1
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Johnson EL, Ohkawa Y, Kanto N, Fujinawa R, Kuribara T, Miyoshi E, Taniguchi N. The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling pathway in DC-SIGN-expressing THP-1 cells. Cell Stress Chaperones 2024; 29:227-234. [PMID: 38453000 PMCID: PMC10951521 DOI: 10.1016/j.cstres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.
Collapse
Affiliation(s)
- Emma Lee Johnson
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan; Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Noriko Kanto
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Reiko Fujinawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Taiki Kuribara
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan.
| |
Collapse
|
3
|
Ghorai S, Shand H, Patra S, Panda K, Santiago MJ, Rahman MS, Chinnapaiyan S, Unwalla HJ. Nanomedicine for the Treatment of Viral Diseases: Smaller Solution to Bigger Problems. Pharmaceutics 2024; 16:407. [PMID: 38543301 PMCID: PMC10975899 DOI: 10.3390/pharmaceutics16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses. Moreover, the timeline to vaccine development and testing can be extensive, leading to a lapse in controlling the spread of viral infection during pandemics. Antiviral therapeutics can provide a temporary fix to tide over the time lag when vaccines are not available during the commencement of a disease outburst. At times, these medications can have negative side effects that outweigh the benefits, and they are not always effective against newly emerging virus strains. Several limitations with conventional antiviral therapies may be addressed by nanotechnology. By using nano delivery vehicles, for instance, the pharmacokinetic profile of antiviral medications can be significantly improved while decreasing systemic toxicity. The virucidal or virus-neutralizing qualities of other special nanomaterials can be exploited. This review focuses on the recent advancements in nanomedicine against RNA viruses, including nano-vaccines and nano-herbal therapeutics.
Collapse
Affiliation(s)
- Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Harshita Shand
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Soumendu Patra
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| |
Collapse
|
4
|
Sneed SL, Reese BB, Laureano AF, Ratnapriya S, Fraschilla I, Jeffrey KL, Coffey GP, Conley PB, Anthony RM. An engineered immunomodulatory IgG1 Fc suppresses autoimmune inflammation through pathways shared with i.v. immunoglobulin. J Clin Invest 2024; 134:e172980. [PMID: 38357917 PMCID: PMC10866649 DOI: 10.1172/jci172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies in the form of high-dose intravenous immunoglobulin (IVIG) exert immunomodulatory activity and are used in this capacity to treat inflammatory and autoimmune diseases. Reductionist approaches have revealed that terminal sialylation of the single asparagine-linked (N-linked) glycan at position 297 of the IgG1 Fc bestows antiinflammatory activity, which can be recapitulated by introduction of an F241A point mutation in the IgG1 Fc (FcF241A). Here, we examined the antiinflammatory activity of CHO-K1 cell-produced FcF241A in vivo in models of autoimmune inflammation and found it to be independent of sialylation. Intriguingly, sialylation markedly improved the half-life and bioavailability of FcF241A via impaired interaction with the asialoglycoprotein receptor ASGPR. Further, FcF241A suppressed inflammation through the same molecular pathways as IVIG and sialylated IgG1 Fc and required the C-type lectin SIGN-R1 in vivo. This contrasted with FcAbdeg (efgartigimod), an engineered IgG1 Fc with enhanced neonatal Fc receptor (FcRn) binding, which reduced total serum IgG concentrations, independent of SIGN-R1. When coadministered, FcF241A and FcAbdeg exhibited combinatorial antiinflammatory activity. Together, these results demonstrated that the antiinflammatory activity of FcF241A requires SIGN-R1, similarly to that of high-dose IVIG and sialylated IgG1, and can be used in combination with other antiinflammatory therapeutics that rely on divergent pathways, including FcAbdeg.
Collapse
Affiliation(s)
- Sunny L. Sneed
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Brian B. Reese
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Ana F.S. Laureano
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Sneha Ratnapriya
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kate L. Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| |
Collapse
|
5
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
6
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
7
|
Soayfane Z, Houshaymi B, Kedees MH, Belec L, Nasreddine N. Cell Proteins Interacting with the Human Immunodeficiency Virus in Immunoblotting can be Detected by R5- or X4- Tropic Human Immunodeficiency Virus Particles. Int J Appl Basic Med Res 2020; 10:81-85. [PMID: 32566522 PMCID: PMC7289202 DOI: 10.4103/ijabmr.ijabmr_398_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 01/06/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: The present study reported a new immunoblot assay, with revelation by R5- or X4-whole free human immunodeficiency virus (HIV) particles or recombinant gp160. Materials and Methods: The assay was optimized to identify cell proteins interacting with HIV. Whole cell lysates were prepared from peripheral blood lymphocytes (PBLs), dendritic cells (DC), monocyte-derived macrophage (MDM), and Henrietta Lacks (Hela, wild-type or transfected with DC-specific intracellular adhesion molecule-3-Grabbing Non-Integrin, HeLa) and Human endometrial cells (HEC-1A) lines; HIV particles used were the R5-tropic HIV-1JRCSF and the X4-tropic HIV-1NDK. Results: Experiments with PBL lysates and both viruses demonstrated different bands, including a unique band at 105–117 kDa in addition to nonspecific bands. The 105–117 kDa band migrated at the same level of that observed in controls using total PBL lysate and anti-CD4 mAb for detection and thus likely corresponds to the cluster difference (CD) 4 complex. Blots using lysates of DCs, MDM, HeLa cell line, and HEC-1A cell line allowed identifying several bands that positions were similar to that seen by recombinant gp160 or whole R5- or X4-HIV particles. Conclusion: Blot of whole lysates of various HIV target cells is recognized by free HIV particles and allows identifying a wide range of HIV-interacting cell proteins. Such optimized assay could be useful to recognize new cellular HIV attachment proteins.
Collapse
Affiliation(s)
- Zeina Soayfane
- Department of Cell Biology, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Bilal Houshaymi
- Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon
| | - Mamdouh H Kedees
- Department of Cell Biology, State University of New York, New York, NY, USA
| | - Laurent Belec
- Virology Lab, Georges Pompidou European Hospital, and University of Paris Descartes, Paris, France
| | - Nadine Nasreddine
- Department of Microbiology, Faculty of Health, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J Innate Immun 2018; 11:13-28. [PMID: 30293076 PMCID: PMC6738215 DOI: 10.1159/000492974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins. These secreted, soluble proteins are pattern recognition receptors (PRRs) which recognise pathogen-associated molecular patterns (PAMPs), including viral glycoproteins. These innate immune proteins are composed of trimerized units which oligomerise into higher-order structures and facilitate the clearance of viral pathogens through multiple mechanisms. Similarly, many viral surface proteins form trimeric configurations, despite not showing primary protein sequence similarities across the virus classes and families to which they belong. In this review, we discuss the role of the lung collectins, i.e., surfactant proteins A and D (SP-A and SP-D) in viral recognition. We focus particularly on the structural similarity and complementarity of these trimeric collectins with the trimeric viral fusion proteins with which, we hypothesise, they have elegantly co-evolved. Recombinant versions of these innate immune proteins may have therapeutic potential in a range of infectious and inflammatory lung diseases including anti-viral therapeutics.
Collapse
Affiliation(s)
- Alastair Watson
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Maximillian J S Phipps
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Chris-Kriton Skylaris
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United .,Institute for Life Sciences, University of Southampton, Southampton, United .,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United
| |
Collapse
|
9
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
10
|
Inefficient HIV-1 trans Infection of CD4 + T Cells by Macrophages from HIV-1 Nonprogressors Is Associated with Altered Membrane Cholesterol and DC-SIGN. J Virol 2018; 92:JVI.00092-18. [PMID: 29643243 PMCID: PMC6002718 DOI: 10.1128/jvi.00092-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Professional antigen-presenting cells (APC; myeloid dendritic cells [DC] and macrophages [MΦ]; B lymphocytes) mediate highly efficient HIV-1 infection of CD4+ T cells, termed trans infection, that could contribute to HIV-1 pathogenesis. We have previously shown that lower cholesterol content in DC and B lymphocytes is associated with a lack of HIV-1 trans infection in HIV-1-infected nonprogressors (NP). Here, we assessed whether HIV-1 trans infection mediated by another major APC, MΦ, is deficient in NP due to altered cholesterol metabolism. When comparing healthy HIV-1 seronegatives (SN), rapid progressors (PR), and NP, we found that monocyte-derived MΦ from NP did not mediate HIV-1 trans infection of autologous CD4+ T cells, in contrast to efficient trans infection mediated by SN and PR MΦ. MΦ trans infection efficiency was directly associated with the number of DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing MΦ. Significantly fewer NP MΦ expressed DC-SIGN. Unesterified (free) cholesterol in MΦ cell membranes and lipid rafting was significantly lower in NP than PR, as was virus internalization in early endosomes. Furthermore, simvastatin (SIMV) decreased the subpopulation of DC-SIGN+ MΦ as well as cis and trans infection. Notably, SIMV decreased cell membrane cholesterol and led to lipid raft dissociation, effectively mimicking the incompetent APC trans infection environment characteristic of NP. Our data support that DC-SIGN and membrane cholesterol are central to MΦ trans infection, and a lack of these limits HIV-1 disease progression. Targeting the ability of MΦ to drive HIV-1 dissemination in trans could enhance HIV-1 therapeutic strategies. IMPORTANCE Despite the success of combination antiretroviral therapy, neither a vaccine nor a cure for HIV infection has been developed, demonstrating a need for novel prophylactic and therapeutic strategies. Here, we show that efficiency of MΦ-mediated HIV trans infection of CD4+ T cells is a unique characteristic associated with control of disease progression, and it is impaired in HIV-infected NP. In vitro treatment of MΦ from healthy donors with SIMV lowers their cholesterol content, which results in a strongly reduced trans infection ability, similar to the levels of MΦ from NP. Taken together, our data support the hypothesis that MΦ-mediated HIV-1 trans infection plays a role in HIV infection and disease progression and demonstrate that the use of SIMV to decrease this mechanism of virus transfer should be considered for future HIV therapeutic development.
Collapse
|
11
|
S. Coulibaly F, N. Thomas D, C. Youan BB. Anti-HIV lectins and current delivery strategies. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Gunay G, Sardan Ekiz M, Ferhati X, Richichi B, Nativi C, Tekinay AB, Guler MO. Antigenic GM3 Lactone Mimetic Molecule Integrated Mannosylated Glycopeptide Nanofibers for the Activation and Maturation of Dendritic Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16035-16042. [PMID: 28445638 DOI: 10.1021/acsami.7b04094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery.
Collapse
Affiliation(s)
- Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Neuroscience Graduate Program, Bilkent University , Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Xhenti Ferhati
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino, Florence 50019, Italy
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Neuroscience Graduate Program, Bilkent University , Ankara 06800, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual. J Virol 2016; 90:11132-11144. [PMID: 27707925 PMCID: PMC5126371 DOI: 10.1128/jvi.01542-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV envelope glycoprotein (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing, resulting in numerous underprocessed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also acts as a target for anti-HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and numbers of potential N-linked glycosylation sites (PNGSs). Here, using longitudinal Env sequences from a clade C-infected individual (CAP256), we measured the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS number and positioning, we show that the intrinsic mannose patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of the glycan density on the processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for anti-HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies. IMPORTANCE Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs) is likely to be a key component of a successful vaccine response. The HIV envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated anti-HIV bnAbs and is therefore under constant pressure from the host immune system, leading to changes in both glycan site frequency and location. This study aimed to determine whether these genetic changes impacted the eventual processing of glycans on the HIV Env and the susceptibility of the virus to neutralization. We show that despite this variation in glycan site positioning and frequency over the course of HIV infection, the mannose patch is a conserved feature throughout, making it a stable target for HIV vaccine design.
Collapse
|
14
|
Hamimi C, David A, Versmisse P, Weiss L, Bruel T, Zucman D, Appay V, Moris A, Ungeheuer MN, Lascoux-Combe C, Barré-Sinoussi F, Muller-Trutwin M, Boufassa F, Lambotte O, Pancino G, Sáez-Cirión A. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles. PLoS One 2016; 11:e0160251. [PMID: 27505169 PMCID: PMC4978443 DOI: 10.1371/journal.pone.0160251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia.
Collapse
Affiliation(s)
- Chiraz Hamimi
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Annie David
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
| | - Pierre Versmisse
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Laurence Weiss
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
- AP-HP Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | - Timothée Bruel
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
| | - David Zucman
- Hopital Foch, Service de médecine interne, Suresnes, France
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Marie-Noëlle Ungeheuer
- Institut Pasteur, Plate-forme Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Paris, France
| | | | | | | | - Faroudy Boufassa
- INSERM U1018, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
- Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Le Kremlin-Bicêtre, France
- APHP, Hôpitaux Universitaires Paris Sud, Service de Médecine Interne–Immunologie Clinique, le Kremlin Bicêtre, France
| | | | - Asier Sáez-Cirión
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
- * E-mail:
| | | |
Collapse
|
15
|
Pritchard LK, Spencer DIR, Royle L, Bonomelli C, Seabright GE, Behrens AJ, Kulp DW, Menis S, Krumm SA, Dunlop DC, Crispin DJ, Bowden TA, Scanlan CN, Ward AB, Schief WR, Doores KJ, Crispin M. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat Commun 2015; 6:7479. [PMID: 26105115 PMCID: PMC4500839 DOI: 10.1038/ncomms8479] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Louise Royle
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel W Kulp
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sergey Menis
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Stefanie A Krumm
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - D Cameron Dunlop
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel J Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - William R Schief
- 1] Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
16
|
Abstract
Human milk is a complete source of nourishment for the infant. Exclusive breastfeeding not only sustains the infant's development but also guides the proliferation of a protective intestinal microbiota. Among the many components of milk that modulate the infant gut microbiota, the milk glycans, which comprise free oligosaccharides, glycoproteins, and glycolipids, are increasingly recognized as drivers of microbiota development and overall gut health. These glycans may display pleiotropic functions, conferring protection against infectious diseases and also acting as prebiotics, selecting for the growth of beneficial intestinal bacteria. The prebiotic effect of milk glycans has direct application to prevention of diseases such as necrotizing enterocolitis, a common and devastating disease of preterm infants. In this article, we review the impact of the human (and bovine) milk glycome on gut health through establishment of a milk-oriented microbiota in the neonate.
Collapse
Affiliation(s)
- Alline R. Pacheco
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Foods for Health Institute, University of California, Davis, California 95616
| | - Daniela Barile
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Food Science and Technology, University of California, Davis, California 95616
| | - Mark A. Underwood
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Pediatrics, University of California, Davis, California 95616
| | - David A. Mills
- Department of Viticulture and Enology, University of California, Davis, California 95616
- Foods for Health Institute, University of California, Davis, California 95616
- Department of Food Science and Technology, University of California, Davis, California 95616
| |
Collapse
|
17
|
Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 2014; 38:598-632. [PMID: 24188132 PMCID: PMC7190080 DOI: 10.1111/1574-6976.12052] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/01/2023] Open
Abstract
Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus-host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan-lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan-lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan-lectin field might be transformed into promising new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Raoul J. de Groot
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
18
|
Varga N, Sutkeviciute I, Ribeiro-Viana R, Berzi A, Ramdasi R, Daghetti A, Vettoretti G, Amara A, Clerici M, Rojo J, Fieschi F, Bernardi A. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials 2014; 35:4175-84. [PMID: 24508075 DOI: 10.1016/j.biomaterials.2014.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/08/2014] [Indexed: 01/31/2023]
Abstract
DC-SIGN is a C-type lectin receptor on antigen presenting cells (dendritic cells) which has an important role in some viral infection, notably by HIV and Dengue virus (DV). Multivalent presentation of carbohydrates on dendrimeric scaffolds has been shown to inhibit DC-SIGN binding to HIV envelope glycoprotein gp120, thus blocking viral entry. This approach has interesting potential applications for infection prophylaxis. In an effort to develop high affinity inhibitors of DC-SIGN mediated viral entry, we have synthesized a group of glycodendrimers of different valency that bear different carbohydrates or glycomimetic DC-SIGN ligands and have studied their DC-SIGN binding activity and antiviral properties both in an HIV and a Dengue infection model. Surface Plasmon Resonance (SPR) competition studies have demonstrated that the materials obtained bind efficiently to DC-SIGN with IC50s in the μm range, which depend on the nature of the ligand and on the valency of the scaffold. In particular, a hexavalent presentation of the DC-SIGN selective antagonist 4 displayed high potency, as well as improved accessibility and chemical stability relative to previously reported dendrimers. At low μm concentration the material was shown to block both DC-SIGN mediated uptake of DV by Raji cells and HIV trans-infection of T cells.
Collapse
Affiliation(s)
- Norbert Varga
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Ieva Sutkeviciute
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France
| | - Renato Ribeiro-Viana
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Angela Berzi
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Via GB Grassi 74, 20157 Milano, Italy
| | - Rasika Ramdasi
- INSERM U944, Laboratoire de Pathologie et Virologie Moléculaire, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Anna Daghetti
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Gerolamo Vettoretti
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy
| | - Ali Amara
- INSERM U944, Laboratoire de Pathologie et Virologie Moléculaire, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-chirurgica e dei Trapianti, Via F.lli Cervi 93, 20090 Segrate, Italy; Fondazione Don Gnocchi IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Americo Vespucio 49, 41092 Sevilla, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy; CNR-ISTM, Institute of Molecular Science and Technologies, Milan, Italy.
| |
Collapse
|
19
|
Dynamic Micelles of Mannoside Glycolipids are more Efficient than Polymers for Inhibiting HIV-1 trans-Infection. Bioconjug Chem 2013; 24:1813-23. [DOI: 10.1021/bc4000806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells. PLoS One 2013; 8:e59047. [PMID: 23527085 PMCID: PMC3601116 DOI: 10.1371/journal.pone.0059047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.
Collapse
|
21
|
Binding of HIV-1 gp120 to DC-SIGN promotes ASK-1-dependent activation-induced apoptosis of human dendritic cells. PLoS Pathog 2013; 9:e1003100. [PMID: 23382671 PMCID: PMC3561151 DOI: 10.1371/journal.ppat.1003100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC depletion in chronic HIV infection. HIV-1 infected individuals become increasingly immunocompromised and susceptible to opportunistic infection during disease progression, which is associated with significant reduction of the dendritic cell number in the peripheral blood or secondary lymphoid tissues. Because dendritic cells are the most powerful antigen-presenting cells, their survival is critical for host defence and inadequate dendritic cell number will fail to induce effective host immune responses. Here we describe a mechanism that may at least partly explain why dendritic cells become significantly depleted in chronic HIV-1 infection. We found that after binding of the HIV-1 envelope protein gp120 to the dendritic cell surface protein DC-SIGN, the subsequent activation by CD40 ligation, or by exposure to bacterial product lipopolysaccharide or pro-inflammatory cytokines such as TNF-α and IL-1β, will lead to overexpression of pro-apoptotic molecule ASK-1, resulting in excessive dendritic cell death. We also confirmed that DC-SIGN(+) dendritic cells in the blood of HIV-1 infected individuals have actually been pre-sensitized by viral gp120, which exists in vast amount in the blood, for activation-induced exorbitant death. Our study thus reveals a previously unknown pathway for dendritic cell depletion and provides clues for potential therapeutic approaches to prevent DC depletion in chronic HIV infection.
Collapse
|
22
|
Dehuyser L, Schaeffer E, Chaloin O, Mueller CG, Baati R, Wagner A. Synthesis of Novel Mannoside Glycolipid Conjugates for Inhibition of HIV-1 Trans-Infection. Bioconjug Chem 2012; 23:1731-9. [DOI: 10.1021/bc200644d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laure Dehuyser
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| | - Evelyne Schaeffer
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Olivier Chaloin
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Christopher G. Mueller
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Rachid Baati
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| | - Alain Wagner
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| |
Collapse
|
23
|
Baan E, de Ronde A, Luchters S, Vyankandondera J, Lange JM, Pollakis G, Paxton WA. HIV type 1 mother-to-child transmission facilitated by distinctive glycosylation sites in the gp120 envelope glycoprotein. AIDS Res Hum Retroviruses 2012; 28:715-24. [PMID: 21916748 DOI: 10.1089/aid.2011.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) characteristics associated with mother-to-child transmission (MTCT) are still poorly understood. We studied a cohort of 30 mothers from Rwanda infected with HIV-1 subtype A or C viruses of whom seven infected their children either during gestation or soon after birth. CD4 counts and viral load did not significantly differ between nontransmitting mother (NTM) versus transmitting mother (TM) groups. In contrast to earlier studies we not only analyzed and compared the genotypic characteristics of the V1-V5 region of the gp120 envelope of viruses found in TM and their infected children, but also included data from the NTM. No differences were found with respect to length and number of potential N-glycosylation sites (PNGS) in the V1-V2 and the V1-V5 region. We identified that viruses with a PNGS on positions AA234 and AA339 were preferably transmitted and that viruses with PNGS-N295 showed a disadvantage in transmission. We also showed that the frequency of PNGS-N339 in the viruses of TM and infected children was significantly higher than the frequency in NTM in our cohort and in viruses undergoing sexual transmission while the frequency of PNGS-N295 in children was significantly lower than the frequency in TM and acute horizontal infections. Collectively, our results provide evidence that the presence of the PNGS-N339 site and absence of the PNGS-N295 site in the gp120 envelope confers an advantage to HIV-1 when considering MTCT.
Collapse
Affiliation(s)
- Elly Baan
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - Anthony de Ronde
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Luchters
- IATEC, International Antiviral Therapy Evaluation Center, Amsterdam, the Netherlands
| | - Joseph Vyankandondera
- CHUK, Centre Hospitalier Universitaire de Kigali and Belgian Technical Cooperation, Kigali, Rwanda
| | - Joep M. Lange
- IATEC, International Antiviral Therapy Evaluation Center, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 2012; 33:4229-39. [PMID: 22410170 DOI: 10.1016/j.biomaterials.2012.02.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/22/2012] [Indexed: 11/23/2022]
Abstract
Vaccine efficacy is improved upon specific delivery to professional antigen (Ag) presenting cells, such as dendritic cells (DCs). Antigenicity and adjuvanticity of vaccine components can be enhanced by encapsulation within nanoparticle (NP) vaccine carriers that are targeted to the human DC-specific C-type lectin receptor DC-SIGN. Here we used two strategies to target vaccines components to DC-SIGN: 1) carbohydrates as natural receptor ligands and 2) receptor-specific antibodies (Abs). To determine the optimal targeting strategy, we coated NP vaccines harboring MHC class I or II-restricted Ags and the TLR ligands (TLRLs) poly I:C and resiquimod with either the DC-SIGN ligands Lewis-X (Le(x)), mannosylated lipoarabinomannan (ManLAM), glycosylated HIV protein gp120, or three distinct DC-SIGN Abs. Although, because of their lower MW, surface coating of NP vaccines with carbohydrates resulted in a higher number of surface molecules per NP than coating with Abs, NP vaccines carrying Abs were more effectively bound and internalized by human DCs than carriers harboring Le(x), ManLAM or gp120. Furthermore, NP vaccines harboring TLRLs triggered significant induction of DC maturation markers when compared to those without TLRLs, irrespective of the targeting moiety. Ab- and gp120-mediated targeting induced equally high levels of proinflammatory cytokines and increased presentation of the MHC class I-restricted epitope. By contrast, presentation of the MHC class II-restricted epitope was more efficient upon Ab-mediated targeting than when using gp120, Le(x) or ManLAM. From these findings we conclude that receptor-specific Abs are more effective than carbohydrates for DC-targeted vaccination strategies.
Collapse
|
25
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
26
|
Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:109-30. [PMID: 22975873 DOI: 10.1007/978-1-4614-4433-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4(+) T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4(+) T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4(+) T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4(+) T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.
Collapse
|
27
|
The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells. Virology 2011; 423:175-86. [PMID: 22209231 DOI: 10.1016/j.virol.2011.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/19/2023]
Abstract
It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN and the DC-SIGN-mediated HIV-1 infection of CD4(+) cells. While GRFT, CV-N and SVN were moderately inhibitory to DC-SIGN binding, they potently inhibited DC-SIGN-transfer of HIV-1. The introduction of the 234 glycosylation site abolished HIV-1 sensitivity to lectin inhibition of binding to DC-SIGN and virus transfer to susceptible cells. However, the addition of the 295 glycosylation site increased the inhibition of transfer. Our data suggest that GRFT, CV-N and SVN can block two important stages of the sexual transmission of HIV-1, DC-SIGN binding and transfer, supporting their further development as microbicides.
Collapse
|
28
|
Liao CF, Wang SF, Lin YT, Ho DD, Chen YMA. Identification of the DC-SIGN-interactive domains on the envelope glycoprotein of HIV-1 CRF07_BC. AIDS Res Hum Retroviruses 2011; 27:831-9. [PMID: 21142800 DOI: 10.1089/aid.2010.0215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DC-SIGN, a C-type lection expressed on dendritic cells, enhances HIV-1 infection in cis and in trans. HIV-1 circulating recombinant form (CRF) 07_BC viruses have been the predominant strain found among injection drug users in southern China and Taiwan. The goal of this study was to map the DC-SIGN-interactive domain on the gp120 of CRF07_BC. Pseudotyped viruses containing single (N233Q, N275Q, N330Q, N351Q, N355Q, N381Q, and N387Q), double (N233Q + N275Q, N233Q + N351Q, N275Q + N351Q), or triple (N233Q + N275Q + N351Q) N-glycan mutant gp120 were generated. Capture assays showed that the DC-SIGN-binding capacity of pseudoviruses with N275Q or N351Q decreased significantly. Rabbit antisera against synthetic peptides covering the N275 (R72 antiserum) or N351 (R77 antiserum) region blocked the interaction between wild-type gp120 and DC-SIGN in the capture assay. Furthermore, pseudotype viruses containing gp120 from five different CRF07_BC isolates were generated and R72 and R77 antisera blocked their interactions with DC-SIGN (80% for R72 and 40% for R77, respectively) in the capture assays. In conclusion, the N275 and N351 glycan sites on the CRF07_BC gp120 play an important role in mediating the interaction between gp120 and DC-SIGN. This information is valuable for developing both therapeutic and preventive agents for HIV-1 infection.
Collapse
Affiliation(s)
- Che-Feng Liao
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Fan Wang
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- Institude of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Lin
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York
| | - Yi-Ming Arthur Chen
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
- Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
30
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
31
|
Sattin S, Daghetti A, Thépaut M, Berzi A, Sánchez-Navarro M, Tabarani G, Rojo J, Fieschi F, Clerici M, Bernardi A. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem Biol 2010; 5:301-12. [PMID: 20085340 DOI: 10.1021/cb900216e] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is pandemic in humans and is responsible for millions of deaths every year. The discovery of new cellular targets that can be used to prevent the infection process represents a new opportunity for developing more effective antiviral drugs. In this context, dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), a lectin expressed at the surface of immature dendritic cells and involved in the initial stages of HIV infection, is a promising therapeutic target. Herein we show the ability of a new tetravalent dendron containing four copies of a linear trimannoside mimic to inhibit the trans HIV infection process of CD4+ T lymphocytes at low micromolar range. This compound presents a high solubility in physiological media, a neglectable cytotoxicity, and a long-lasting effect and is based on carbohydrate-mimic units. Notably, the HIV antiviral activity is independent of viral tropism (X4 or R5). The formulation of this compound as a gel could allow its use as topical microbicide.
Collapse
Affiliation(s)
- Sara Sattin
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Anna Daghetti
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Michel Thépaut
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- CNRS, UMR 5075, 38000 Grenoble, France
| | - Angela Berzi
- Dipartimento di Scienze Precliniche, Università degli Studi di Milano, via GB Grassi 74, 20157 Milano, Italy
| | - Macarena Sánchez-Navarro
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Georges Tabarani
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Javier Rojo
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC−Universidad de Sevilla, Av. Americo Vespucio 49, 41092 Seville, Spain
| | - Franck Fieschi
- Laboratoire des protéines membranaires, CEA, DSV, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
- Université Joseph Fourier, 38000 Grenoble, France
| | - Mario Clerici
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, via Flli Cervi 93, 20090 Segrate, Italy
- Don C. Gnocchi ONLUS Foundation IRCCS, Via Capecelatro 66, 20148 Milano, Italy
| | - Anna Bernardi
- Dipartimento di Chimica Organica e Industriale and CISI, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
32
|
Chung NPY, Breun SKJ, Bashirova A, Baumann JG, Martin TD, Karamchandani JM, Rausch JW, Le Grice SFJ, Wu L, Carrington M, KewalRamani VN. HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN). J Biol Chem 2010; 285:2100-12. [PMID: 19833723 PMCID: PMC2804366 DOI: 10.1074/jbc.m109.030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/23/2009] [Indexed: 11/06/2022] Open
Abstract
In this study, we identify determinants in dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) necessary for human immunodeficiency virus, type 1 (HIV-1), transmission. Although human B cell lines expressing DC-SIGN efficiently capture and transmit HIV-1 to susceptible target cells, cells expressing the related molecule liver/lymph node-specific ICAM-3-grabbing nonintegrin (L-SIGN) do not. To understand the differences between DC-SIGN and L-SIGN that affect HIV-1 interactions, we developed Raji B cell lines expressing different DC-SIGN/L-SIGN chimeras. Testing of the chimeras demonstrated that replacement of the DC-SIGN carbohydrate-recognition domain (CRD) with that of L-SIGN was sufficient to impair virus binding and prevent transmission. Conversely, the ability to bind and transmit HIV-1 was conferred to L-SIGN chimeras containing the DC-SIGN CRD. We identified Trp-258 in the DC-SIGN CRD to be essential for HIV-1 transmission. Although introduction of a K270W mutation at the same position in L-SIGN was insufficient for HIV-1 binding, an L-SIGN mutant molecule with K270W and a C-terminal DC-SIGN CRD subdomain transmitted HIV-1. These data suggest that DC-SIGN structural elements distinct from the oligosaccharide-binding site are required for HIV-1 glycoprotein selectivity.
Collapse
Affiliation(s)
- Nancy P. Y. Chung
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Sabine K. J. Breun
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany
| | - Arman Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Joerg G. Baumann
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany
| | - Thomas D. Martin
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Jaideep M. Karamchandani
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Jason W. Rausch
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Stuart F. J. Le Grice
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Li Wu
- the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Vineet N. KewalRamani
- From the HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
33
|
Go EP, Chang Q, Liao HX, Sutherland LL, Alam SM, Haynes BF, Desaire H. Glycosylation site-specific analysis of clade C HIV-1 envelope proteins. J Proteome Res 2009; 8:4231-42. [PMID: 19610667 DOI: 10.1021/pr9002728] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive glycosylation of HIV-1 envelope proteins (Envs), gp120/gp41, is known to play an important role in evasion of host immune response by masking key neutralization epitopes and presenting the Env glycosylation as "self" to the host immune system. The Env glycosylation is mostly conserved but continues to evolve to modulate viral infectivity. Thus, profiling Env glycosylation and distinguishing interclade and intraclade glycosylation variations are necessary components in unraveling the effects of glycosylation on Env's immunogenicity. Here, we describe a mass spectrometry-based approach to characterize the glycosylation profiles of two rVV-expressed clade C Envs by identifying the glycan motifs on each glycosylation site and determining the degree of glycosylation site occupancy. One Env is a wild-type Env, while the other is a synthetic "consensus" Env (C.CON). The observed differences in the glycosylation profiles between the two clade C Envs show that C.CON has more unutilized sites and high levels of high mannose glycans; these features mimic the glycosylation profile of a Group M consensus immunogen, CON-S. Our results also reveal a clade-specific glycosylation pattern. Discerning interclade and intraclade glycosylation variations could provide valuable information in understanding the molecular differences among the different HIV-1 clades and in designing new Env-based immunogens.
Collapse
Affiliation(s)
- Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ceballos A, Remes Lenicov F, Sabatté J, Rodríguez Rodrígues C, Cabrini M, Jancic C, Raiden S, Donaldson M, Agustín Pasqualini R, Marin-Briggiler C, Vazquez-Levin M, Capani F, Amigorena S, Geffner J. Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. ACTA ACUST UNITED AC 2009; 206:2717-33. [PMID: 19858326 PMCID: PMC2806607 DOI: 10.1084/jem.20091579] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Semen is the main vector for HIV-1 dissemination worldwide. It contains three major sources of infectious virus: free virions, infected leukocytes, and spermatozoa-associated virions. We focused on the interaction of HIV-1 with human spermatozoa and dendritic cells (DCs). We report that heparan sulfate is expressed in spermatozoa and plays an important role in the capture of HIV-1. Spermatozoa-attached virus is efficiently transmitted to DCs, macrophages, and T cells. Interaction of spermatozoa with DCs not only leads to the transmission of HIV-1 and the internalization of the spermatozoa but also results in the phenotypic maturation of DCs and the production of IL-10 but not IL-12p70. At low values of extracellular pH (∼6.5 pH units), similar to those found in the vaginal mucosa after sexual intercourse, the binding of HIV-1 to the spermatozoa and the consequent transmission of HIV-1 to DCs were strongly enhanced. Our observations support the notion that far from being a passive carrier, spermatozoa acting in concert with DCs might affect the early course of sexual transmission of HIV-1 infection.
Collapse
Affiliation(s)
- Ana Ceballos
- Centro Nacional de Referencia para SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TBH. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 2009; 10:1081-8. [PMID: 19718030 DOI: 10.1038/ni.1778] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/07/2009] [Indexed: 12/16/2022]
Abstract
Cooperation between different innate signaling pathways induced by pattern-recognition receptors (PRRs) on dendritic cells (DCs) is crucial for tailoring adaptive immunity to pathogens. Here we show that carbohydrate-specific signaling through the C-type lectin DC-SIGN tailored cytokine production in response to distinct pathogens. DC-SIGN was constitutively associated with a signalosome complex consisting of the scaffold proteins LSP1, KSR1 and CNK and the kinase Raf-1. Mannose-expressing Mycobacterium tuberculosis and human immunodeficiency virus type 1 (HIV-1) induced the recruitment of effector proteins to the DC-SIGN signalosome to activate Raf-1, whereas fucose-expressing pathogens such as Helicobacter pylori actively dissociated the KSR1-CNK-Raf-1 complex from the DC-SIGN signalosome. This dynamic regulation of the signalosome by mannose- and fucose-expressing pathogens led to the enhancement or suppression of proinflammatory responses, respectively. Our study reveals another level of plasticity in tailoring adaptive immunity to pathogens.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Center of Infection and Immunity Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
A yeast glycoprotein shows high-affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC-SIGN. J Virol 2009; 83:4861-70. [PMID: 19264785 DOI: 10.1128/jvi.02537-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein contains numerous N-linked carbohydrates that shield conserved peptide epitopes and promote trans infection by dendritic cells via binding to cell surface lectins. The potent and broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose-type oligosaccharides on the gp120 subunit of Env, revealing a conserved and highly exposed epitope on the glycan shield. To find an effective antigen for eliciting 2G12-like antibodies, we searched for endogenous yeast proteins that could bind to 2G12 in a panel of Saccharomyces cerevisiae glycosylation knockouts and discovered one protein that bound weakly in a Delta pmr1 strain deficient in hyperglycosylation. 2G12 binding to this protein, identified as Pst1, was enhanced by adding the Delta mnn1 deletion to the Delta pmr1 background, ensuring the exposure of terminal alpha1,2-linked mannose residues on the D1 and D3 arms of high-mannose glycans. However, optimum 2G12 antigenicity was found when Pst1, a heavily N-glycosylated protein, was expressed with homogenous Man(8)GlcNAc(2) structures in Delta och1 Delta mnn1 Delta mnn4 yeast. Surface plasmon resonance analysis of this form of Pst1 showed high affinity for 2G12, which translated into Pst1 efficiently inhibiting gp120 interactions with 2G12 and DC-SIGN and blocking 2G12-mediated neutralization of HIV-1 pseudoviruses. The high affinity of the yeast glycoprotein Pst1 for 2G12 highlights its potential as a novel antigen to induce 2G12-like antibodies.
Collapse
|
37
|
Abstract
To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the “Trojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the “rise and decline” of the Trojan horse model of HIV-1 trans-infection.
Collapse
|
38
|
Gaiha GD, Dong T, Palaniyar N, Mitchell DA, Reid KBM, Clark HW. Surfactant Protein A Binds to HIV and Inhibits Direct Infection of CD4+Cells, but Enhances Dendritic Cell-Mediated Viral Transfer. THE JOURNAL OF IMMUNOLOGY 2008; 181:601-9. [DOI: 10.4049/jimmunol.181.1.601] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Evolution of DC-SIGN use revealed by fitness studies of R5 HIV-1 variants emerging during AIDS progression. Retrovirology 2008; 5:28. [PMID: 18371209 PMCID: PMC2330154 DOI: 10.1186/1742-4690-5-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/27/2008] [Indexed: 12/18/2022] Open
Abstract
Background At early stages of infection CCR5 is the predominant HIV-1 coreceptor, but in approximately 50% of those infected CXCR4-using viruses emerge with disease progression. This coreceptor switch is correlated with an accelerated progression. However, those that maintain virus exclusively restricted to CCR5 (R5) also develop AIDS. We have previously reported that R5 variants in these "non-switch virus" patients evolve during disease progression towards a more replicative phenotype exhibiting altered CCR5 coreceptor interactions. DC-SIGN is a C-type lectin expressed by dendritic cells that HIV-1 may bind and utilize for enhanced infection of T cells in trans. To further explore the evolution of the R5 phenotype we analyzed sequential R5 isolates obtained before and after AIDS onset, i.e. at the chronic stage and during end-stage disease, with regard to efficiency of DC-SIGN use in trans-infections. Results Results from binding and trans-infection assays showed that R5 viruses emerging during end-stage AIDS disease displayed reduced ability to use DC-SIGN. To better understand viral determinants underlying altered DC-SIGN usage by R5 viruses, we cloned and sequenced the HIV-1 env gene. We found that end-stage R5 viruses lacked potential N-linked glycosylation sites (PNGS) in the gp120 V2 and V4 regions, which were present in the majority of the chronic stage R5 variants. One of these sites, amino acid position 160 (aa160) in the V2 region, also correlated with efficient use of DC-SIGN for binding and trans-infections. In fitness assays, where head-to-head competitions between chronic stage and AIDS R5 viruses were setup in parallel direct and DC-SIGN-mediated infections, results were further supported. Competitions revealed that R5 viruses obtained before AIDS onset, containing the V2 PNGS at aa160, were selected for in the trans-infection. Whereas, in agreement with our previous studies, the opposite was seen in direct target cell infections where end-stage viruses out-competed the chronic stage viruses. Conclusion Results of our study suggest R5 virus variants with diverse fitness for direct and DC-SIGN-mediated trans-infections evolve within infected individuals at end-stage disease. In addition, our results point to the importance of a glycosylation site within the gp120 V2 region for efficient DC-SIGN use of HIV-1 R5 viruses.
Collapse
|
40
|
Evans VA, Cameron PU, Lewin SR. Human thymic dendritic cells: Regulators of T cell development in health and HIV-1 infection. Clin Immunol 2008; 126:1-12. [DOI: 10.1016/j.clim.2007.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 12/12/2022]
|
41
|
Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol 2007; 81:12029-39. [PMID: 17715238 PMCID: PMC2168787 DOI: 10.1128/jvi.00315-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus (CoV) designated SARS-CoV. The virus utilizes angiotensin-converting enzyme 2 (ACE2) as the primary receptor. Although the idea is less clear and somewhat controversial, SARS-CoV is thought to use C-type lectins DC-SIGN and/or L-SIGN (collectively referred to as DC/L-SIGN) as alternative receptors or as enhancer factors that facilitate ACE2-mediated virus infection. In this study, the function of DC/L-SIGN in SARS-CoV infection was examined in detail. The results of our study clearly demonstrate that both proteins serve as receptors independently of ACE2 and that there is a minimal level of synergy between DC/L-SIGN and ACE2. As expected, glycans on spike (S) glycoprotein are important for DC/L-SIGN-mediated virus infection. Site-directed mutagenesis analyses have identified seven glycosylation sites on the S protein critical for DC/L-SIGN-mediated virus entry. They include asparagine residues at amino acid positions 109, 118, 119, 158, 227, 589, and 699, which are distinct from residues of the ACE2-binding domain (amino acids 318 to 510). Amino acid sequence analyses of S proteins encoded by viruses isolated from animals and humans suggest that glycosylation sites N227 and N699 have facilitated zoonotic transmission.
Collapse
Affiliation(s)
- Dong P Han
- Case Western Reserve University School of Medicine, Department of Medicine, Division of Infectious Diseases, 10900 Euclid Avenue, Cleveland, OH 44106-4984, USA
| | | | | |
Collapse
|
42
|
Marzi A, Mitchell DA, Chaipan C, Fisch T, Doms RW, Carrington M, Desrosiers RC, Pöhlmann S. Modulation of HIV and SIV neutralization sensitivity by DC-SIGN and mannose-binding lectin. Virology 2007; 368:322-30. [PMID: 17659761 DOI: 10.1016/j.virol.2007.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/01/2007] [Accepted: 07/03/2007] [Indexed: 12/17/2022]
Abstract
The C-type lectin DC-SIGN binds to oligosaccharides on the human and simian immunodeficiency virus (HIV, SIV) envelope glycoproteins and promotes infection of susceptible cells. Here, we show that DC-SIGN recognizes glycans involved in SIV sensitivity to neutralizing antibodies and that binding to DC-SIGN confers neutralization resistance to an otherwise sensitive SIV variant. Moreover, we provide evidence that mannose-binding lectin (MBL) can interfere with HIV-1 neutralization by the carbohydrate-specific antibody 2G12.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hong PWP, Nguyen S, Young S, Su SV, Lee B. Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120. J Virol 2007; 81:8325-36. [PMID: 17522223 PMCID: PMC1951277 DOI: 10.1128/jvi.01765-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN.
Collapse
Affiliation(s)
- Patrick W-P Hong
- Department of Microbiology, Immunology, and Molecular Genetics, 3825 MSB, UCLA, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
44
|
Chen H, Xu X, Jones IM. Immunogenicity of the outer domain of a HIV-1 clade C gp120. Retrovirology 2007; 4:33. [PMID: 17509143 PMCID: PMC1891314 DOI: 10.1186/1742-4690-4-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 05/17/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The possibility that a sub domain of a C clade HIV-1 gp120 could act as an effective immunogen was investigated. To do this, the outer domain (OD) of gp120CN54 was expressed and characterized in a construct marked by a re-introduced conformational epitope for MAb 2G12. The expressed sequence showed efficient epitope retention on the isolated ODCN54 suggesting authentic folding. To facilitate purification and subsequent immunogenicity ODCN54 was fused to the Fc domain of human IgG1. Mice were immunised with the resulting fusion proteins and also with gp120CN54-Fc and gp120 alone. RESULTS Fusion to Fc was found to stimulate antibody titre and Fc tagged ODCN54 was substantially more immunogenic than non-tagged gp120. Immunogenicity appeared the result of Fc facilitated antigen processing as immunisation with an Fc domain mutant that reduced binding to the FcR lead to a reduction in antibody titre when compared to the parental sequence. The breadth of the antibody response was assessed by serum reaction with five overlapping fragments of gp120CN54 expressed as GST fusion proteins in bacteria. A predominant anti-inner domain and anti-V3C3 response was observed following immunisation with gp120CN54-Fc and an anti-V3C3 response to the ODCN54-Fc fusion. CONCLUSION The outer domain of gp120CN54 is correctly folded following expression as a C terminal fusion protein. Immunogenicity is substantial when targeted to antigen presenting cells but shows V3 dominance in the polyvalent response. The gp120 outer domain has potential as a candidate vaccine component.
Collapse
Affiliation(s)
- Hongying Chen
- School of Biological Sciences, The University of Reading, Reading, RG6 6AJ, UK
| | - Xiaodong Xu
- School of Biological Sciences, The University of Reading, Reading, RG6 6AJ, UK
| | - Ian M Jones
- School of Biological Sciences, The University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
45
|
Abstract
25 years after the first HIV/AIDS cases emerged in 1981, the disease continues to spread worldwide, with about 15 000 new infections every day. Although highly active antiretroviral therapy (HAART) has greatly reduced the rate of HIV infection, and the spread of the epidemic, this effect has largely been seen in developed countries. More than 90% of HIV-infected people live in developing countries, most of whom do not have access to this treatment. The development of efficient, widely available, and low-cost microbicides (gels and creams can be applied topically before sex) to prevent sexually transmitted HIV infections should be given high priority. We review different categories of microbicide drugs and lead compounds, their mechanism of action, current status of development, and progress in phase III trials.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K U Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
46
|
Naarding MA, Baan E, Pollakis G, Paxton WA. Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology 2007; 4:6. [PMID: 17263871 PMCID: PMC1796897 DOI: 10.1186/1742-4690-4-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/30/2007] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine (CQ) has been shown to inhibit HIV-1 replication in vitro as well as in vivo and has been proposed to alter the glycosylation pattern of the gp120 envelope. These activities indicate that the compound can be used not only as an effective HIV-1 therapeutic agent but also as a modulator of the gp120 envelope protein structure enabling for the production of broader neutralizing Ab responses. Results We confirm here that HIV-1 replication on CD4+ T-lymphocytes can be reduced in the presence of CQ and show that the reduced replication is producer cell mediated, with viruses generated in the presence of CQ not being inhibited for subsequent infectivity and replication. By analysing the gp120 envelope protein sequences from viruses cultured long-term in the absence or presence of CQ we demonstrate variant evolution patterns. One noticeable change is the reduction in the number of potential N-linked glycosylation sites in the V3 region as well as within the 2G12 Ab binding and neutralization epitope. We also demonstrate that HIV-1 produced in the presence of CQ has a reduced capacity for transfer by Raji-DC-SIGN cells to CD4+ T-lymphocytes, indicating another means whereby virus transmission or replication may be reduced in vivo. Conclusion These results indicate that CQ should be considered as an HIV-1 therapeutic agent with its influence exerted through a number of mechanisms in vivo, including modulation of the gp120 structure.
Collapse
Affiliation(s)
- Marloes A Naarding
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Elly Baan
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - William A Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Nabatov AA, van Montfort T, Geijtenbeek TBH, Pollakis G, Paxton WA. Interaction of HIV-1 with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-expressing cells is influenced by gp120 envelope modifications associated with disease progression. FEBS J 2006; 273:4944-58. [PMID: 17010165 DOI: 10.1111/j.1742-4658.2006.05491.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dendritic cells can enhance the replication of HIV-1 in CD4(+) lymphocytes through the interaction of the gp120 envelope protein with such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. The variable loops of gp120 have previously been shown to modulate the interaction of HIV-1 with its principal receptor CD4 and its various coreceptors, namely CCR5 and CXCR4. Here, we utilized a panel of molecular cloned viruses to identify whether gp120 modifications can influence the virus interaction with immature dendritic cells or a cell line expressing dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (Raji-DC-SIGN). The viruses encompass the R5, R5X4 and X4 phenotypes, and are based upon V1V2 and V3 sequences from a patient with disease progression. We found that dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin enhancement of virus replication can be modulated by the V1V2 length, the overall V3 charge and N-linked glycosylation patterns; similar results were observed with immature dendritic cells. Viruses with higher V3 charges are more readily transferred to CD4(+) lymphocytes when the V1V2 region is longer and contains an additional N-linked glycosylation site, whereas transfer of viruses with lower V3 charges is greater when the V1V2 region is shorter. Viruses differing in the V1V2 and V3 regions also demonstrated differential capture by Raji-DC-SIGN cells in the presence of mannan. These results indicate that the interaction between HIV-1 and immature dendritic cells via such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin may have a role in selecting viruses undergoing transmission and evolution during disease progression.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
48
|
Barrientos LG, Matei E, Lasala F, Delgado R, Gronenborn AM. Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition. Protein Eng Des Sel 2006; 19:525-35. [PMID: 17012344 DOI: 10.1093/protein/gzl040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The HIV-inactivating protein Cyanovirin-N (CV-N) is a cyanobacterial lectin that exhibits potent antiviral activity at nanomolar concentrations by interacting with high-mannose carbohydrates on viral glycoproteins. To date there is no molecular explanation for this potent virucidal activity, given the experimentally measured micromolar affinities for small sugars and the problems encountered with aggregation and precipitation of high-mannose/CV-N complexes. Here, we present results for two CV-N variants, CV-N(mutDA) and CV-N(mutDB), compare their binding properties with monomeric [P51G]CV-N (a stabilized version of wtCV-N) and test their in vitro activities. The mutations in CV-N(mutDA) and CV-N(mutDB) comprise changes in amino acids that alter the trimannose specificity of domain A(M) and abolish the sugar binding site on domain B(M), respectively. We demonstrate that carbohydrate binding via domain B(M) is essential for antiviral activity, whereas alterations in sugar binding specificity on domain A(M) have little effect on envelope glycoprotein recognition and antiviral activity. Changes in A(M), however, affect the cross-linking activity of CV-N. Our findings augment and clarify the existing models of CV-N binding to N-linked glycans on viral glycoproteins, and demonstrate that the nanomolar antiviral potency of CV-N is related to the constricted and spatially crowded arrangement of the mannoses in the glycan clusters on viral glycoproteins and not due to CV-N induced virus particle agglutination, making CV-N a true viral entry inhibitor.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
49
|
Binley JM, Ngo-Abdalla S, Moore P, Bobardt M, Chatterji U, Gallay P, Burton DR, Wilson IA, Elder JH, de Parseval A. Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120. Retrovirology 2006; 3:39. [PMID: 16817962 PMCID: PMC1543650 DOI: 10.1186/1742-4690-3-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/03/2006] [Indexed: 11/23/2022] Open
Abstract
During natural HIV infection, an array of host receptors are thought to influence virus attachment and the kinetics of infection. In this study, to probe the interactions of HIV envelope (Env) with various receptors, we assessed the inhibitory properties of various anti-Env monoclonal antibodies (mAbs) in binding assays. To assist in detecting Env in attachment assays, we generated Fc fusions of full-length wild-type gp120 and several variable loop-deleted gp120s. Through investigation of the inhibition of Env binding to cell lines expressing CD4, CCR5, DC-SIGN, syndecans or combinations thereof, we found that the broadly neutralizing mAb, 2G12, directed to a unique carbohydrate epitope of gp120, inhibited Env-CCR5 binding, partially inhibited Env-DC-SIGN binding, but had no effect on Env-syndecan association. Furthermore, 2G12 inhibited Env attachment to primary monocyte-derived dendritic cells, that expressed CD4 and CCR5 primary HIV receptors, as well as DC-SIGN, and suggested that the dual activities of 2G12 could be valuable in vivo for inhibiting initial virus dissemination and propagation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- CCR5 Receptor Antagonists
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Line
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Dogs
- Enzyme-Linked Immunosorbent Assay/methods
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HeLa Cells
- Heparan Sulfate Proteoglycans/metabolism
- Humans
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Protein Binding
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Receptors, HIV/antagonists & inhibitors
- Receptors, HIV/immunology
- Receptors, HIV/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- James M Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego CA 92121, USA
| | - Stacie Ngo-Abdalla
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Penny Moore
- National Institute for Communicable Diseases, Sandringham, Johannesburg 2131, South Africa
| | - Michael Bobardt
- Department of Immunology, The Scripps Research Institute, 10666 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Udayan Chatterji
- Department of Immunology, The Scripps Research Institute, 10666 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Philippe Gallay
- Department of Immunology, The Scripps Research Institute, 10666 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Molecular Biology, The Scripps Research Institute, 10666 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10666 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - John H Elder
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Aymeric de Parseval
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd. La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Abstract
As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.
Collapse
|