1
|
Novel Antigenic Targets of HPV Therapeutic Vaccines. Vaccines (Basel) 2021; 9:vaccines9111262. [PMID: 34835193 PMCID: PMC8621534 DOI: 10.3390/vaccines9111262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomavirus (HPV) infection is the cause of the majority of cervical cancers and head and neck cancers worldwide. Although prophylactic vaccines and cervical cancer screening programs have shown efficacy in preventing HPV-associated cervical cancer, cervical cancer is still a major cause of morbidity and mortality, especially in third world countries. Furthermore, head and neck cancer cases caused by HPV infection and associated mortality are increasing. The need for better therapy is clear, and therapeutic vaccination generating cytotoxic T cells against HPV proteins is a promising strategy. This review covers the current scene of HPV therapeutic vaccines in clinical development and discusses relevant considerations for the design of future HPV therapeutic vaccines and clinical trials, such as HPV protein expression patterns, immunogenicity, and exhaustion in relation to the different stages and types of HPV-associated lesions and cancers. Ultimately, while the majority of the HPV therapeutic vaccines currently in clinical testing target the two HPV oncoproteins E6 and E7, we suggest that there is a need to include more HPV antigens in future HPV therapeutic vaccines to increase efficacy and find that especially E1 and E2 could be promising novel targets.
Collapse
|
2
|
Neckermann P, Boilesen DR, Willert T, Pertl C, Schrödel S, Thirion C, Asbach B, Holst PJ, Wagner R. Design and Immunological Validation of Macaca fascicularis Papillomavirus Type 3 Based Vaccine Candidates in Outbred Mice: Basis for Future Testing of a Therapeutic Papillomavirus Vaccine in NHPs. Front Immunol 2021; 12:761214. [PMID: 34777375 PMCID: PMC8581358 DOI: 10.3389/fimmu.2021.761214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Persistent human papillomavirus (HPV) infections are causative for cervical neoplasia and carcinomas. Despite the availability of prophylactic vaccines, morbidity and mortality induced by HPV are still too high. Thus, an efficient therapy, such as a therapeutic vaccine, is urgently required. Herein, we describe the development and validation of Macaca fascicularis papillomavirus type 3 (MfPV3) antigens delivered via nucleic-acid and adenoviral vectors in outbred mouse models. Ten artificially fused polypeptides comprising early viral regulatory proteins were designed and optionally linked to the T cell adjuvant MHC-II-associated invariant chain. Transfected HEK293 cells and A549 cells transduced with recombinant adenoviruses expressing the same panel of artificial antigens proved proper and comparable expression, respectively. Immunization of outbred CD1 and OF1 mice led to CD8+ and CD4+ T cell responses against MfPV3 antigens after DNA- and adenoviral vector delivery. Moreover, in vivo cytotoxicity of vaccine-induced CD8+ T cells was demonstrated in BALB/c mice by quantifying specific killing of transferred peptide-pulsed syngeneic target cells. The use of the invariant chain as T cell adjuvant enhanced the T cell responses regarding cytotoxicity and in vitro analysis suggested an accelerated turnover of the antigens as causative. Notably, the fusion-polypeptide elicited the same level of T-cell responses as administration of the antigens individually, suggesting no loss of immunogenicity by fusing multiple proteins in one vaccine construct. These data support further development of the vaccine candidates in a follow up efficacy study in persistently infected Macaca fascicularis monkeys to assess their potential to eliminate pre-malignant papillomavirus infections, eventually instructing the design of an analogous therapeutic HPV vaccine.
Collapse
Affiliation(s)
- Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ditte Rahbaek Boilesen
- Centre for Medical Parasitology, the Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | | | | | | | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Peter Johannes Holst
- Centre for Medical Parasitology, the Panum Institute, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Piirsoo A, Piirsoo M, Kala M, Sankovski E, Lototskaja E, Levin V, Salvi M, Ustav M. Activity of CK2α protein kinase is required for efficient replication of some HPV types. PLoS Pathog 2019; 15:e1007788. [PMID: 31091289 PMCID: PMC6538197 DOI: 10.1371/journal.ppat.1007788] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Inhibition of human papillomavirus (HPV) replication is a promising therapeutic approach for intervening with HPV-related pathologies. Primary targets for interference are two viral proteins, E1 and E2, which are required for HPV replication. Both E1 and E2 are phosphoproteins; thus, the protein kinases that phosphorylate them might represent secondary targets to achieve inhibition of HPV replication. In the present study, we show that CX4945, an ATP-competitive small molecule inhibitor of casein kinase 2 (CK2) catalytic activity, suppresses replication of different HPV types, including novel HPV5NLuc, HPV11NLuc and HPV18NLuc marker genomes, but enhances the replication of HPV16 and HPV31. We further corroborate our findings using short interfering RNA (siRNA)-mediated knockdown of CK2 α and α' subunits in U2OS and CIN612 cells; we show that while both subunits are expressed in these cell lines, CK2α is required for HPV replication, but CK2α' is not. Furthermore, we demonstrate that CK2α acts in a kinase activity-dependent manner and regulates the stability and nuclear retention of endogenous E1 proteins of HPV11 and HPV18. This unique feature of CK2α makes it an attractive target for developing antiviral agents.
Collapse
Affiliation(s)
- Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Eve Sankovski
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Viktor Levin
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Nakahara T, Tanaka K, Ohno SI, Egawa N, Yugawa T, Kiyono T. Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1. J Virol 2015; 89:5040-59. [PMID: 25717108 PMCID: PMC4403482 DOI: 10.1128/jvi.00389-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED NF-κB is a family of transcription factors that regulate gene expression involved in many processes, such as the inflammatory response and cancer progression. Little is known about associations of NF-κB with the human papillomavirus (HPV) life cycle. We have developed a tissue culture system to conditionally induce E1-dependent replication of the human papillomavirus 16 (HPV16) genome in human cervical keratinocytes and found that expression of HPV16 E1, a viral helicase, results in reduction of IκBα and subsequent activation of NF-κB in a manner dependent on helicase activity. Exogenous expression of a degradation-resistant mutant of IκBα, which inhibits the activation of NF-κB, enhanced E1-dependent replication of the viral genome. Wortmannin, a broad inhibitor of phosphoinositide 3-kinases (PI3Ks), and, to a lesser extent, VE-822, an ATR kinase inhibitor, but not KU55933, an ATM kinase inhibitor, suppressed the activation of NF-κB and augmented E1-dependent replication of the HPV16 genome. Interestingly, the enhancement of E1-dependent replication of the viral genome was associated with increased stability of E1 in the presence of wortmannin as well as the IκBα mutant. Collectively, we propose that expression of E1 induces NF-κB activation at least in part through the ATR-dependent DNA damage response and that NF-κB in turn limits E1-dependent replication of HPV16 through degradation of E1, so that E1 and NF-κB may constitute a negative feedback loop. IMPORTANCE A major risk factor in human papillomavirus (HPV)-associated cancers is persistent infection with high-risk HPVs. To eradicate viruses from infected tissue, it is important to understand molecular mechanisms underlying the establishment and maintenance of persistent infection. In this study, we obtained evidence that human papillomavirus 16 (HPV16) E1, a viral DNA helicase essential for amplification of the viral genomes, induces NF-κB activation and that this limits E1-dependent genome replication of HPV16. These results suggest that NF-κB mediates a negative feedback loop to regulate HPV replication and that this feedback loop could be associated with control of the viral copy numbers. We could thus show for the first time that NF-κB activity is involved in the establishment and maintenance of persistent HPV infection.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuyuki Tanaka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Nagayasu Egawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
5
|
The role of ubiquitin and ubiquitin-like modification systems in papillomavirus biology. Viruses 2014; 6:3584-611. [PMID: 25254385 PMCID: PMC4189040 DOI: 10.3390/v6093584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
Collapse
|
6
|
Abstract
E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner.
Collapse
|
7
|
Wang YE, Pernet O, Lee B. Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitin-related modifiers. Biol Cell 2011; 104:121-38. [PMID: 22188262 PMCID: PMC3625690 DOI: 10.1111/boc.201100105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways.
Collapse
Affiliation(s)
- Yao E Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
8
|
Topography of bovine papillomavirus E2 protein on the viral genome during the cell cycle. Virology 2009; 393:258-64. [PMID: 19716579 DOI: 10.1016/j.virol.2009.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/02/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
Abstract
The multifunctional papillomavirus E2 protein serves important roles in transcriptional activation and genome maintenance and cooperates with the viral E1 helicase for the initiation of viral DNA replication. The bovine papillomavirus genome contains seventeen E2 binding sites, largely concentrated within the long control region, and a single E1 binding site at the origin of viral replication. Using chromatin immunoprecipitation (ChIP) followed by restriction enzyme digestion and PCR, we show that BPV E1 was present only in the region of an active origin of replication and that BPV E2 remained attached to definable segments of the viral genome at specific stages of the cell cycle.
Collapse
|
9
|
Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 2008; 384:317-23. [PMID: 19013629 DOI: 10.1016/j.virol.2008.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Viruses have evolved to use cellular pathways to their advantage, including the ubiquitin-proteasome pathway of protein degradation. In several cases, viruses produce proteins that highjack cellular E3 ligases to modify their substrate specificity in order to eliminate unwanted cellular proteins, in particular inhibitors of the cell cycle. They can also inhibit E3 ligase to prevent specific protein degradation or even use the system to control the level of expression of their own proteins. In this review we explore the specific ways that small DNA tumor viruses exploit the ubiquitin-proteasome pathway for their own benefit.
Collapse
|
10
|
Abstract
Human papillomaviruses complete their life cycle in differentiating epithelial cells that would not normally be competent for either cellular or viral DNA replication. To overcome this, papillomaviruses encode two groups of proteins that work together in the upper epithelial layers to amplify viral genomes. The E6 and E7 proteins play a critical role in driving differentiating epithelial cells that have left the basal layer, back into the cell cycle, in order to produce a replication-competent environment that can be used by the virus for genome amplification. Papillomavirus replication is heavily dependent on cellular replication proteins, but in addition needs the viral E1 and E2 proteins, which act to unwind viral DNA around the origin of replication, and to recruit essential cellular proteins to the replication site. Recent work using mutant viral genomes has suggested that two other viral proteins, E4 and E5, contribute to efficient replication in the upper epithelial layers, although the mechanisms by which they do this have not yet been clearly established. Genome amplification in the upper epithelial layers differs from maintenance replication in the basal layer, where viral genome replication appears coupled to that of the cellular genome. The onset of genome amplification during differentiation is thought to be triggered at least in part by an increase in E1 and E2 levels, and possibly also by a change in the relative levels of the two proteins. The role of E6 and E7 in basal cell replication is, however, uncertain and there is even some question as to the exact requirement for E1. Although similarities in papillomavirus lifecycle organization and protein function suggest a common mechanism by which viral DNA replication is regulated, differences in the site of infection and transmission route appear to manifest themselves as differences in the timing and extent of genome amplification. Understanding the patterns of protein expression seen during natural infection will be important in fully understanding how these differences arise.
Collapse
Affiliation(s)
- John Doorbar
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Kenneth Raj
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
11
|
Link MA, Silva LA, Schaffer PA. Cathepsin B mediates cleavage of herpes simplex virus type 1 origin binding protein (OBP) to yield OBPC-1, and cleavage is dependent upon viral DNA replication. J Virol 2007; 81:9175-82. [PMID: 17553869 PMCID: PMC1951438 DOI: 10.1128/jvi.00676-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the seven viral proteins required for herpes simplex virus type 1 (HSV-1) DNA replication have been identified, the mechanism by which viral DNA synthesis is regulated is unclear. HSV-1 DNA replication is thought to occur in two stages: origin-dependent DNA replication (stage I) mediated by the origin binding protein (OBP), followed by origin- and OBP-independent DNA replication (stage II). The mechanism that facilitates the switch from stage I to stage II is unknown; however, it must involve the loss of OBP function or OBP itself from the replication initiation complex. Previous studies from this laboratory identified a transcript (UL8.5) and protein (OBPC) that are in frame with and comprise the C terminus of the gene specifying OBP. Because of its DNA binding ability, OBPC has been hypothesized to mediate the switch from stage I to stage II. Here, we identify a second protein (OBPC-2) that is also in frame with the C terminus of OBP but comprises a smaller portion of the protein. We demonstrate that the protein originally identified (OBPC-1) is a cathepsin B-mediated cleavage product of OBP, while OBPC-2 may be the product of the UL8.5 transcript. We further demonstrate that the cleavage of OBP to yield OBPC-1 is dependent upon viral DNA replication. These results suggest that cleavage may be a mechanism by which OBP levels and/or activity are regulated during infection.
Collapse
Affiliation(s)
- Malen A Link
- Department of Medicine, Harvard Medical School at the Beth Israel Deaconess Medical Center, 330 Brookline Avenue, RN 123, Boston, MA 02215, USA
| | | | | |
Collapse
|
12
|
Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M. Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 2007; 26:2180-91. [PMID: 17396148 PMCID: PMC1852791 DOI: 10.1038/sj.emboj.7601665] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/05/2007] [Indexed: 12/18/2022] Open
Abstract
Development of invasive cervical cancer upon infection by 'high-risk' human papillomavirus (HPV) in humans is a stepwise process in which some of the initially episomal 'high-risk' type of HPVs (HR-HPVs) integrate randomly into the host cell genome. We show that HPV replication proteins E1 and E2 are capable of inducing overamplification of the genomic locus where HPV origin has been integrated. Clonal analysis of the cells in which the replication from integrated HPV origin was induced showed excision, rearrangement and de novo integration of the HPV containing and flanking cellular sequences. These data suggest that papillomavirus replication machinery is capable of inducing genomic changes of the host cell that may facilitate the formation of the HPV-dependent cancer cell.
Collapse
Affiliation(s)
- Meelis Kadaja
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alina Sumerina
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tatjana Verst
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mari Ojarand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ene Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Biomedical Technology, Institute of Technology, University of Tartu and Estonian Biocentre, Nooruse 1, Tartu 50411, Estonia. Tel.: +372 737 4800; Fax: +372 737 4900; E-mail:
| |
Collapse
|
13
|
Yu JH, Lin BY, Deng W, Broker TR, Chow LT. Mitogen-activated protein kinases activate the nuclear localization sequence of human papillomavirus type 11 E1 DNA helicase to promote efficient nuclear import. J Virol 2007; 81:5066-78. [PMID: 17344281 PMCID: PMC1900230 DOI: 10.1128/jvi.02480-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human and animal papillomavirus DNA replicates as multicopy nuclear plasmids. Replication requires two viral proteins, the origin-recognition protein E2 and the replicative DNA helicase E1. Using genetic, biochemical, and immunofluorescence assays, we demonstrated that efficient nuclear import of the human papillomavirus (HPV) type 11 E1 protein depends on a codominant bipartite nuclear localization sequence (NLS) and on phosphorylation of the serine residues S89 and S93 by the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase, and c-Jun N-terminal protein kinase. The NLS and the MAPK substrates are located within a 50-amino-acid-long peptide near the amino terminus, previously designated the localization regulatory region (LRR). The downstream NLS overlaps the cyclin-binding motif RRL, which is necessary for phosphorylation by the cyclin-dependent kinases to inactivate a dominant nuclear export sequence, also in the LRR. Alanine mutations of the MAPK substrates significantly impaired nuclear import, whereas phospho-mimetic mutations partially restored nuclear import. We further identified two MAPK docking motifs near the C terminus of E1 that are conserved among E1 proteins of many HPVs and bovine papillomavirus type 1. Mutations of these MAPK docking motifs or addition of specific MAPK inhibitors significantly reduced nuclear import. Interestingly, a fraction of the NLS-minus E1 protein was cotransported with the E2 protein into the nucleus and supported transient viral DNA replication. In contrast, E1 proteins mutated in the MAPK docking motifs were completely inactive in transient replication, an indication that additional properties were adversely affected by those changes.
Collapse
Affiliation(s)
- Jei-Hwa Yu
- Department of Biochemistry and Molecular Genetics, McCallum Building, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | |
Collapse
|
14
|
Bian XL, Rosas-Acosta G, Wu YC, Wilson VG. Nuclear import of bovine papillomavirus type 1 E1 protein is mediated by multiple alpha importins and is negatively regulated by phosphorylation near a nuclear localization signal. J Virol 2006; 81:2899-908. [PMID: 17192311 PMCID: PMC1865984 DOI: 10.1128/jvi.01850-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins alpha3, alpha4, and alpha5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin alpha3, alpha4, or alpha5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three alpha importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin alpha and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Xue-Lin Bian
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
15
|
Hsu CY, Mechali F, Bonne-Andrea C. Nucleocytoplasmic shuttling of bovine papillomavirus E1 helicase downregulates viral DNA replication in S phase. J Virol 2006; 81:384-94. [PMID: 17035309 PMCID: PMC1797274 DOI: 10.1128/jvi.01170-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 protein is essential for the initiation of viral replication. We previously showed that the bovine papillomavirus E1 protein is unstable and becomes resistant to ubiquitin-mediated degradation when tightly bound to cyclin E-cyclin-dependent kinase 2 (Cdk2) before the start of DNA synthesis. However, neither the protection nor the targeted degradation of E1 appears to depend on its phosphorylation by Cdk. Here, we report that Cdk phosphorylation of E1 is also not a prerequisite for the initiation of viral DNA replication either in vitro or in vivo. Nevertheless, we found that phosphorylation of one Cdk site, Ser283, abrogates E1 replicative activity only in a cellular context. We show that this site-specific phosphorylation of E1 drives its export from the nucleus and promotes its continuous nucleocytoplasmic shuttling. In addition, we find that E1 shuttling occurs in S phase, when cyclin A-Cdk2 is activated. E1 interacts with the active cyclin A-Cdk2 complex and is phosphorylated on Ser283 by this kinase. These data suggest that the phosphorylation of E1 on Ser283 is a negative regulatory event that is involved in preventing the amplification of viral DNA during S phase. This finding reveals a novel facet of E1 regulation that could account for the variations of the viral replication capacity during different cell cycle phases, as well as in different stages of the viral cycle.
Collapse
Affiliation(s)
- Chiung-Yueh Hsu
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, FRE 2593, IFR122, 1919 Route de Mende, 34 293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
16
|
Lentz MR, Stevens SM, Raynes J, Elkhoury N. A phosphorylation map of the bovine papillomavirus E1 helicase. Virol J 2006; 3:13. [PMID: 16524476 PMCID: PMC1450263 DOI: 10.1186/1743-422x-3-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 03/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Papillomaviruses undergo a complex life cycle requiring regulated DNA replication. The papillomavirus E1 helicase is essential for viral DNA replication and plays a key role in controlling viral genome copy number. The E1 helicase is regulated at least in part by protein phosphorylation, however no systematic approach to phosphate site mapping has been attempted. We have utilized mass spectrometry of purified bovine papillomavirus E1 protein to identify and characterize new sites of phosphorylation. RESULTS Mass spectrometry and in silico sequence analysis were used to identify phosphate sites on the BPV E1 protein and kinases that may recognize these sites. Five new and two previously known phosphorylation sites were identified. A phosphate site map was created and used to develop a general model for the role of phosphorylation in E1 function. CONCLUSION Mass spectrometric analysis identified seven phosphorylated amino acids on the BPV E1 protein. Taken with three previously identified sites, there are at least ten phosphoamino acids on BPV E1. A number of kinases were identified by sequence analysis that could potentially phosphorylate E1 at the identified positions. Several of these kinases have known roles in regulating cell cycle progression. A BPV E1 phosphate map and a discussion of the possible role of phosphorylation in E1 function are presented.
Collapse
Affiliation(s)
- Michael R Lentz
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| | - Stanley M Stevens
- Proteomics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Joshua Raynes
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| | - Nancy Elkhoury
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| |
Collapse
|
17
|
Rosas-Acosta G, Langereis MA, Deyrieux A, Wilson VG. Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 2005; 331:190-203. [PMID: 15582666 PMCID: PMC3481860 DOI: 10.1016/j.virol.2004.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/04/2004] [Accepted: 10/08/2004] [Indexed: 11/20/2022]
Abstract
Sumoylation of the papillomavirus (PV) origin binding helicase E1 protein is critical for its function. Consequently, factors modulating the sumoylation of E1 could ultimately alter the outcome of a papillomavirus infection. We investigated the role played by phosphorylation and two known SUMO E3 ligases, RanBP2 and PIAS proteins, on the sumoylation of E1. E1 sumoylation was unaffected by phosphorylation as both wild-type and pseudo-phosphorylation mutants of BPV E1 exhibited similar sumoylation profiles. RanBP2 bound to BPV E1, but not to HPV11 E1, and lacked sumoylation enhancing activity for either E1. In contrast, proteins of the PIAS family (except PIASy) bound to both BPV and HPV11 E1 and stimulated their sumoylation. The structural integrity of the RING finger domain of the PIAS proteins was required for their E3 SUMO ligase activity on PV E1 sumoylation but was dispensable for their PV E1 binding activity. Miz1, the PIAS protein exerting the strongest E1 sumoylation enhancing activity, favored SUMO1 versus SUMO2 as the modifier and was shown to be transcribed in a keratinocyte cell line. This study indicates PIAS proteins as possible modulators of PV E1 sumoylation during papillomavirus infections.
Collapse
Affiliation(s)
- Germán Rosas-Acosta
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
18
|
Mechali F, Hsu CY, Castro A, Lorca T, Bonne-Andrea C. Bovine papillomavirus replicative helicase E1 is a target of the ubiquitin ligase APC. J Virol 2004; 78:2615-9. [PMID: 14963168 PMCID: PMC369225 DOI: 10.1128/jvi.78.5.2615-2619.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 replicative helicase is essential for replication and maintenance of extrachromosomal viral genomes in infected cells. We previously found that the bovine papillomavirus E1 protein is a substrate of the ubiquitin-dependent proteolytic pathway. Here we show that E1 is targeted for degradation by the anaphase-promoting complex (APC). Inhibition of APC activity by the specific inhibitor Emi1 or point mutations in the D-box and KEN-box motifs of E1 stabilize the protein and increase viral DNA replication in both a cell-free system and in living cells. These findings involve APC as the ubiquitin ligase that controls E1 levels to maintain a constant low copy number of the viral genome during latent infection.
Collapse
Affiliation(s)
- Francisca Mechali
- Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE 2593, IFR 122, 34 293 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
19
|
Eom CY, Lehman IR. Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 2003; 100:9803-7. [PMID: 12904574 PMCID: PMC187846 DOI: 10.1073/pnas.1733876100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-proteasome pathway plays a critical role in the degradation of short-lived and regulatory proteins in a variety of cellular processes. The F-box proteins are part of the ubiquitin-ligase complexes, which mediate ubiquitination and proteasome-dependent degradation of phosphorylated proteins. We previously identified NFB42, an F-box protein that is highly enriched in the nervous system, as a binding partner for the herpes simplex virus 1 UL9 protein, the viral replication-initiator protein, in a yeast two-hybrid screen. In the present work, we find that coexpression of NFB42 and UL9 genes in 293T cells leads to a significant decrease in the level of UL9 protein. Treatment with the 26S-proteasome inhibitor MG132 restores the UL9 protein to normal levels. We have observed also that the UL9 protein is polyubiquitinated in vivo and that the interaction between NFB42 and the UL9 protein is dependent upon phosphorylation of the UL9 protein. These results suggest that the interaction of the UL9 protein with NFB42 results in its polyubiquitination and subsequent degradation by the 26S proteasome. They suggest further a mechanism by which latency of herpes simplex virus 1 can be established in neuronal cells.
Collapse
Affiliation(s)
- Chi-Yong Eom
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | |
Collapse
|