G motif (CCC) is enriched up to 6-fold within viral genomic sequences encoding immunodominant CD8+ T cell epitopes in Gag, Pol and Nef. Within each gene, A3G/F hotspots are more abundant in sequences encoding epitopes that are commonly recognized due to their HLA restriction. Thus, in our system, mutations of the HIV genome, mimicking A3G/F activity, appeared to abrogate or severely reduce CTL recognition. We suggest that the physiological significance of this potential effect in facilitating CTL escape is echoed in the adaptation of the HIV genome to enrich A3G/F hotspots in sequences encoding CTL epitopes that are more immunogenic at the population level.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Claire F. Woodworth
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Katrin Zipperlen
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Maureen Gallant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- * E-mail: (MDG); (ML)
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- * E-mail: (MDG); (ML)
| |
Collapse
|
10
|
tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 2013; 87:5732-45. [PMID: 23487450 DOI: 10.1128/jvi.03297-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala(21) substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (± 1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln(35)/Lys(39) double mutant that resulted in an additional 49% (± 14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.
Collapse
|
11
|
Champiat S, Raposo RAS, Maness NJ, Lehman JL, Purtell SE, Hasenkrug AM, Miller JC, Dean H, Koff WC, Hong MA, Martin JN, Deeks SG, Spotts GE, Pilcher CD, Hecht FM, Kallas EG, Garrison KE, Nixon DF. Influence of HAART on alternative reading frame immune responses over the course of HIV-1 infection. PLoS One 2012; 7:e39311. [PMID: 22768072 PMCID: PMC3387156 DOI: 10.1371/journal.pone.0039311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 05/18/2012] [Indexed: 12/22/2022] Open
Abstract
Background Translational errors can result in bypassing of the main viral protein reading frames and the production of alternate reading frame (ARF) or cryptic peptides. Within HIV, there are many such ARFs in both sense and the antisense directions of transcription. These ARFs have the potential to generate immunogenic peptides called cryptic epitopes (CE). Both antiretroviral drug therapy and the immune system exert a mutational pressure on HIV-1. Immune pressure exerted by ARF CD8+ T cells on the virus has already been observed in vitro. HAART has also been described to select HIV-1 variants for drug escape mutations. Since the mutational pressure exerted on one location of the HIV-1 genome can potentially affect the 3 reading frames, we hypothesized that ARF responses would be affected by this drug pressure in vivo. Methodology/Principal findings In this study we identified new ARFs derived from sense and antisense transcription of HIV-1. Many of these ARFs are detectable in circulating viral proteins. They are predominantly found in the HIV-1 env nucleotide region. We measured T cell responses to 199 HIV-1 CE encoded within 13 sense and 34 antisense HIV-1 ARFs. We were able to observe that these ARF responses are more frequent and of greater magnitude in chronically infected individuals compared to acutely infected patients, and in patients on HAART, the breadth of ARF responses increased. Conclusions/Significance These results have implications for vaccine design and unveil the existence of potential new epitopes that could be included as vaccine targets.
Collapse
Affiliation(s)
- Stephane Champiat
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rui André Saraiva Raposo
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nicholas J. Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John L. Lehman
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Sean E. Purtell
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Aaron M. Hasenkrug
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jacob C. Miller
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Hansi Dean
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Wayne C. Koff
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Marisa Ailin Hong
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil, and Institute Adolfo Lutz, São Paulo, Brazil
| | - Jeffrey N. Martin
- Epidemiology and Prevention Interventions Center, Division of Infectious Diseases, and The Positive Health Program, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Gerald E. Spotts
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher D. Pilcher
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Fredrick M. Hecht
- Positive Health Program, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Esper G. Kallas
- University of São Paulo, São Paulo, Brazil, Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil
| | - Keith E. Garrison
- Department of Biology, Saint Mary’s College of California, Moraga, California, United States of America
| | - Douglas F. Nixon
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Trost B, Pajon R, Jayaprakash T, Kusalik A. Comparing the similarity of different groups of bacteria to the human proteome. PLoS One 2012; 7:e34007. [PMID: 22558081 PMCID: PMC3338800 DOI: 10.1371/journal.pone.0034007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Numerous aspects of the relationship between bacteria and human have been investigated. One aspect that has recently received attention is sequence overlap at the proteomic level. However, there has not yet been a study that comprehensively characterizes the level of sequence overlap between bacteria and human, especially as it relates to bacterial characteristics like pathogenicity, G-C content, and proteome size. In this study, we began by performing a general characterization of the range of bacteria-human similarity at the proteomic level, and identified characteristics of the most- and least-similar bacterial species. We then examined the relationship between proteomic similarity and numerous other variables. While pathogens and nonpathogens had comparable similarity to the human proteome, pathogens causing chronic infections were found to be more similar to the human proteome than those causing acute infections. Although no general correspondence between a bacterium’s proteome size and its similarity to the human proteome was noted, no bacteria with small proteomes had high similarity to the human proteome. Finally, we discovered an interesting relationship between similarity and a bacterium’s G-C content. While the relationship between bacteria and human has been studied from many angles, their proteomic similarity still needs to be examined in more detail. This paper sheds further light on this relationship, particularly with respect to immunity and pathogenicity.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Rolando Pajon
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Teenus Jayaprakash
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
de Souza MS, Ratto-Kim S, Chuenarom W, Schuetz A, Chantakulkij S, Nuntapinit B, Valencia-Micolta A, Thelian D, Nitayaphan S, Pitisuttithum P, Paris RM, Kaewkungwal J, Michael NL, Rerks-Ngarm S, Mathieson B, Marovich M, Currier JR, Kim JH. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. THE JOURNAL OF IMMUNOLOGY 2012; 188:5166-76. [PMID: 22529301 DOI: 10.4049/jimmunol.1102756] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Thai HIV phase III prime/boost vaccine trial (RV144) using ALVAC-HIV (vCP1521) and AIDSVAX B/E was, to our knowledge, the first to demonstrate acquisition efficacy. Vaccine-induced, cell-mediated immune responses were assessed. T cell epitope mapping studies using IFN-γ ELISPOT was performed on PBMCs from HIV-1-uninfected vaccine (n = 61) and placebo (n = 10) recipients using HIV-1 Env peptides. Positive responses were measured in 25 (41%) vaccinees and were predominantly CD4(+) T cell-mediated. Responses were targeted within the HIV Env region, with 15 of 25 (60%) of vaccinees recognizing peptides derived from the V2 region of HIV-1 Env, which includes the α(4)β(7) integrin binding site. Intracellular cytokine staining confirmed that Env responses predominated (19 of 30; 63% of vaccine recipients) and were mediated by polyfunctional effector memory CD4(+) T cells, with the majority of responders producing both IL-2 and IFN-γ (12 of 19; 63%). HIV Env Ab titers were higher in subjects with IL-2 compared with those without IL-2-secreting HIV Env-specific effector memory T cells. Proliferation assays revealed that HIV Ag-specific T cells were CD4(+), with the majority (80%) expressing CD107a. HIV-specific T cell lines obtained from vaccine recipients confirmed V2 specificity, polyfunctionality, and functional cytolytic capacity. Although the RV144 T cell responses were modest in frequency compared with humoral immune responses, the CD4(+) T cell response was directed to HIV-1 Env and more particularly the V2 region.
Collapse
Affiliation(s)
- Mark S de Souza
- U.S. Military HIV Research Program/U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Armitage AE, Deforche K, Chang CH, Wee E, Kramer B, Welch JJ, Gerstoft J, Fugger L, McMichael A, Rambaut A, Iversen AKN. APOBEC3G-induced hypermutation of human immunodeficiency virus type-1 is typically a discrete "all or nothing" phenomenon. PLoS Genet 2012; 8:e1002550. [PMID: 22457633 PMCID: PMC3310730 DOI: 10.1371/journal.pgen.1002550] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/07/2012] [Indexed: 11/18/2022] Open
Abstract
The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host-pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete "all or nothing" phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host.
Collapse
Affiliation(s)
- Andrew E. Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Koen Deforche
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chih-hao Chang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Edmund Wee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Beatrice Kramer
- Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Copenhagen, Denmark
| | - Lars Fugger
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Andrew McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (AKNI); (AR)
| | - Astrid K. N. Iversen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- * E-mail: (AKNI); (AR)
| |
Collapse
|
15
|
Preferential CTL targeting of Gag is associated with relative viral control in long-term surviving HIV-1 infected former plasma donors from China. Cell Res 2012; 22:903-14. [PMID: 22290423 DOI: 10.1038/cr.2012.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It is generally believed that CD8(+) cytotoxic T lymphocytes (CTLs) play a critical role in limiting the replication of human immunodeficiency virus type 1 (HIV-1) and in determining the outcome of the infection, and this effect may partly depend on which HIV product is preferentially targeted. To address the correlation between HIV-1-specific CTL responses and virus replication in a cohort of former plasma donors (FPDs), 143 antiretroviral therapy naive FPDs infected with HIV-1 clade B' strains were assessed for HIV-1-specific CTL responses with an IFN-γ Elispot assay at single peptide level by using overlapping peptides (OLPs) covering the whole consensus clade B proteome. By using a Spearman's rank correlation analysis, we found that the proportion of Gag-specific CTL responses among the total virus-specific CTL activity was inversely correlated with viral loads while being positively correlated to CD4 counts, as opposed to Pol- and Env-specific responses that were associated with increased viral loads and decreased CD4 counts. In addition, Vpr-specifc CTL responses showed a similar protective effect with Gag responses, but with a much lower frequency of recognition. Significantly, we also observed an association between HLA-A*30/B*13/Cw*06 haplotype and lower viral loads that was probably due to restricted Gag-specific CTL responses. Thus, our data demonstrate the prominent role of Gag-specific CTL responses in disease control. The advantage of HLA-A*30/B*13/Cw*06 haplotype in viral control may be associated with the contribution of Gag-specific CTL responses in the studied individuals.
Collapse
|
16
|
Pond SLK, Murrell B, Poon AFY. Evolution of viral genomes: interplay between selection, recombination, and other forces. Methods Mol Biol 2012; 856:239-72. [PMID: 22399462 DOI: 10.1007/978-1-61779-585-5_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA viruses evolve very rapidly, often recombine, and are subject to strong host (immune response) and anthropogenic (antiretroviral drugs) selective forces. Given their compact and extensively sequenced genomes, comparative analysis of RNA viral data can provide important insights into the molecular mechanisms of adaptation, pathogenicity, immune evasion, and drug resistance. In this chapter, we present an example-based overview of recent advances in evolutionary models and statistical approaches that enable screening viral alignments for evidence of adaptive change in the presence of recombination, detecting bursts of directional adaptive evolution associated with the phenotypic changes, and detecting of coevolving sites in viral genes.
Collapse
|
17
|
Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 2011; 34:269-80. [PMID: 21315623 DOI: 10.1016/j.immuni.2011.01.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 12/10/2010] [Indexed: 01/30/2023]
Abstract
Human immunodeficiency virus (HIV)-1 is mainly transmitted mucosally during sexual intercourse. We therefore evaluated the protective efficacy of a vaccine active at mucosal sites. Macaca mulatta monkeys were immunized via both the intramuscular and intranasal routes with an HIV-1 vaccine made of gp41-subunit antigens grafted on virosomes, a safe delivery carrier approved in humans with self-adjuvant properties. Six months after 13 vaginal challenges with simian-HIV (SHIV)-SF162P3, four out of five vaccinated animals remained virus-negative, and the fifth was only transiently infected. None of the five animals seroconverted to p27gag-SIV. In contrast, all 6 placebo-vaccinated animals became infected and seroconverted. All protected animals showed gp41-specific vaginal IgAs with HIV-1 transcytosis-blocking properties and vaginal IgGs with neutralizing and/or antibody-dependent cellular-cytotoxicity activities. In contrast, plasma IgGs totally lacked virus-neutralizing activity. The protection observed challenges the paradigm whereby circulating antiviral antibodies are required for protection against HIV-1 infection and may serve in designing a human vaccine against HIV-1-AIDS.
Collapse
|
18
|
Feng YM, Wan YM, Liu LX, Qiu C, Ma PF, Peng H, Ruan YH, Han LF, Hong KX, Xing H, Shao YM. HIV-specific IL-2(+) and/or IFN-γ(+) CD8(+) T cell responses during chronic HIV-1 infection in former blood donors. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2010; 23:391-401. [PMID: 21112488 DOI: 10.1016/s0895-3988(10)60081-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 08/12/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Conflicting data have been generated from previous studies to determine which kind of relationship exists between HIV-1 specific CD8 Tcell responses and HIV-1 viral load or CD4 count over the course of infection. In this study, 153 HIV-1 infected LTNPs were enrolled to investigate the role of HIV-1 specific CD8 T-cell responses in chronic HIV-1 infection among HIV-1 infected former blood donors. METHODS The patients were stratified into three groups according to CD4 count: CD4≥500 cells/μL; 350 cells/μL≤CD4<500 cells/μL; CD4<350 cells/μL. PBMCs were isolated from the patients' anticoagulated blood samples. IL-2 and IFN-γ secretions of CD 8 T cells against 17 HIV-1 consensus B full peptide pools were analyzed by using ICS assay. RESULTS An overall inverse correlation were observed between CD4 count and plasma viral load. Although no significant difference was observed during the comparisons of frequency/breadth of HIV-1 specific CD8 T cell responses, CD4 count stratification analysis showed that different correlation pattern existed in three strata: as for patients whose CD4 counts were less than 350 cells/μL, no significant correlations were identified between frequency/breadth of HIV-1 specific CD8 T cell responses and CD4 count/viral load; as for patients whose CD4 counts ranged from 350 cells/μL to 500 cells/μL, significant correlation was only observed between the response breadth of IL-2+IFN-γ+ CD8 T cells and CD4 count; however, as for patients whose CD4 counts were more than 500 cells/μL, direct correlations were identified between IL-2+IFN-γ+/IL-2+/IFN-γ+ CD8 T cells and viral load or CD4 count. CONCLUSIONS Universal consistent inverse correlation was only indentified between CD4 count and viral load. The relationship between HIV-1 specific CD8 T cell responses and CD4 count/viral load varied in different CD4 strata, which showed that better preserved CD4 T cells were correlated with better CD8 T cell functions.
Collapse
Affiliation(s)
- Yan-Meng Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Elimination of helminth infection restores HIV-1C vaccine-specific T cell responses independent of helminth-induced IL-10. Vaccine 2009; 28:1310-7. [PMID: 19941988 DOI: 10.1016/j.vaccine.2009.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/02/2009] [Accepted: 11/06/2009] [Indexed: 12/18/2022]
Abstract
HIV-1 prevalence is highest in developing countries; similarly helminth parasites are often highly endemic in these same areas. Helminths are strong immune modulators, and negatively impact the ability of the infected hosts to mount protective vaccine-specific T cell immune responses for HIV-1 and other pathogens. Indeed, previously we found that Schistosoma mansoni infected mice had significantly impaired HIV-1C vaccine-specific T cell responses. Anthelminthics are available and inexpensive; therefore, in this study, we evaluated whether elimination of schistosome infection prior to vaccination with an HIV-1C DNA vaccine would increase recipients vaccine-specific responses. As expected, splenocytes from S. mansoni infected mice produced significantly elevated amounts of interleukin (IL)-4 and IL-10, and significantly lower amounts of interferon (IFN)-gamma than splenocytes from naïve mice. Following elimination of parasites by praziquantel (PZQ) treatment, splenomegaly was significantly reduced, though splenocytes produced similar or higher levels of IL-10 than splenocytes from infected mice. However, we found that PZQ treatment significantly increased levels of IFN-gamma in response to concanavalin A or SEA compared to splenocytes from untreated mice. Importantly, PZQ treatment resulted in complete restoration of HIV-1C vaccine-specific T cell responses at 8 weeks post-PZQ treatment. Restoration of HIV-1C vaccine-specific T cell responses following elimination of helminth infection was time dependent, but surprisingly independent of the levels of IL-4 and IL-10 induced by parasite antigens. Our study shows that elimination of worms offers an affordable and a simple means to restore immune responsiveness to T cell based vaccines for HIV-1 and other infectious diseases in helminth endemic settings.
Collapse
|
21
|
Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, Landry C, Yegorov O, Tcherepanova I, Monesmith T, Finke L, Sékaly RP. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 2009; 134:140-7. [PMID: 19889582 DOI: 10.1016/j.clim.2009.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/22/2009] [Accepted: 09/22/2009] [Indexed: 11/24/2022]
Abstract
Immunogenicity, manufacturing feasibility, and safety of a novel, autologous dendritic cell (DC)-based immunotherapy (AGS-004) was evaluated in ten human immunodeficiency virus type 1 (HIV-1)-infected adults successfully treated with antiretroviral therapy (ART). Personalized AGS-004 was produced from autologous monocyte-derived DCs electroporated with RNA encoding CD40L and HIV antigens (Gag, Vpr, Rev, and Nef) derived from each subjects' pre-ART plasma. Patients received monthly injections of AGS-004 in combination with ART. AGS-004 was produced within a mean of 6 weeks and yielded 4-12 doses/subject Full or partial HIV-specific proliferative immune responses occurred in 7 of 9 evaluable subjects. Responses were specific for the AGS-004 presented HIV antigens and preferentially targeted CD8(+) T cells. Mild adverse events included flu-like symptoms, fatigue, and injection site reactions. No evidence of autoimmunity, changes in viral load, or significant changes in absolute CD4(+) and CD8(+) T cell counts were observed. This pilot study supports the further clinical investigation of AGS-004.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, McGill University Health Centre, McGill University, Montreal, Qc, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Geldmacher C, Metzler IS, Tovanabutra S, Asher TE, Gostick E, Ambrozak DR, Petrovas C, Schuetz A, Ngwenyama N, Kijak G, Maboko L, Hoelscher M, McCutchan F, Price DA, Douek DC, Koup RA. Minor viral and host genetic polymorphisms can dramatically impact the biologic outcome of an epitope-specific CD8 T-cell response. Blood 2009; 114:1553-62. [PMID: 19542300 PMCID: PMC2731637 DOI: 10.1182/blood-2009-02-206193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 03/31/2009] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus-1 subtypes A and C differ in the highly conserved Gag-TL9 epitope at a single amino acid position. Similarly, the TL9 presenting human leukocyte antigen (HLA) class I molecules B42 and B81 differ only at 6 amino acid positions. Here, we addressed the influence of such minor viral and host genetic variation on the TL9-specific CD8 T-cell response. The clonotypic characteristics of CD8 T-cell populations elicited by subtype A or subtype C were distinct, and these responses differed substantially with respect to the recognition and selection of TL9 variants. Irrespective of the presenting HLA class I molecule, CD8 T-cell responses elicited by subtype C exhibited largely comparable TL9 variant cross-recognition properties, expressed T-cell receptors that used almost exclusively the TRBV 12-3 gene, and selected for predictable patterns of viral variation within TL9. In contrast, subtype A elicited TL9-specific CD8 T-cell populations with completely different, more diverse TCRBV genes and did not select for viral variants. Moreover, TL9 variant cross-recognition properties were extensive in B81(+) subjects but limited in B42(+) subjects. Thus, minor viral and host genetic polymorphisms can dramatically alter the immunologic and virologic outcome of an epitope-specific CD8 T-cell response.
Collapse
Affiliation(s)
- Christof Geldmacher
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83:5592-605. [PMID: 19297481 DOI: 10.1128/jvi.02051-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.
Collapse
|
24
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Castelli FA, Houitte D, Munier G, Szely N, Lecoq A, Briand JP, Muller S, Maillere B. Immunoprevalence of the CD4+ T-cell response to HIV Tat and Vpr proteins is provided by clustered and disperse epitopes, respectively. Eur J Immunol 2008; 38:2821-31. [PMID: 18828138 DOI: 10.1002/eji.200738072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have suggested including nonstructural proteins as Tat and Vpr in HIV vaccines. However, little is known about the CD4+ T-cell response that these small proteins induce in humans. We have therefore evaluated these responses by in vitro priming experiments of CD4+ T lymphocytes harvested in healthy donors. In the Tat protein, only one peptide primed CD4+ T cells of eight HLA unrelated healthy donors. T cells induced by this peptide recognized immature DC loaded with the native Tat protein and are restricted by multiple HLA-DR molecules, in agreement with its binding capacity. This peptide was therefore processed in an appropriate manner and was highly immunoprevalent. CD4+ T-cell response to Vpr peptides was more disperse and involved six different peptides depending on the HLA-DR molecules of the donors. Two overlapping peptides were T-cell stimulating in at least half of the donors. T-cell response to Vpr in multiple donors is the result of a combination of several CD4+ T-cell epitopes with good to moderate immunoprevalence. Altogether, our results show that the frequency of responders to HIV Tat or Vpr proteins relies on one or multiple CD4+ T-cell epitopes, respectively.
Collapse
Affiliation(s)
- Florence A Castelli
- CEA, Institute of Biology and technologies (iBiTecS), SIMOPRO, Gif Sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Characterization of Gag and Nef-specific ELISpot-based CTL responses in HIV-1 infected Indian individuals. Med Microbiol Immunol 2008; 198:47-56. [DOI: 10.1007/s00430-008-0104-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Indexed: 11/26/2022]
|
27
|
Evolution of proviral gp120 over the first year of HIV-1 subtype C infection. Virology 2008; 383:47-59. [PMID: 18973914 DOI: 10.1016/j.virol.2008.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 07/14/2008] [Accepted: 09/11/2008] [Indexed: 11/21/2022]
Abstract
The evolution of proviral gp120 during the first year after seroconversion in HIV-1 subtype C infection was addressed in a case series of eight subjects. Multiple viral variants were found in two out of eight cases. Slow rate of viral RNA decline and high early viral RNA set point were associated with a higher level of proviral diversity from 0 to 200 days after seroconversion. Proviral divergence from MRCA over the same period also differed between subjects with slow and fast decline of viral RNA, suggesting that evolution of proviral gp120 early in infection may be linked to the level of viral RNA replication. Changes in the length of variable loops were minimal, and length reduction was more common than length increase. Potential N-linked glycosylation sites ranged +/-one site, showing common fluctuations in the V4 and V5 loops. These results highlight the role of proviral gp120 diversity and diversification in the pathogenesis of acute HIV-1 subtype C infection.
Collapse
|
28
|
Yu S, Feng X, Shu T, Matano T, Hasegawa M, Wang X, Ma H, Li H, Li Z, Zeng Y. Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B. Vaccine 2008; 26:6124-31. [PMID: 18812199 DOI: 10.1016/j.vaccine.2008.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/22/2008] [Accepted: 09/01/2008] [Indexed: 11/30/2022]
Abstract
To study the immune responses elicited by multiple vectors and develop vaccines strategies against prevalent HIV-1 strains in China, we have examined the potency of vaccine regimens of plasmid DNA, adenovirus, and Sendai virus vectors expressing HIV-1 gag consensus sequence of HIV-1 isolates from China for inducing specific immune responses. In BALB/c mice, combination of these vectors induced higher Gag-specific cellular immune response than any regimen using single vector alone. The prime-boost-boost regimen consisting of the triple heterologous vectors induced Gag-specific T-cell responses the most efficiently. In rhesus macaques, the prime-boost-boost regimen induced potent Gag-specific cellular immune responses as well as long lasting humoral immune response, and each booster resulted in rapid and efficient expansion of Gag-specific T cells. These results indicate that this prime-boost-boost regimen using triple heterologous vectors is a promising AIDS vaccine candidate for efficiently inducing HIV-1-specific cellular and humoral immune responses. Its further studies as a promising scheme for therapeutic and/or prophylactic HIV-1 vaccines should be grounded.
Collapse
Affiliation(s)
- Shuangqing Yu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Srinivasan A, Ayyavoo V, Mahalingam S, Kannan A, Boyd A, Datta D, Kalyanaraman VS, Cristillo A, Collman RG, Morellet N, Sawaya BE, Murali R. A comprehensive analysis of the naturally occurring polymorphisms in HIV-1 Vpr: potential impact on CTL epitopes. Virol J 2008; 5:99. [PMID: 18721481 PMCID: PMC2553080 DOI: 10.1186/1743-422x-5-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/23/2008] [Indexed: 12/20/2022] Open
Abstract
The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication.
Collapse
Affiliation(s)
- Alagarsamy Srinivasan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feng X, Yu SQ, Shu T, Matano T, Hasegawa M, Wang XL, Ma HT, Li HX, Zeng Y. Immunogenicity of DNA and recombinant Sendai virus vaccines expressing the HIV-1 gag gene. Virol Sin 2008. [DOI: 10.1007/s12250-008-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
31
|
Jia MM, Hong KX, Chen JP, Liu HW, Liu S, Zhang XQ, Zhao HJ, Shao YM. CTL responses to regulatory proteins Tat and Rev in HIV-1 B'/C virus-infected individuals. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:314-318. [PMID: 18837295 DOI: 10.1016/s0895-3988(08)60048-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To characterize HIV-1 specific CTL responses to regulatory proteins Tat and Rev in HIV-B'/C virus-infected ART-naive individuals. METHODS HIV-1-specific CTL responses were analyzed by IFN-gamma ELISPOT assay using overlapping peptides spanning the consensus sequences of HIV-1 clade C Tat and Rev proteins. Statistical analysis and graphical presentation were performed using SIGMAPLOT 10.0 and SIGMASTAT 3.5. For samples with a positive response, the magnitude of CTL responses was compared between HIV-1 C proteins by Wilcoxon rank sum test, and the significance threshold was P<0.05. RESULTS Tat and Rev were frequently recognized, with 23% and 52% of the tested individuals having detectable responses to these proteins, respectively. Several immunodominant regions were detected in Rev. No significant correlation was observed between the magnitude and breadth of CTL responses to regulatory proteins and the control of virus replication in this study. CONCLUSION Tat and Rev can serve as targets for HIV-1-specific CTL, and several immunodominant regions are detectable in Rev. Further characterization of epitopes and their role in virus control may shed light on pathogenesis of HIV-1 natural infection and also be useful for the design and testing of candidate vaccines.
Collapse
Affiliation(s)
- Ming-Ming Jia
- Branch of AIDS, State Key Laboratory for Infectious Diseases Prevention and Control, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson AL, Rybicki EP. Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 2008; 8:53. [PMID: 18573204 PMCID: PMC2443125 DOI: 10.1186/1472-6750-8-53] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 06/23/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24) and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER) on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. RESULTS Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. CONCLUSION Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant-produced protein has potential for use as a vaccine.
Collapse
MESH Headings
- AIDS Vaccines/biosynthesis
- AIDS Vaccines/genetics
- Adjuvants, Immunologic/genetics
- Agrobacterium tumefaciens/genetics
- Animals
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Endoplasmic Reticulum/genetics
- Endoplasmic Reticulum/metabolism
- Female
- Gene Expression
- Gene Expression Regulation, Plant
- Genes, gag
- Genetic Vectors
- HIV Antigens/biosynthesis
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Infections/immunology
- HIV Seronegativity
- HIV-1/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Plants, Genetically Modified
- Nicotiana/genetics
- Tobamovirus/genetics
- Transformation, Genetic
- Vaccines, Subunit/biosynthesis
- Vaccines, Subunit/genetics
- gag Gene Products, Human Immunodeficiency Virus/biosynthesis
- gag Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ann Meyers
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
| | - Ereck Chakauya
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
- CSIR Biosciences, Pretoria 0001, South Africa
| | - Enid Shephard
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- MRC/UCT Liver Research Centre, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Fiona L Tanzer
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
| | - James Maclean
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
| | - Alisson Lynch
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, P. Bag X3 Rondebosch 7701, South Africa
| |
Collapse
|
33
|
Leligdowicz A, Rowland-Jones S. Tenets of protection from progression to AIDS: lessons from the immune responses to HIV-2 infection. Expert Rev Vaccines 2008; 7:319-31. [PMID: 18393602 DOI: 10.1586/14760584.7.3.319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past 25 years, life survival curves of many countries have been remodeled owing to HIV infection. Both HIV-1 and HIV-2 can cause AIDS, yet patients infected with HIV-2 fare much better clinically and most will never experience detrimental effects of the infection. Despite over two decades of comprehensive research into vaccine development, a prophylactic vaccine is not yet realized. An essential missing link in the innovation of a successful vaccine strategy is the description of a favorable immune response that abolishes virus replication. Lessons learned from studying the role of the immune system in the long-term nonprogression characteristic of HIV-2 infection will offer insight into how a balanced immune response can protect from the destruction of the immune system associated with chronic HIV-1 infection.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Medical Research Council Laboratories, Fajara, Atlantic Road, PO Box 273, The Gambia, West Africa.
| | | |
Collapse
|
34
|
Pérez CL, Larsen MV, Gustafsson R, Norström MM, Atlas A, Nixon DF, Nielsen M, Lund O, Karlsson AC. Broadly immunogenic HLA class I supertype-restricted elite CTL epitopes recognized in a diverse population infected with different HIV-1 subtypes. THE JOURNAL OF IMMUNOLOGY 2008; 180:5092-100. [PMID: 18354235 DOI: 10.4049/jimmunol.180.7.5092] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic variations of the HIV-1 virus and its human host constitute major obstacles for obtaining potent HIV-1-specific CTL responses in individuals of diverse ethnic backgrounds infected with different HIV-1 variants. In this study, we developed and used a novel algorithm to select 184 predicted epitopes representing seven different HLA class I supertypes that together constitute a broad coverage of the different HIV-1 strains as well as the human HLA alleles. Of the tested 184 HLA class I-restricted epitopes, 114 were recognized by at least one study subject, and 45 were novel epitopes, not previously described in the HIV-1 immunology database. In addition, we identified 21 "elite" epitopes that induced CTL responses in at least 4 of the 31 patients. A majority (27 of 31) of the study population recognized one or more of these highly immunogenic epitopes. We also found a limited set of 9 epitopes that together induced HIV-1-specific CTL responses in all HIV-1-responsive patients in this study. Our results have important implications for the validation of potent CTL responses and show that the goal for a vaccine candidate in inducing broadly reactive CTL immune responses is attainable.
Collapse
Affiliation(s)
- Carina L Pérez
- Department of Microbiology, Cell Biology, and Tumor Biology, Karolinska Institutet, and The Swedish Institute of Infectious Disease Control, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, Baker B, Trocha A, Rosenberg R, Mackey E, Ueda P, Lu Z, Cohen D, Wrin T, Petropoulos CJ, Rosenberg ES, Walker BD. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008; 197:563-71. [PMID: 18275276 DOI: 10.1086/526786] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spontaneous control of human immunodeficiency virus (HIV) infection has been documented in a minority of HIV-infected individuals. The mechanisms behind this outcome remain largely unknown, and a better understanding of them will likely influence future vaccine strategies. METHODS HIV-specific T cell and antibody responses as well as host genetics were examined in untreated HIV-infected patients who maintain comparatively low plasma HIV RNA levels (hereafter, controllers), including those with levels of < 50 RNA copies/mL (elite controllers, n = 64), those with levels of 50-2000 copies/mL (viremic controllers, n = 60); we also examined HIV-specific T cell and antibody responses as well as host genetics for patients with levels of >10,000 copies/mL (chronic progressors, n = 30). RESULTS CD8+ T cells from both controller groups preferentially target Gag over other proteins in the context of diverse HLA class I alleles, whereas responses are more broadly distributed in persons with progressive infection. Elite controllers represent a distinct group of individuals who have significantly more CD4 and CD8 T cells that secrete interferon-gamma and interleukin-2 and lower levels of HIV-neutralizing antibodies. Individual responses were quite heterogeneous, and none of the parameters evaluated was uniquely associated with the ability to control viremia. CONCLUSIONS Elite controllers are a distinct group, even when compared to persons with low level viremia, but they exhibit marked genetic and immunologic heterogeneity. Even low-level viremia among HIV controllers was associated with measurable T cell dysfunction, which has implications for current prophylactic vaccine strategies.
Collapse
Affiliation(s)
- Florencia Pereyra
- Partners AIDS Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Multiplex RT-PCR amplification of HIV genes to create a completely autologous DC-based immunotherapy for the treatment of HIV infection. PLoS One 2008; 3:e1489. [PMID: 18231576 PMCID: PMC2211536 DOI: 10.1371/journal.pone.0001489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/13/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Effective therapy for HIV-infected individuals remains an unmet medical need. Promising clinical trials with dendritic cell (DC)-based immunotherapy consisting of autologous DC loaded with autologous virus have been reported, however, these approaches depend on large numbers of HIV virions to generate sufficient doses for even limited treatment regimens. METHODOLOGY/PRINCIPAL FINDINGS The present study describes a novel approach for RT-PCR amplification of HIV antigens. Previously, RT-PCR amplification of autologous viral sequences has been confounded by the high mutation rate of the virus which results in unreliable primer-template binding. To resolve this problem we developed a multiplex RT-PCR strategy that allows reliable strain-independent amplification of highly polymorphic target antigens from any patient and requires neither viral sequence data nor custom-designed PCR primers for each individual. We demonstrate the application of our RT-PCR process to amplify translationally-competent RNA encoding regions of Gag, Vpr, Rev and Nef. The products amplified using this method represent a complex mixture of autologous antigens encoded by viral quasispecies. We further demonstrate that DCs electroporated with in vitro-transcribed HIV RNAs are capable of stimulating poly-antigen-specific CD8+ T cell responses in vitro. CONCLUSION/SIGNIFICANCE This study describes a strategy to overcome patient to patient viral diversity enabling strain-independent RT-PCR amplification of RNAs encoding sequence divergent quasispecies of Gag, Vpr, Rev and Nef from small volumes of infectious plasma. The approach allows creation of a completely autologous therapy that does not require advance knowledge of the HIV genomic sequences, does not have yield limitations and has no intact virus in the final product. The simultaneous use of autologous viral antigens and DCs may provoke broad patient-specific immune responses that could potentially induce effective control of viral loads in the absence of conventional antiretroviral drug therapy.
Collapse
|
37
|
Magnitude, breadth, and functional profile of T-cell responses during human immunodeficiency virus primary infection with B and BF viral variants. J Virol 2008; 82:2853-66. [PMID: 18184702 DOI: 10.1128/jvi.02260-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The molecular pattern of the human immunodeficiency virus (HIV) epidemic in Argentina provides an appropriate scenario to study cellular immune responses in patients with non-clade B infection. We aimed to map T-cell responses in patients infected with BF recombinant variants and compare them with those of clade B patients. Sixteen recently infected patients were enrolled and grouped by viral subtype. Nef-specific responses were evaluated with a peptide matrix-based gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay using B and BF overlapping peptides. Cross-clade and clade-specific responses were found. A correlation between B versus BF Nef-specific responses was identified. Detailed analysis at the single-peptide level revealed that BF patients show a narrower response but greater magnitude. Nef immunodominant responses agreed with previous publications, although the B loop was targeted at an unexpectedly high frequency. The putative HLA allele(s) restricting each positive response was determined. Single-peptide level screening with two different peptide sets uncovered discordant responses (mostly caused by peptide offsetting) and allowed detection of increased breadth. Positive responses identified by ELISPOT assay were further studied by intracellular cytokine staining. These were almost exclusively mediated by CD8 T cells. Characterization of concordant responses revealed that cells show distinct functional profiles, depending on the peptide presented. Last, quality (in terms of polyfunctionality) of T cells was associated with better viral replication containment. Overall, interclade differences in the frequency of epitopes recognized, structural domains targeted, and magnitude of responses were identified. Screening T-cell responses with multiple sets increased sensitivity. Further support for the notion of polyfunctional CD8(+) T-cell requirement to better control viral replication is also provided.
Collapse
|
38
|
Huang MB, James CO, Powell MD, Bond VC. Apoptotic peptides derived from HIV-1 Nef induce lymphocyte depletion in mice. Ethn Dis 2008; 18:S2-37. [PMID: 18646317 PMCID: PMC3218084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
INTRODUCTION We have developed a mouse model to examine the effects of host exposure (ie, hematopoietic system) to secreted HIV-1 Nef or peptides derived from Nef. METHODS We used a combination of terminal uridine deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assays and CD4+ cell counts to assess the status of circulating immune cells in mice treated with Nef-derived proteins. RESULTS Mice treated with peptides derived from HIV-1 Nef protein displayed significant increases in apoptotic CD4+ lymphocytes and thymus cells and significant decreases in the numbers of circulating CD4+ lymphocytes. No effects were observed in mice treated with controls. There was a clear dose- and time-response relationship between cell changes and the amount of protein or peptide. induction of multiple markers of apoptosis such as DNA laddering and caspase 3 activation was observed during dose- or time-response experiments. Cell death and lymphocyte depletion were blocked by induction of a humoral response to the HIV Nef apoptotic epitope. CONCLUSIONS Extracellular Nef can induce apoptosis and lymphocyte depletion in vivo. Appropriate antibody response can block these effects, but the apoptotic motifs in Nef are thought to be poorly immunogenic.
Collapse
Affiliation(s)
- Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | |
Collapse
|
39
|
Viral evolution and escape during primary human immunodeficiency virus-1 infection: implications for vaccine design. Curr Opin HIV AIDS 2008; 3:60-6. [DOI: 10.1097/coh.0b013e3282f233d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Frahm N, Kaufmann DE, Yusim K, Muldoon M, Kesmir C, Linde CH, Fischer W, Allen TM, Li B, McMahon BH, Faircloth KL, Hewitt HS, Mackey EW, Miura T, Khatri A, Wolinsky S, McMichael A, Funkhouser RK, Walker BD, Brander C, Korber BT. Increased sequence diversity coverage improves detection of HIV-specific T cell responses. THE JOURNAL OF IMMUNOLOGY 2007; 179:6638-50. [PMID: 17982054 DOI: 10.4049/jimmunol.179.10.6638] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss responses to regions where test set and infecting virus differ. In this study, we report the design of a peptide test set with significantly increased coverage of HIV sequence diversity by including alternative amino acids at variable positions during the peptide synthesis step. In an IFN-gamma ELISpot assay, these "toggled" peptides detected HIV-specific CD4(+) and CD8(+) T cell responses of significantly higher breadth and magnitude than matched consensus peptides. The observed increases were explained by a closer match of the toggled peptides to the autologous viral sequence. Toggled peptides therefore afford a cost-effective and significantly more complete view of the host immune response to HIV and are directly applicable to other variable pathogens.
Collapse
Affiliation(s)
- Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W. Identification of immunogenic HLA-B7 "Achilles' heel" epitopes within highly conserved regions of HIV. Vaccine 2007; 26:3059-71. [PMID: 18206276 DOI: 10.1016/j.vaccine.2007.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Genetic polymorphisms in class I human leukocyte antigen molecules (HLA) have been shown to determine susceptibility to HIV infection as well as the rate of progression to AIDS. In particular, the HLA-B7 supertype has been shown to be associated with high viral loads and rapid progression to disease. Using a multiplatform in silico/in vitro approach, we have prospectively identified 45 highly conserved, putative HLA-B7 restricted HIV CTL epitopes and evaluated them in HLA binding and ELISpot assays. All 45 epitopes (100%) bound to HLA-B7 in cell-based HLA binding assays: 28 (62%) bound with high affinity, 6 (13%) peptides bound with medium affinity and 11 (24%) bound with low affinity. Forty of the 45 peptides (88%) stimulated a IFN-gamma response in PBMC from at least one subject. Eighteen of these 40 epitopes have not been previously described; an additional eight epitopes have not been previously described as restricted by B7. The HLA-B7 restricted epitopes discovered using this in silico screening approach are highly conserved across strains and clades of HIV as well as conserved in the HIV genome over the 20 years since HIV-1 isolates were first sequenced. This study demonstrates that it is possible to select a broad range of HLA-B7 restricted epitopes that comprise stable elements in the rapidly mutating HIV genome. The most immunogenic of these epitopes will be included in the GAIA multi-epitope vaccine.
Collapse
|
42
|
An integrative bioinformatic approach for studying escape mutations in human immunodeficiency virus type 1 gag in the Pumwani Sex Worker Cohort. J Virol 2007; 82:1980-92. [PMID: 18057233 DOI: 10.1128/jvi.02742-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is able to evade the host cytotoxic T-lymphocyte (CTL) response through a variety of escape avenues. Epitopes that are presented to CTLs are first processed in the presenting cell in several steps, including proteasomal cleavage, transport to the endoplasmic reticulum, binding by the HLA molecule, and finally presentation to the T-cell receptor. An understanding of the potential of the virus to escape CTL responses can aid in designing an effective vaccine. To investigate such a potential, we analyzed HIV-1 gag from 468 HIV-1-positive Kenyan women by using several bioinformatic approaches that allowed the identification of positively selected amino acids in the HIV-1 gag region and study of the effects that these mutations could have on the various stages of antigen processing. Correlations between positively selected residues and mean CD4 counts also allowed study of the effect of mutation on HIV disease progression. A number of mutations that could create or destroy proteasomal cleavage sites or reduce binding affinity of the transport antigen processing protein, effectively hindering epitope presentation, were identified. Many mutations correlated with the presence of specific HLA alleles and with lower or higher CD4 counts. For instance, the mutation V190I in subtype A1-infected individuals is associated with HLA-B*5802 (P = 4.73 x 10(-4)), a rapid-progression allele according to other studies, and also to a decreased mean CD4 count (P = 0.019). Thus, V190I is a possible HLA escape mutant. This method classifies many positively selected mutations across the entire gag region according to their potential for immune escape and their effect on disease progression.
Collapse
|
43
|
Leligdowicz A, Yindom LM, Onyango C, Sarge-Njie R, Alabi A, Cotten M, Vincent T, da Costa C, Aaby P, Jaye A, Dong T, McMichael A, Whittle H, Rowland-Jones S. Robust Gag-specific T cell responses characterize viremia control in HIV-2 infection. J Clin Invest 2007; 117:3067-74. [PMID: 17823657 PMCID: PMC1964515 DOI: 10.1172/jci32380] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 06/13/2007] [Indexed: 12/24/2022] Open
Abstract
HIV-2 infection in the majority of infected subjects follows an attenuated disease course that distinguishes it from infection with HIV-1. Antigen-specific T cells are pivotal in the management of chronic viral infections but are not sufficient to control viral replication in HIV-1-positive subjects, and their function in HIV-2 infection is not fully established. In a community-based cohort of HIV-2 long-term nonprogressors in rural Guinea-Bissau, we performed what we believe is the first comprehensive analysis of HIV-2-specific immune responses. We demonstrate that Gag is the most immunogenic protein. The magnitude of the IFN-gamma immune response to the HIV-2 proteome was inversely correlated with HIV-2 viremia, and this relationship was specifically due to the targeting of Gag. Furthermore, patients with undetectable viremia had greater Gag-specific responses compared with patients with high viral replication. The most frequently recognized peptides clustered within a defined region of Gag, and responses to a single peptide in this region were associated with low viral burden. The consistent relationship between Gag-specific immune responses and viremia control suggests that T cell responses are vital in determining the superior outcome of HIV-2 infection. A better understanding of how HIV-2 infection is controlled may identify correlates of effective protective immunity essential for the design of HIV vaccines.
Collapse
|
44
|
Geldmacher C, Gray C, Nason M, Currier JR, Haule A, Njovu L, Geis S, Hoffmann O, Maboko L, Meyerhans A, Cox J, Hoelscher M. A high viral burden predicts the loss of CD8 T-cell responses specific for subdominant gag epitopes during chronic human immunodeficiency virus infection. J Virol 2007; 81:13809-15. [PMID: 17898052 PMCID: PMC2168820 DOI: 10.1128/jvi.01566-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus (HIV)-specific CD8 T-cell responses targeting products encoded within the Gag open reading frame have frequently been associated with better viral control and disease outcome during the chronic phase of HIV infection. To further clarify this relationship, we have studied the dynamics of Gag-specific CD8 T-cell responses in relation to plasma viral load and time since infection in 33 chronically infected subjects over a 9-month period. High baseline viral loads were associated with a net loss of breadth (P < 0.001) and a decrease in the total magnitude of the Gag-specific T-cell response in general (P = 0.03). Most importantly, the baseline viral load predicted the subsequent change in the breadth of Gag recognition over time (P < 0.0001, r(2) = 0.41). Compared to maintained responses, lost responses were low in magnitude (P < 0.0001) and subdominant in the hierarchy of Gag-specific responses. The present study indicates that chronic exposure of the human immune system to high levels of HIV viremia is a determinant of virus-specific CD8 T-cell loss.
Collapse
|
45
|
Rolland M, Nickle DC, Deng W, Frahm N, Brander C, Learn GH, Heckerman D, Jojic N, Jojic V, Walker BD, Mullins JI. Recognition of HIV-1 peptides by host CTL is related to HIV-1 similarity to human proteins. PLoS One 2007; 2:e823. [PMID: 17786195 PMCID: PMC1952107 DOI: 10.1371/journal.pone.0000823] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/18/2007] [Indexed: 12/03/2022] Open
Abstract
Background While human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocytes preferentially target specific regions of the viral proteome, HIV-1 features that contribute to immune recognition are not well understood. One hypothesis is that similarities between HIV and human proteins influence the host immune response, i.e., resemblance between viral and host peptides could preclude reactivity against certain HIV epitopes. Methodology/Principal Findings We analyzed the extent of similarity between HIV-1 and the human proteome. Proteins from the HIV-1 B consensus sequence from 2001 were dissected into overlapping k-mers, which were then probed against a non-redundant database of the human proteome in order to identify segments of high similarity. We tested the relationship between HIV-1 similarity to host encoded peptides and immune recognition in HIV-infected individuals, and found that HIV immunogenicity could be partially modulated by the sequence similarity to the host proteome. ELISpot responses to peptides spanning the entire viral proteome evaluated in 314 individuals showed a trend indicating an inverse relationship between the similarity to the host proteome and the frequency of recognition. In addition, analysis of responses by a group of 30 HIV-infected individuals against 944 overlapping peptides representing a broad range of individual HIV-1B Nef variants, affirmed that the degree of similarity to the host was significantly lower for peptides with reactive epitopes than for those that were not recognized. Conclusions/Significance Our results suggest that antigenic motifs that are scarcely represented in human proteins might represent more immunogenic CTL targets not selected against in the host. This observation could provide guidance in the design of more effective HIV immunogens, as sequences devoid of host-like features might afford superior immune reactivity.
Collapse
Affiliation(s)
- Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David C. Nickle
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Nicole Frahm
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Gerald H. Learn
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Heckerman
- Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, Washington, United States of America
| | - Nebosja Jojic
- Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, Washington, United States of America
| | - Vladimir Jojic
- Machine Learning and Applied Statistics Group, Microsoft Research, Redmond, Washington, United States of America
| | - Bruce D. Walker
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Chen J, Hong K, Jia M, Liu H, Zhang Y, Liu S, Zhang X, Zhao H, Peng H, Ma P, Xing H, Ruan Y, Williams KL, Yu XG, Altfeld M, Walker BD, Shao Y. Human immunodeficiency virus type 1 specific cytotoxic T lymphocyte responses in Chinese infected with HIV-1 B'/C Recombinant (CRF07_BC). Retrovirology 2007; 4:62. [PMID: 17727734 PMCID: PMC2018724 DOI: 10.1186/1742-4690-4-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The characterization of HIV-1-specific T cell responses in people infected with locally circulating HIV-1 strain will facilitate the development of HIV-1 vaccine. Sixty intravenous drug users infected with HIV-1 circulating recombinant form 07_BC (CRF07_BC), which has been spreading rapidly in western China from north to south, were recruited from Xinjiang, China to assess the HIV-1-specific T cell responses at single peptide level with overlapping peptides (OLP) covering the whole concensus clades B and C proteome. RESULTS The median of the total magnitude and total number of OLPs recognized by CTL responses were 10925 SFC/million PBMC and 25 OLPs, respectively, when tested by clade C peptides, which was significantly higher than when tested by clade B peptides. The immunodominant regions, which cover 14% (58/413) of the HIV-1 proteome, are widely distributed throughout the HIV-1 proteome except in Tat, Vpu and Pol-PR, with Gag, Pol-RT, Pol-Int and Nef being most frequently targeted. The subdominant epitopes are mostly located in p24, Nef, integrase, Vpr and Vif. Of the responses directed to clade C OLPs, 61.75% (972/1574) can be observed when tested with corresponding clade B OLPs. However, Pol-PR and Vpu tend to be targeted in the clade B sequence rather than the clade C sequence, which is in line with the recombinant pattern of CRF07_BC. Stronger and broader CTL responses in subjects with CD4 cell counts ranging from 200 to 400/mm3 were observed when compared to those with less than 200/mm3 or more than 400/mm3, though there have been no significant correlations identified between the accumulative CTL responses or overall breadth and CD4 cell count or plasma viral load. CONCLUSION This is the first study conducted to comprehensively address T cell responses in Chinese subjects infected with HIV-1 CRF07_BC in which subtle differences in cross-reactivity were observed, though similar patterns of overall immune responses were demonstrated with clade B infected populations. The immunodominant regions identified in this population can facilitate future HIV-1 vaccine development in China.
Collapse
Affiliation(s)
- Jianping Chen
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mingming Jia
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hongwei Liu
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanzhi Zhang
- Xinjiang Center for Disease Control and Prevention, Urumuqi, Xinjiang 830011, China
| | - Sha Liu
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoqing Zhang
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hongjing Zhao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hong Peng
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Pengfei Ma
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuhua Ruan
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Katie L Williams
- Partners AIDS Research Center, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, MA 02114, USA
| | - Xu G Yu
- Partners AIDS Research Center, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, MA 02114, USA
| | - Marcus Altfeld
- Partners AIDS Research Center, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, MA 02114, USA
| | - Bruce D Walker
- Partners AIDS Research Center, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, MA 02114, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
47
|
Redd AD, Avalos A, Essex M. Infection of hematopoietic progenitor cells by HIV-1 subtype C, and its association with anemia in southern Africa. Blood 2007; 110:3143-9. [PMID: 17693583 PMCID: PMC2200905 DOI: 10.1182/blood-2007-04-086314] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reports from southern Africa, an area in which human immunodeficiency virus type 1 (HIV-1) infection is caused almost exclusively by subtype C (HIV-1C), have shown increased rates of anemia in HIV-infected populations compared with similar acquired immunodeficiency syndrome (AIDS) patients in the United States, an area predominantly infected with subtype B (HIV-1B). Recent findings by our group demonstrated a direct association between HIV-1 infection and hematopoietic progenitor cell health in Botswana. Therefore, using a single-colony infection assay and quantitative proviral analysis, we examined whether HIV-1C could infect hematopoietic progenitor cells (HPCs) and whether this phenotype was associated with the higher rates of anemia found in southern Africa. The results show that a significant number of HIV-1C, but not HIV-1B, isolates can infect HPCs in vitro (P < .05). In addition, a portion of HIV-1C-positive Africans had infected progenitor cell populations in vivo, which was associated with higher rates of anemia in these patients (P < .05). This represents a difference in cell tropism between 2 geographically separate and distinct HIV-1 subtypes. The association of this hematotropic phenotype with higher rates of anemia should be considered when examining anti-HIV drug treatment regimens in HIV-1C-predominant areas, such as southern Africa.
Collapse
Affiliation(s)
- Andrew D Redd
- Department of Immunology and Infectious Diseases, Harvard School of Public Health AIDS Initiative, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Geldmacher C, Currier JR, Gerhardt M, Haule A, Maboko L, Birx D, Gray C, Meyerhans A, Cox J, Hoelscher M. In a mixed subtype epidemic, the HIV-1 Gag-specific T-cell response is biased towards the infecting subtype. AIDS 2007; 21:135-43. [PMID: 17197803 DOI: 10.1097/01.aids.0000247589.77061.f7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Southwest Tanzania is affected by an HIV-1 epidemic consisting of subtypes A, C, and D, and their recombinant forms. This study was designed to assess whether the Gag- and Nef-specific T-cell response is biased towards recognizing the infecting subtype. METHODS The infecting subtypes were characterized with a Multi-hybridization assay that discriminates between subtypes A, C and D. The interferon-gamma ELISPOT assay was used to detect the Gag- and Nef-specific T-cell responses in freshly isolated peripheral blood mononuclear cells in 56 seropositive patients. To study the HIV-specific T-cell responses, isolate-based Gag and Nef peptide sets representative of the locally occurring subtypes were used. The results were analysed at the total protein and single peptide level. RESULTS In the study population, 35% were infected with a pure C subtype, 24% and 23% with ACD or AC recombinant forms, respectively. The total magnitude (P < 0.01) and breadth (P < 0.01) of the Gag-specific T-cell response detected with the subtype C-Gag peptide set was significantly greater than that detected with either the subtype A-Gag or D-Gag peptide sets. No significant difference was observed in the Nef-specific response. In 85% of responses targeting the most immunodominant Gag epitopes with subtype-specific sequence differences, the best recognized epitope variant corresponded to the infecting subtype. CONCLUSIONS The Gag-specific T-cell response had a preference for recognizing peptides related to the infecting subtype.
Collapse
|
49
|
Boutwell CL, Essex M. Identification of HLA class I-associated amino acid polymorphisms in the HIV-1C proteome. AIDS Res Hum Retroviruses 2007; 23:165-74. [PMID: 17263647 DOI: 10.1089/aid.2006.0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) evasion of host cytotoxic T lymphocyte (CTL) targeting is linked to the expression of variant amino acid residues, or escape mutations, in positions that alter the normal processing, presentation, or recognition of targeted epitopes. The combined genetic variability of HIV and the class I human leukocyte antigen (HLA) loci makes it difficult to characterize CTL escape mutations on a population level. However, a role in CTL escape may be inferred by identifying HIV amino acid polymorphisms that are specifically associated with particular HLA class I alleles. We describe here the results of a comprehensive analysis of HIV-1 subtype C (HIV-1C) to identify HLA class I-associated amino acid polymorphisms. We identified 94 HLA-associated amino acid polymorphisms distributed across the 15 major viral proteins analyzed. HLA-B alleles were involved in more associations (50%) than alleles from either the HLA-A (27%) or HLA-C (24%) loci. HLA-associated polymorphisms were identified in 18 of 26 previously described HIV-1C CTL immunoreactive regions including 7 of the 8 classified as immunodominant. Comparison to known HIV-1 CTL epitopes revealed that 19 of the HLA-associated polymorphisms were located in CTL epitopes restricted by the associated HLA allele. These results suggest that HIV-1C retains the potential for CTL escape across the entire proteome including regions that are broadly targeted on a population scale. The impact of CTL escape on natural and vaccine-induced CTL immunity warrants the continued characterization of the role of such HLA-associated polymorphisms in this process.
Collapse
Affiliation(s)
- Christian L Boutwell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
Fu TM, Dubey SA, Mehrotra DV, Freed DC, Trigona WL, Adams-Muhler L, Clair JH, Evans TG, Steigbigel R, Jacobson JM, Goepfert PA, Mulligan MJ, Kalams SA, Rinaldo C, Zhu L, Cox KS, Guan L, Long R, Persaud N, Caulfield MJ, Sadoff JC, Emini EA, Thaler S, Shiver JW. Evaluation of cellular immune responses in subjects chronically infected with HIV type 1. AIDS Res Hum Retroviruses 2007; 23:67-76. [PMID: 17263635 DOI: 10.1089/aid.2006.0114] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The importance of host cellular immune responses, particularly CD8(+) cytotoxic T-lymphocyte (CTL) responses, in control of human immunodeficiency virus type 1 (HIV-1) infection has been demonstrated in many clinical studies. These studies, along with vaccination challenge studies in rhesus macaques, indicate the importance of cellular immune responses against HIV-1. Toward this end, we evaluated anti-HIV-1 cellular immune responses in a cohort of 54 subjects who were chronically infected with HIV-1. By validation of IFN-gamma ELISpot assay, we established a dual cut-off criterion for scoring a positive response. The magnitude and frequency of cellular immune responses were measured against HIV-1 antigens (Gag, Pol, Nef, Rev, and Tat), using synthetic peptides as antigens in ELISpot assay. Here we showed that HIV-1 Gag, Pol, and Nef were frequent targets of T cell responses in these subjects, whereas Tat and Rev were less frequently recognized. We further evaluated the possible association between host cellular immune responses and corresponding plasma viral loads in this cohort. By performing ranking correlation analysis, we demonstrated a positive correlation between host viral loads and ELISpot responses of HIV Gag and Pol in untreated subjects. For the subjects under antiviral regimens, however, we did not find any significant association. Our findings suggest that the high levels of ELISpot responses in chronically infected subjects were reflective of their persistent viral infection.
Collapse
Affiliation(s)
- Tong-Ming Fu
- Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|