1
|
Lu SC, Barry MA. Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses. Expert Opin Biol Ther 2022; 22:1359-1378. [DOI: 10.1080/14712598.2022.2139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Michael A Barry
- Division of Infectious Diseases, Department of Medicine
- Department of Immunology
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Niu D, Zhao Y, Zhang W. Temperature stress response: A novel important function of Dermatophagoides farinae allergens. Exp Parasitol 2020; 218:108003. [PMID: 32980317 DOI: 10.1016/j.exppara.2020.108003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022]
Abstract
Dermatophagoides farinae, an important pathogen, has multiple allergens. However, their expression under physiological conditions are not understood. Our previous RNA-seq showed that allergens of D. farinae were up-regulated under temperature stress, implying that they may be involved in stress response. Here, we performed a comprehensive study. qRT-PCR detection indicated that 26 of the 34 allergens showed differential expression. Der f1 had the most abundant basic expression quantity. Der f 28.0201 (HSP70) and Der f3 had the same regulation pattern in 9 highly expressed transcripts, which only up-regulated at 41 °C and 43 °C, but Der f 28.0201 showed stronger regulation than Der f 3 (19.88-fold vs 6.02-fold). Whereas Der f 1, 2, 7, 21, 22, 27, and 30 were up-regulated under both heat and cold stress, and Der f 27 showed the strongest regulation ability among them. Der f 27 showed more significant up-regulation than Der f 28.0201 under heat stress (23.59-fold vs 19.88-fold), and Der f27 had more obvious up-regulation under cold than heat stress (30.70-fold vs 23.59-fold). The expression of Der f 27, 28.0201 and 1, and D. farinae survival rates significantly decreased following RNAi, indicating the upregulation of these allergens under temperature stress conferred thermo-tolerance or cold-tolerance to D. farinae. In this study, we described for the first time that these allergens have temperature-stress response functions. This new scientific discovery has important clinical value for revealing the more frequent and serious allergic diseases caused by D. farinae during the change of seasons.
Collapse
Affiliation(s)
- DongLing Niu
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - YaE Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - WanYu Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Monsalve FA, Rojas A, Gonzalez I, Perez R, Añasco C, Romero J, Araya P, Santos LS, Delgado-Lopez F. RID: Evaluation of the Possible Inhibiting Effect of the Proinflammatory Signaling Induced by TNF- α through NF- κβ and AP-1 in Two Cell Lines of Breast Cancer. Mediators Inflamm 2020; 2020:2707635. [PMID: 32655311 PMCID: PMC7327562 DOI: 10.1155/2020/2707635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Receptor internalization and degradation (RID), is a transmembrane protein coded within the E3 region expression cassette of adenoviruses. RID downregulates the cell surface expression of epidermal growth factor receptor (EGFR), tumor necrosis factor receptor (TNFR), and apoptosis antigen 1 (FAS), causing a reduction of the effects of their respective ligands. In addition, RID inhibits apoptosis by decreasing the secretion of TNF-related apoptosis-inducing ligand (TRAIL) by normal tissue cells. In this article, we report that RID inhibited chemokine expression in human breast cancer cell line MDA-MB-231 but showed no effect in cell line MCF7. These dissimilar results may be due to the different molecular and functional properties of both cell lines. Therefore, it is necessary to replicate this study in other breast cancer cell models.
Collapse
Affiliation(s)
- F. A. Monsalve
- 1Department of Basic Biomedical Sciences, Faculty of Health Sciences, University of Talca, Chile
| | - A. Rojas
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - I. Gonzalez
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - R. Perez
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - C. Añasco
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - J. Romero
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - P. Araya
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| | - L. S. Santos
- 3Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Products, University of Talca, Chile
| | - F. Delgado-Lopez
- 2Laboratories of Biomedical Research, Division of Medicine, Universidad Católica del Maule, Chile
| |
Collapse
|
4
|
Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins. Int J Mol Sci 2015; 16:2893-912. [PMID: 25636034 PMCID: PMC4346872 DOI: 10.3390/ijms16022893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/12/2023] Open
Abstract
Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.
Collapse
|
5
|
Cortese M, Calò S, D'Aurizio R, Lilja A, Pacchiani N, Merola M. Recombinant human cytomegalovirus (HCMV) RL13 binds human immunoglobulin G Fc. PLoS One 2012; 7:e50166. [PMID: 23226246 PMCID: PMC3511460 DOI: 10.1371/journal.pone.0050166] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 01/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) protein RL13 has recently been described to be present in all primary isolates but rapidly mutated in culture adapted viruses. Although these data suggest a crucial role for this gene product in HCMV primary infection, no function has so far been assigned to this protein. Working with RL13 expressed in isolation in transfected human epithelial cells, we demonstrated that recombinant RL13 from the clinical HCMV isolates TR and Merlin have selective human immunoglobulin (Ig)-binding properties towards IgG1 and IgG2 subtypes. An additional Fc binding protein, RL12, was also identified as an IgG1 and IgG2 binding protein but not further characterized. The glycoprotein RL13 trafficked to the plasma membrane where it bound and internalized exogenous IgG or its constant fragment (Fcγ). Analysis of RL13 ectodomain mutants suggested that the RL13 Ig-like domain is responsible for the Fc binding activity. Ligand-dependent internalization relied on a YxxL endocytic motif located in the C-terminal tail of RL13. Additionally, we showed that the tyrosine residue could be replaced by phenylalanine but not by alanine, indicating that the internalization signal was independent from phosphorylation events. In sum, RL13 binds human IgG and may contribute to HCMV immune evasion in the infected host, but this function does not readily explain the instability of the RL13 gene during viral propagation in cultured cells.
Collapse
Affiliation(s)
| | | | | | - Anders Lilja
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | | | - Marcello Merola
- Novartis Vaccines and Diagnostics, Siena, Italy
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
6
|
Robinson CM, Rajaiya J, Zhou X, Singh G, Dyer DW, Chodosh J. The E3 CR1-gamma gene in human adenoviruses associated with epidemic keratoconjunctivitis. Virus Res 2011; 160:120-7. [PMID: 21683743 DOI: 10.1016/j.virusres.2011.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/06/2023]
Abstract
Human adenovirus species D type 37 (HAdV-D37) is an important etiologic agent of epidemic keratoconjunctivitis. Annotation of the whole genome revealed an open reading frame (ORF) in the E3 transcription unit predicted to encode a 31.6kDa protein. This ORF, also known as CR1-γ, is predicted to be an integral membrane protein containing N-terminal signal sequence, luminal, transmembrane, and cytoplasmic domains. HAdV-D19 (C), another viral pathogen causing epidemic keratoconjunctivitis, contains an ORF 100% identical to its HAdV-D37 homologue but only 66% identical to other HAdV-D homologues. Kinetics of RNA expression and confirmation of splicing to the adenovirus tripartite leader sequence suggest a role for the protein product of CR1-γ in the late stages of the viral replication cycle. Confocal microscopy is consistent with expression in the cytoplasm. Sequence analysis reveals a hypervariable luminal domain and a conserved cytoplasmic domain. The luminal domain is predicted to contain multiple N-glycosylation sites. The cytoplasmic domain contains a putative protein kinase C phosphorylation site and potential YXXϕ and dileucine (LL) motifs suggesting a potential role in modification of host proteins.
Collapse
Affiliation(s)
- Christopher M Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
7
|
Schwartz D, Church GM. Collection and Motif-Based Prediction of Phosphorylation Sites in Human Viruses. Sci Signal 2010; 3:rs2. [DOI: 10.1126/scisignal.2001099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Open reading frame E3-10.9K of subspecies B1 human adenoviruses encodes a family of late orthologous proteins that vary in their predicted structural features and subcellular localization. J Virol 2010; 84:11310-22. [PMID: 20739542 DOI: 10.1128/jvi.00512-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism.
Collapse
|
9
|
Schütze S, Schneider-Brachert W. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results Probl Cell Differ 2009; 49:63-85. [PMID: 19132322 DOI: 10.1007/400_2008_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-kappaB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell. In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the biological significance of TNF receptor compartmentalization for immunosurveillance.
Collapse
Affiliation(s)
- Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105, Kiel, Germany.
| | | |
Collapse
|
10
|
Wu CH, Kao CH, Safa AR. TRAIL recombinant adenovirus triggers robust apoptosis in multidrug-resistant HL-60/Vinc cells preferentially through death receptor DR5. Hum Gene Ther 2008; 19:731-43. [PMID: 18476767 DOI: 10.1089/hum.2008.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic because of its highly selective apoptosis-inducing action on neoplastic versus normal cells. However, some cancer cells express resistance to recombinant soluble TRAIL. To overcome this problem, we used a TRAIL adenovirus (Ad5/35-TRAIL) to induce apoptosis in a drug-sensitive and multidrug-resistant variant of HL-60 leukemia cells and determined the molecular mechanisms of Ad5/35-TRAIL-induced apoptosis. Ad5/35-TRAIL did not induce apoptosis in normal human lymphocytes, but caused massive apoptosis in acute myelocytic leukemia cells. It triggered more efficient apoptosis in drug-resistant HL-60/Vinc cells than in HL-60 cells. Treating the cells with anti-DR4 and anti-DR5 neutralizing antibodies (particularly anti-DR5) reduced, whereas anti-DcR1 antibody enhanced, the apoptosis triggered by Ad5/35-TRAIL. Whereas Ad5/35-TRAIL induced apoptosis in both cell lines through activation of caspase-3 and caspase-10, known to link the cell death receptor pathway to the mitochondrial pathway, it triggered increased mitochondrial membrane potential change (m) only in HL-60/Vinc cells. Ad5/35-TRAIL also increased the production of reactive oxygen species, which play an important role in apoptosis. Therefore, using Ad5/35-TRAIL may be an effective therapeutic strategy for eliminating TRAIL-resistant malignant cells and these studies may provide clues to treat and eradicate acute myelocytic leukemias.
Collapse
Affiliation(s)
- Ching-Huang Wu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
11
|
Delgado-Lopez F, Horwitz MS. Adenovirus RIDalphabeta complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80:6378-86. [PMID: 16775326 PMCID: PMC1488987 DOI: 10.1128/jvi.02350-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transmembrane heterotrimer complex 10.4K/14.5K, also known as RID (for "receptor internalization and degradation"), is encoded by the adenovirus E3 region, and it down-regulates the cell surface expression of several unrelated receptors. We recently showed that RID expression correlates with down-regulation of the cell surface expression of the tumor necrosis factor (TNF) receptor 1 in several human cells. This observation provided the first mechanistic explanation for the inhibition of TNF alpha-induced chemokines by RID. Here we analyze the immunoregulatory activities of RID on lipopolysaccharide (LPS) and interleukin-1 beta (IL-1beta)-mediated responses. Although both signaling pathways are strongly inhibited by RID, the chemokines up-regulated by IL-1beta stimulation are only marginally inhibited. In addition, RID inhibits signaling induced by LPS without affecting the expression of the LPS receptor Toll-like receptor 4, demonstrating that RID need not target degradation of the receptor to alter signal transduction. Taken together, our data demonstrate the inhibitory effect of RID on two additional cell surface receptor-mediated signaling pathways involved in inflammatory processes. The data suggest that RID has intracellular targets that impair signal transduction and chemokine expression without evidence of receptor down-regulation.
Collapse
Affiliation(s)
- Fernando Delgado-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY 10461, USA.
| | | |
Collapse
|
12
|
Abstract
Changes initiated at the cellular and systemic levels as a result of viral infection or neoplastic transformation share significant overlap. Therefore, the use of replicating viruses to treat tumors has long been postulated as a promising avenue for oncolytic therapy. Over the last 10 years, transcriptionally regulated adenoviruses have become a popular platform for the development of such oncolytic viruses. Placement of heterologous promoters in front of key adenoviral transcription units to achieve tumor- or tissue-specific viral replication is well documented. Various derivatives of this general strategy have led to considerable insight into its limitations, pitfalls, and potential. Although a general process can be described by which to develop transcriptionally regulated adenoviruses, it is apparent that few set rules can yet be defined as to what constitutes a safe, stable, and therapeutically effective vector. Clinical experiences to date suggest the short-term potential for this class of therapeutics lies in combination therapy regimens. Such lessons from the clinic suggest the next generation of transcriptionally regulated oncolytic adenoviruses take advantage of the ability of the platform to carry transgenes in order to deliver a multimodal therapy from a single agent. Beyond this 'arming' of the vectors lies the detargeting, retargeting, and coating of adenoviruses to improve the delivery of the agent to the treatment site(s). As a therapeutic platform, transcriptionally regulated adenoviruses are at an early stage of development with considerable opportunities for advancement.
Collapse
Affiliation(s)
- Derek Ko
- Cell Genesys, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
13
|
Chin YR, Horwitz MS. Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 2005; 79:13606-17. [PMID: 16227281 PMCID: PMC1262606 DOI: 10.1128/jvi.79.21.13606-13617.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Proteins encoded in adenovirus early region 3 have important immunoregulatory properties. We have recently shown that the E3-10.4K/14.5K (RIDalpha/beta) complex downregulates tumor necrosis factor receptor 1 (TNFR1) expression at the plasma membrane. To study the role of the RIDbeta tyrosine sorting motif in the removal of surface TNFR1, tyrosine 122 on RIDbeta was mutated to alanine or phenylalanine. Both RIDbeta mutations not only abolished the downregulation of surface TNFR1 but paradoxically increased surface TNFR1 levels. RID also downregulates other death receptors, such as FAS; however, surface FAS expression was not increased by RIDbeta mutants, suggesting that regulation of TNFR1 and that of FAS by RID are mechanistically different. In the mixing experiments, the wild-type (WT) RID-mediated TNFR1 downregulation was partially inhibited in the presence of RIDbeta mutants, indicating that the mutants compete for TNFR1 access. Indeed, an association between RIDbeta and TNFR1 was shown by coimmunoprecipitation. In contrast, the mutants did not affect the WT RID-induced downregulation of FAS. These differential effects support a model in which RID associates with TNFR1 on the plasma membrane, whereas RID probably associates with FAS in a cytoplasmic compartment. By using small interfering RNA against the mu2 subunit of adaptor protein 2, dominant negative dynamin construct K44A, and the lysosomotropic agents bafilomycin A1 and ammonium chloride, we also demonstrated that surface TNFR1 was internalized by RID by a clathrin-dependent process involving mu2 and dynamin, followed by degradation of TNFR1 via an endosomal/lysosomal pathway.
Collapse
Affiliation(s)
- Y Rebecca Chin
- Department of Microbiology and Immunology, Forchheimer Building, Room 411, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
14
|
Fessler SP, Chin YR, Horwitz MS. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol 2004; 78:13113-21. [PMID: 15542663 PMCID: PMC525002 DOI: 10.1128/jvi.78.23.13113-13121.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenoviruses employ multiple genes to inhibit the host antiviral responses. There is increasing evidence that these immunoregulatory genes may function either during lytic or latent infection. Adenovirus early transcription region 3 (E3) encodes at least seven proteins, five of which block the acquired or innate immune response. Previous findings from this laboratory demonstrated that the E3 proteins 10.4K and 14.5K, which form a complex in the plasma membrane, inhibit tumor necrosis factor (TNF)-induced activation of NF-kappaB and the synthesis of chemokines. To determine the mechanism of inhibition of these pathways by the adenovirus E3 10.4K/14.5K proteins, we have examined the effects of this viral complex on the inhibition of AP-1 and NF-kappaB activation by TNF and found a reduction in assembly of the TNF receptor 1 (TNFR1) signaling complex at the plasma membrane accompanied by downregulation of surface levels of TNFR1.
Collapse
Affiliation(s)
- Shawn P Fessler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
15
|
Abou El Hassan MAI, van der Meulen-Muileman I, Abbas S, Kruyt FAE. Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 2004; 78:12243-51. [PMID: 15507611 PMCID: PMC525077 DOI: 10.1128/jvi.78.22.12243-12251.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conditionally replicating adenoviruses (CRAds) represent a promising class of novel anticancer agents that are used for virotherapy. The E1ADelta24 mutation-based viruses, Ad5-Delta24 [CRAd(E3-); E3 region deleted] and infectivity-enhanced Ad5-Delta24RGD [CRAd(E3+)] have been shown to potently eradicate tumor cells. The presence of the E3 region in the latter virus is known to improve cell killing that can be attributed to the presence of the oncolysis-enhancing Ad death protein. The more precise mechanism by which CRAds kill tumor cells is unclear, and the role of the host cell apoptotic machinery in this process has been addressed only in a limited way. Here, we examine the role of several major apoptotic pathways in the CRAd-induced killing of non-small-cell lung cancer H460 cells. As expected, CRAd(E3+) was more potent than CRAd(E3-). No evidence for the involvement of the p53-Bax apoptotic pathway was found. Western blot analyses demonstrated strong suppression of p53 expression and unchanged Bax levels during viral replication, and stable overexpression of human papillomavirus type 16-E6 in H460 cells did not affect killing by both CRAds. CRAd activity was also not hampered by stable overexpression of anti-apoptotic Bcl2 or BclXL, and endogenous Bcl2/BclXL protein levels remained constant during the oncolytic cycle. Some evidence for caspase processing was obtained at late time points after infection; however, the inhibition of caspases by the X-linked inhibitor of apoptosis protein overexpression or cotreatment with zVAD-fmk did not inhibit CRAd-dependent cell death. Analyses of several apoptotic features revealed no evidence for nuclear fragmentation or DNA laddering, although phosphatidylserine externalization was detected. We conclude that despite the known apoptosis-modulating abilities of individual Ad proteins, Ad5-Delta24-based CRAds trigger necrosis-like cell death. In addition, we propose that deregulated apoptosis in cancer cells, a possible drug resistance mechanism, provides no barrier for CRAd efficacy.
Collapse
Affiliation(s)
- Mohamed A I Abou El Hassan
- Department of Medical Oncology, VU University Medical Center, Room Br 232, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Lichtenstein DL, Doronin K, Toth K, Kuppuswamy M, Wold WSM, Tollefson AE. Adenovirus E3-6.7K protein is required in conjunction with the E3-RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol 2004; 78:12297-307. [PMID: 15507617 PMCID: PMC525093 DOI: 10.1128/jvi.78.22.12297-12307.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 06/23/2004] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (Ads) encode several proteins within the early region 3 (E3) transcription unit that help protect infected cells from elimination by the immune system. Among these immunomodulatory proteins, the receptor internalization and degradation (RID) protein complex, which is composed of the RIDalpha (formerly E3-10.4K) and RIDbeta (formerly E3-14.5K) subunits, stimulates the internalization and degradation of certain members of the tumor necrosis factor (TNF) receptor superfamily, thus blocking apoptosis initiated by Fas and TNF-related apoptosis-inducing ligand (TRAIL). The experiments reported here show that TRAIL receptor 2 (TR2) is cleared from the cell surface in Ad-infected cells. Virus mutants containing deletions that span E3 were used to show that the RID and E3-6.7K proteins are both necessary for the internalization and degradation of TR2, whereas only the RID protein is required for TRAIL receptor 1 downregulation. In addition, replication-defective Ad vectors that express individual E3 proteins were used to establish that the RID and E3-6.7K proteins are sufficient to clear TR2. These data demonstrate that E3-6.7K is an important component of the antiapoptosis arsenal encoded by the E3 transcription unit of subgroup C Ads.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The understanding of the apoptotic program has grown exponentially over the past decade. Numerous human diseases have been directly linked to genetic defects in the apoptotic pathways, including cancer, neurodegenerative disorders, and autoimmune diseases. Caspases initiate and amplify various death signals, allowing for selective and ordered cellular demolition. The fine balance between pro- and antiapoptotic Bcl-2 family members regulates the cell fate in response to many (but not all) stress or signaling pathways. Recent discoveries highlight the complex integration of signals from various organelles that determine cell fate and the multiple functions of central players in the apoptotic process. It is likely that the knowledge obtained in a relatively time will translate into better diagnostics and therapies to enhance or retard cell death in the appropriate clinical circumstances.
Collapse
Affiliation(s)
- David A Martin
- Division of Rheumatology, University of Washington, 1959 NE Pacific Avenue, Box 356428, Seattle, WA 98195, USA
| | | |
Collapse
|
18
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that can induce apoptosis when binding to either of two receptors bearing an intracellular death domain. The physiologic function of the TRAIL system, which also comprises three receptors not mediating a death signal has just begun to be elucidated. Expression of TRAIL, mostly upon stimulation by interferons, in different cytotoxic immune cells suggested it has a role as an important effector molecule in immune surveillance. In addition to its ability to induce apoptosis in transformed tumor cells, TRAIL has attracted attention for its possibly critical role in the defense against viral infection. Viruses may induce TRAIL expression in host and?or immune cells and sensitize host cells toward TRAIL-mediated apoptosis. On the other hand, viruses have evolved a variety of strategies to prevent TRAIL-mediated host cell death early in infection, which may contribute to allowing their replication and the spread of viral progeny. The knowledge of the molecular mechanisms leading to modification of TRAIL sensitivity in virus-host cell interactions may also impact upon future (virus-based) strategies to increase TRAIL sensitivity of tumor cells.
Collapse
Affiliation(s)
- Jörn Sträter
- Department of Pathology, University Hospital of Ulm, D-89081 Ulm, Germany
| | | |
Collapse
|
19
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
20
|
Moise AR, Grant JR, Lippé R, Gabathuler R, Jefferies WA. The adenovirus E3-6.7K protein adopts diverse membrane topologies following posttranslational translocation. J Virol 2004; 78:454-63. [PMID: 14671125 PMCID: PMC303379 DOI: 10.1128/jvi.78.1.454-463.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The E3 region of adenovirus codes for several membrane proteins, most of which are involved in immune evasion and prevention of host cell apoptosis. We explored the topology and targeting mechanisms of E3-6.7K, the most recently described member of this group, by using an in vitro translation system supplemented with microsomes. Here, we present evidence that E3-6.7K, one of the smallest signal-anchor proteins known, translocates across the membrane of the endoplasmic reticulum in a posttranslational, ribosome-independent, yet ATP-dependent manner, reminiscent of the translocation of tail-anchored proteins. Our analysis also demonstrated that E3-6.7K could achieve several distinct topological fates. In addition to the previously postulated type III orientation (N-luminal/C-cytoplasmic, termed NtmE3-6.7K), we detected a tail-anchored form adopting the opposite orientation (N-cytoplasmic/C-luminal, termed CtmE3-6.7K) as well as the possibility of a fully translocated form (N and C termini are both translocated, termed NCE3-6.7K). Due to the translocation of a positively charged domain, both the CtmE3-6.7K and NCE3-6.7K topologies of E3-6.7K constitute exceptions to the "positive inside" rule. The NtmE3-6.7K and NCE3-6.7K are the first examples of posttranslationally translocated proteins in higher eukaryotes that are not tail anchored. Distinct topological forms were also found in transfected cells, as both N and C termini of E3-6.7K were detected on the extracellular surface of transfected cells. The demonstration of unexpected topological forms and translocation mechanisms for E3-6.7K defies conventional thinking about membrane protein topogenesis and advises that both the mode of targeting and topology of signal-anchor proteins should be determined experimentally.
Collapse
Affiliation(s)
- Alexander R Moise
- Departments of Medical Genetics, Microbiology and Immunology, and Zoology, Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
21
|
Fessler SP, Delgado-Lopez F, Horwitz MS. Mechanisms of E3 Modulation of Immune and Inflammatory Responses. Curr Top Microbiol Immunol 2004; 273:113-35. [PMID: 14674600 DOI: 10.1007/978-3-662-05599-1_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Adenoviruses contain genes that have evolved to control the host immune and inflammatory responses; however, it is not clear whether these genes function primarily to facilitate survival of the virus during acute infection or during its persistent phase. These issues have assumed greater importance as the use of adenoviruses as vectors for gene therapy has been expanded. This review will focus on the mechanism of immune evasion mediated by the proteins encoded within the early region 3 (E3) transcription region, which affect the functions of a number of cell surface receptors including Fas, intracellular cell signaling events involving NF-kappaB, and the secretion of pro-inflammatory molecules such as chemokines. The successful use of E3 genes in facilitating allogeneic transplantation and in preventing autoimmune diabetes in several transgenic mouse models will also be described.
Collapse
Affiliation(s)
- S P Fessler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, NY 10461, USA
| | | | | |
Collapse
|
22
|
Zanardi TA, Yei S, Lichtenstein DL, Tollefson AE, Wold WSM. Distinct domains in the adenovirus E3 RIDalpha protein are required for degradation of Fas and the epidermal growth factor receptor. J Virol 2003; 77:11685-96. [PMID: 14557654 PMCID: PMC229367 DOI: 10.1128/jvi.77.21.11685-11696.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) types 2 and 5 encode at least five proteins within the E3 transcription unit that help the virus evade the immune system. Two such proteins, RIDalpha (formerly E3-10.4K) and RIDbeta (formerly E3-14.5K), form the RID (receptor internalization and degradation) complex (formerly E3-10.4K/14.5K). RID mediates clearance from the cell surface and lysosomal degradation of a number of important members in the tumor necrosis factor receptor (TNFR) superfamily and the receptor tyrosine kinase receptor family. Affected receptors include Fas, TRAIL (TNF-related apoptosis-inducing ligand) receptor 1 (TR1), TR2, and epidermal growth factor receptor (EGFR). Degradation of Fas and TRAIL receptors protects Ad-infected cells from apoptosis. To investigate the mechanism of action of RIDalpha, 14 mutant RIDalpha proteins, each containing a three- to five-amino-acid deletion, were constructed and then expressed from the E3 region of a replication-competent recombinant Ad in the same context as wild-type RIDalpha. Each mutant protein was characterized with regard to five physical properties associated with wild-type RIDalpha, namely, protein stability, proteolytic cleavage, insertion into the membrane, complex formation with RIDbeta, and transport to the cell surface. Additionally, the mutant proteins were tested for their ability to mediate internalization and degradation of EGFR and Fas and to protect cells from Fas-mediated apoptosis. The majority of mutant RIDalpha proteins (8 out of 14) were physically similar to wild-type RIDalpha. With regard to functional characteristics, the cytoplasmic domain of RIDalpha is largely unimportant for receptor internalization and degradation and the extracellular domain of RIDalpha is important for down-regulation of EGFR but not Fas.
Collapse
Affiliation(s)
- Tom A Zanardi
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
23
|
Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J, Brooks G, Lemoine N, Kirn D. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21:1328-35. [PMID: 14555956 DOI: 10.1038/nbt887] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 07/23/2003] [Indexed: 01/21/2023]
Abstract
Oncolytic replication-selective adenoviruses constitute a rapidly growing therapeutic platform for cancer. However, the role of the host immune response and the E3 immunoregulatory genes of the human adenovirus were unknown until now. We identified four mouse carcinoma lines of variable permissivity for adenoviral gene expression, cytopathic effects and/or burst size. To determine E3 gene effects in immunocompetent tumor-bearing hosts, we injected tumors with one of three adenoviruses: Ad5 (E3 wild type), dl309 (del. E3 10.4/14.5, 14.7 kDa) or dl704 (del. E3 gp19 kDa). Compared with Ad5 and dl704, dl309 was cleared much more rapidly and/or its activity was lower in all four models. Intratumoral injection with dl309 resulted in markedly greater macrophage infiltration and expression of both tumor necrosis factor and interferon-gamma. Adenovirus replication, CD8(+) lymphocyte infiltration and efficacy were similar upon intratumoral injection with either dl704 or Ad5. E3-dependent differences were not evident in athymic mice. These findings have important implications for the design of oncolytic adenoviruses and may explain the rapid clearance of E3-10.4/14.5,14.7-deleted adenoviruses in patients.
Collapse
Affiliation(s)
- Yaohe Wang
- Viral and Genetic Therapy Program, Cancer Research UK and Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hilgendorf A, Lindberg J, Ruzsics Z, Höning S, Elsing A, Löfqvist M, Engelmann H, Burgert HG. Two distinct transport motifs in the adenovirus E3/10.4-14.5 proteins act in concert to down-modulate apoptosis receptors and the epidermal growth factor receptor. J Biol Chem 2003; 278:51872-84. [PMID: 14506242 DOI: 10.1074/jbc.m310038200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus (Ad) early transcription unit E3 encodes immunosubversive functions. The E3 transmembrane proteins 10.4 and 14.5 form a complex that down-regulates the epidermal growth factor receptor and apoptosis receptors from the cell surface by diverting them to endosomes/lysosomes for degradation. The latter process protects infected cells from ligand-induced apoptosis. The mechanism by which 10.4-14.5 mediate re-routing remains elusive. We examined the role of putative YXX Phi and dileucine (LL) transport motifs within Ad2 10.4-14.5 for target protein modulation. By generating stable E3 transfectants expressing 10.4-14.5 proteins with alanine substitutions in these motifs, we show that 3 of the 5 motifs are essential for functional activity. Whereas tyrosine 74 in 14.5 appears to be important for efficient 10.4-14.5 interaction, the 122YXX Phi motif in 14.5 and the dileucine motif Leu 87-Leu88 in 10.4 constitute genuine transport motifs: disruption of either motif abolished binding to the cellular adaptor proteins AP-1 and AP-2, as shown by surface plasmon resonance spectroscopy, and caused missorting, dramatically altering cell surface appearance and the intracellular location of viral proteins. Fluorescence-activated cell sorter analysis and immunofluorescence data provide evidence that Tyr122 in 14.5 is essential for rapid endocytosis of the 10.4-14.5 complex, whereas the 10.4LL motif acts down-stream and protects 10.4-14.5 from extensive degradation by rerouting it into a recycling pathway. Infection of primary cells with adenoviruses carrying the relevant point mutations confirmed the crucial role of these transport motifs for down-regulation of Fas, TRAIL-R1, TRAIL-R2, and epidermal growth factor receptor. Thus, two distinct transport motifs present in two proteins synergize for efficient target removal and immune evasion.
Collapse
Affiliation(s)
- Annette Hilgendorf
- Gene Centre of the Ludwig-Maximilians-University, Department of Virology, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Halldén G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR, Francis J, Hawkins L, Kirn D. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 2003; 8:412-24. [PMID: 12946314 DOI: 10.1016/s1525-0016(03)00199-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oncolytic replication-selective adenoviruses constitute a rapidly expanding experimental approach to the treatment of cancer. However, due to the lack of an immunocompetent and replication-competent efficacy model, the role of the host immune response and viral E3 immunoregulatory genes remained unknown. We screened nine murine carcinoma lines for adenovirus (Ad5) uptake, gene expression, replication, and cytopathic effects. In seven of these murine cell lines the infectability and cytopathic effects were similar to those seen with human carcinoma lines. Surprisingly, productive viral replication was demonstrated in several lines; replication varied from levels similar to those for some human carcinoma lines (e.g., CMT-64) to very low levels. Seven of these lines were grown as subcutaneous xenografts in immunocompetent mice and were subsequently injected directly with Ad5, saline, or a replication-deficient control adenovirus particle to assess intratumoral viral gene expression, replication, and antitumoral effects. E1A, coat protein expression, and cytopathic effects were documented in five xenografts; Ad5 replication was demonstrated in CMT-64 and JC xenografts. Ad5 demonstrated significant efficacy compared to saline and nonreplicating control Ad particles in both replication-permissive xenografts (CMT-64, JC) and poorly permissive tumors (CMT-93); efficacy against CMT-93 tumors was significantly greater in immunocompetent mice compared to athymic mice. These murine tumor xenograft models have potential for elucidating viral and host immune mechanisms involved in oncolytic adenovirus antitumoral effects.
Collapse
Affiliation(s)
- Gunnel Halldén
- Viral and Genetic Therapy Program, Cancer Research U.K. Molecular Oncology Unit and Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Tumor necrosis factor (TNF)-related cytokines are critical effector molecules in the immune response to viral pathogens. Engagement of the TNF receptors by their cognate ligands activates apoptotic and non-apoptotic signaling pathways, both of which can mediate antiviral activity. In response, viruses have evolved mechanisms to inhibit signaling by some cytokines of the TNF superfamily. These strategies are largely unique to each class of virus, but are similar in that they all target key regulatory checkpoints of the TNF pathway. In recent years, studies directed towards dissecting the mechanisms of TNF signaling and the viral retort have led to several significant discoveries, and form the basis for this review.
Collapse
Affiliation(s)
- Chris A Benedict
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|