1
|
Wang A, Chen Z, Zhou J, Chen Y, Liu Y, Liu H, Liang C, Zhu X, Zhang Y, Xin C, Wei J, Zhang B, Tang X, Lu M, Qi Y, Zhang G. Development and characterization of monoclonal antibodies against p37 protein of African swine fever virus. Int J Biol Macromol 2024; 264:130689. [PMID: 38458287 DOI: 10.1016/j.ijbiomac.2024.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
African Swine Fever Virus (ASFV) is a highly contagious pathogen posing a serious threat to the global swine industry. Despite this, there is currently no effective vaccine against this virus. Within ASFV's core shell structure, p37, a product of polyprotein pp220, shares sequence similarity with SUMO-1 proteases. Localization studies show p37 in various nuclear regions during early infection, shifting to the cytoplasm later on. Research indicates active export of p37 from the nucleus, mediated by CRM1-dependent and -independent pathways. Hydrophobic amino acids in p37 are crucial for these pathways, highlighting their importance throughout the ASFV replication cycle. Additionally, p37 serves as the first nucleocytoplasmic shuttle protein encoded by ASFV, participating in the intranuclear material transport process during ASFV infection of host cells. In this study, we successfully screened five murine monoclonal antibodies targeting p37. Through the truncated expression method, we identified four dominant antigenic epitopes of p37 for the first time. Furthermore, utilizing alanine scanning technology, we determined the key amino acid residues for each epitope. This research not only provides essential information for a deeper understanding of the protein's function but also establishes a significant theoretical foundation for the design and development of ASFV vaccines.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China.
| | - Zhuting Chen
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Cheng Xin
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Jiaojiao Wei
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Bingxue Zhang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Xueyuan Tang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Mengjun Lu
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100000, China; Longhu Laboratory of Advanced Immunology, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China; College of Veterinary Medicine, Henan Agricultural University, Henan, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Yang J, Zhu R, Zhang Y, Zhou X, Yue H, Li Q, Ke J, Wang Y, Miao F, Chen T, Zhang F, Zhang S, Qian A, Hu R. Deleting the C84L Gene from the Virulent African Swine Fever Virus SY18 Does Not Affect Its Replication in Porcine Primary Macrophages but Reduces Its Virulence in Swine. Pathogens 2024; 13:103. [PMID: 38392841 PMCID: PMC10891671 DOI: 10.3390/pathogens13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: African swine fever (ASF) is a highly contagious disease that causes high pig mortality. Due to the absence of vaccines, prevention and control are relatively challenging. The pathogenic African swine fever virus (ASFV) has a complex structure and encodes over 160 proteins, many of which still need to be studied and verified for their functions. In this study, we identified one of the unknown functional genes, C84L. (2) Methods: A gene deficient strain was obtained through homologous recombination and several rounds of purification, and its replication characteristics and virulence were studied through in vitro and in vivo experiments, respectively. (3) Results: Deleting this gene from the wild-type virulent strain SY18 did not affect its replication in porcine primary macrophages but reduced its virulence in pigs. In animal experiments, we injected pigs with a 102 TCID50, 105 TCID50 deletion virus, and a 102 TCID50 wild-type strain SY18 intramuscularly. The control group pigs reached the humane endpoint on the ninth day (0/5) and were euthanized. Two pigs in the 102 TCID50(2/5) deletion virus group survived on the twenty-first day, and one in the 105 TCID50(1/5) deletion virus group survived. On the twenty-first day, the surviving pigs were euthanized, which was the end of the experiment. The necropsies of the survival group and control groups' necropsies showed that the surviving pigs' liver, spleen, lungs, kidneys, and submaxillary lymph nodes did not show significant lesions associated with the ASFV. ASFV-specific antibodies were first detected on the seventh day after immunization; (4) Conclusions: This is the first study to complete the replication and virulence functional exploration of the C84L gene of SY18. In this study, C84L gene was preliminarily found not a necessary gene for replication, gene deletion strain SY18ΔC84L has similar growth characteristics to SY18 in porcine primary alveolar macrophages. The C84L gene affects the virulence of the SY18 strain.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Xintao Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Qixuan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Junnan Ke
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| |
Collapse
|
3
|
Luong HQ, Lai HTL, Truong LQ, Nguyen TN, Vu HD, Nguyen HT, Nguyen LT, Pham TH, McVey DS, Vu HLX. Comparative Analysis of Swine Antibody Responses following Vaccination with Live-Attenuated and Killed African Swine Fever Virus Vaccines. Vaccines (Basel) 2023; 11:1687. [PMID: 38006019 PMCID: PMC10674706 DOI: 10.3390/vaccines11111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection.
Collapse
Affiliation(s)
- Hung Q. Luong
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Huong T. L. Lai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lam Q. Truong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - The N. Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hanh D. Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Hoa T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lan T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Trang H. Pham
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - D. Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
4
|
Dolata KM, Pei G, Netherton CL, Karger A. Functional Landscape of African Swine Fever Virus-Host and Virus-Virus Protein Interactions. Viruses 2023; 15:1634. [PMID: 37631977 PMCID: PMC10459248 DOI: 10.3390/v15081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Viral replication fully relies on the host cell machinery, and physical interactions between viral and host proteins mediate key steps of the viral life cycle. Therefore, identifying virus-host protein-protein interactions (PPIs) provides insights into the molecular mechanisms governing virus infection and is crucial for designing novel antiviral strategies. In the case of the African swine fever virus (ASFV), a large DNA virus that causes a deadly panzootic disease in pigs, the limited understanding of host and viral targets hinders the development of effective vaccines and treatments. This review summarizes the current knowledge of virus-host and virus-virus PPIs by collecting and analyzing studies of individual viral proteins. We have compiled a dataset of experimentally determined host and virus protein targets, the molecular mechanisms involved, and the biological functions of the identified virus-host and virus-virus protein interactions during infection. Ultimately, this work provides a comprehensive and systematic overview of ASFV interactome, identifies knowledge gaps, and proposes future research directions.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Li H, Liu Q, Shao L, Xiang Y. Structural Insights into the Assembly of the African Swine Fever Virus Inner Capsid. J Virol 2023; 97:e0026823. [PMID: 37191520 PMCID: PMC10308890 DOI: 10.1128/jvi.00268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
African swine fever virus (ASFV), the cause of a highly contagious hemorrhagic and fatal disease of domestic pigs, has a complex multilayer structure. The inner capsid of ASFV located underneath the inner membrane enwraps the genome-containing nucleoid and is likely the assembly of proteolytic products from the virally encoded polyproteins pp220 and pp62. Here, we report the crystal structure of ASFV p150△NC, a major middle fragment of the pp220 proteolytic product p150. The structure of ASFV p150△NC contains mainly helices and has a triangular plate-like shape. The triangular plate is approximately 38 Å in thickness, and the edge of the triangular plate is approximately 90 Å long. The structure of ASFV p150△NC is not homologous to any of the known viral capsid proteins. Further analysis of the cryo-electron microscopy maps of the ASFV and the homologous faustovirus inner capsids revealed that p150 or the p150-like protein of faustovirus assembles to form screwed propeller-shaped hexametric and pentametric capsomeres of the icosahedral inner capsids. Complexes of the C terminus of p150 and other proteolytic products of pp220 likely mediate interactions between the capsomeres. Together, these findings provide new insights into the assembling of ASFV inner capsid and provide a reference for understanding the assembly of the inner capsids of nucleocytoplasmic large DNA viruses (NCLDV). IMPORTANCE African swine fever virus has caused catastrophic destruction to the pork industry worldwide since it was first discovered in Kenya in 1921. The architecture of ASFV is complicated, with two protein shells and two membrane envelopes. Currently, mechanisms involved in the assembly of the ASFV inner core shell are less understood. The structural studies of the ASFV inner capsid protein p150 performed in this research enable the building of a partial model of the icosahedral ASFV inner capsid, which provides a structural basis for understanding the structure and assembly of this complex virion. Furthermore, the structure of ASFV p150△NC represents a new type of fold for viral capsid assembly, which could be a common fold for the inner capsid assembly of nucleocytoplasmic large DNA viruses (NCLDV) and would facilitate the development of vaccine and antivirus drugs against these complex viruses.
Collapse
Affiliation(s)
- Haining Li
- Center for Infectious Disease Research, Beijing Frontier Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Liu
- Center for Infectious Disease Research, Beijing Frontier Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Luyuan Shao
- Center for Infectious Disease Research, Beijing Frontier Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ye Xiang
- Center for Infectious Disease Research, Beijing Frontier Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Tamás V, Righi C, Mészáros I, D'Errico F, Olasz F, Casciari C, Zádori Z, Magyar T, Petrini S, Feliziani F. Involvement of the MGF 110-11L Gene in the African Swine Fever Replication and Virulence. Vaccines (Basel) 2023; 11:vaccines11040846. [PMID: 37112759 PMCID: PMC10145817 DOI: 10.3390/vaccines11040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease that causes extensive economic and animal welfare losses in the Eurasian pig (Sus scrofa) population. To date, no effective and safe vaccines have been marketed against ASF. A starting point for vaccine development is using naturally occurring attenuated strains as a vaccine base. Here, we aimed to remove the multigene family (MGF) 110 gene of unknown function from the Lv17/WB/Rie1 genome to improve the usability of the virus as a live-attenuated vaccine, reducing unwanted side effects. The MGF 110-11L gene was deleted using the CRISPR/Cas9 method, and the safety and efficacy of the virus were tested in pigs after isolation. The vaccine candidates administered at high doses showed reduced pathogenicity compared to the parental strain and induced immunity in vaccinated animals, although several mild clinical signs were observed. Although Lv17/WB/Rie1/d110-11L cannot be used as a vaccine in its current form, it was encouraging that the undesirable side effects of Lv17/WB/Rie1 at high doses can be reduced by additional mutations without a significant reduction in its protective capacity.
Collapse
Affiliation(s)
- Vivien Tamás
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cecilia Righi
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - István Mészáros
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Federica D'Errico
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
7
|
Kuz CA, Ozsahin E, Nalcacioglu R, Demirbag Z. Transcriptional Analysis of the Gene Encoding the Putative Myristoylated Membrane Protein (ORF458R) of Invertebrate Iridescent Virus 6 (IIV6). Mol Biol 2023. [DOI: 10.1134/s0026893323030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Yang S, Miao C, Liu W, Zhang G, Shao J, Chang H. Structure and function of African swine fever virus proteins: Current understanding. Front Microbiol 2023; 14:1043129. [PMID: 36846791 PMCID: PMC9950752 DOI: 10.3389/fmicb.2023.1043129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
African swine fever virus (ASFV) is a highly infectious and lethal double-stranded DNA virus that is responsible for African swine fever (ASF). ASFV was first reported in Kenya in 1921. Subsequently, ASFV has spread to countries in Western Europe, Latin America, and Eastern Europe, as well as to China in 2018. ASFV epidemics have caused serious pig industry losses around the world. Since the 1960s, much effort has been devoted to the development of an effective ASF vaccine, including the production of inactivated vaccines, attenuated live vaccines, and subunit vaccines. Progress has been made, but unfortunately, no ASF vaccine has prevented epidemic spread of the virus in pig farms. The complex ASFV structure, comprising a variety of structural and non-structural proteins, has made the development of ASF vaccines difficult. Therefore, it is necessary to fully explore the structure and function of ASFV proteins in order to develop an effective ASF vaccine. In this review, we summarize what is known about the structure and function of ASFV proteins, including the most recently published findings.
Collapse
Affiliation(s)
| | | | - Wei Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guanglei Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | |
Collapse
|
9
|
African swine fever virus transmembrane protein pEP84R guides core assembly. PLoS Pathog 2023; 19:e1011136. [PMID: 36716344 PMCID: PMC9910796 DOI: 10.1371/journal.ppat.1011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/09/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.
Collapse
|
10
|
Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. African Swine Fever Virus Host-Pathogen Interactions. Subcell Biochem 2023; 106:283-331. [PMID: 38159232 DOI: 10.1007/978-3-031-40086-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.
Collapse
|
11
|
Development of an indirect ELISA against African swine fever virus using two recombinant antigens, partial p22 and p30. J Virol Methods 2022; 309:114611. [PMID: 36058340 DOI: 10.1016/j.jviromet.2022.114611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
African swine fever (ASF) is a highly fatal viral disease affecting pigs. It is caused by the ASF virus (ASFV), and causes serious economic losses to the swine industry worldwide, including in Korea. Commercially available enzyme-linked immunosorbent assay (ELISA) kits for detecting anti-ASFV antibodies are used for the diagnosis and surveillance of ASF. In this study, an ELISA was developed to detect anti-ASFV antibodies using two recombinant proteins, p22 and p30, from genotype II ASFV. Recombinant transmembrane domain-deleted p22 (p22∆TM) and p30 were expressed in E.coli vector system pET32a and mixed for use as antigens in indirect ELISA. The p22∆TM/p30-based indirect ELISA was validated using 31 sera from genotype I ASFV-infected pigs and 1133 sera from uninfected pigs. Area under the curve of this test was 0.999 [95 % concentration interval 0.992-1.000], and sensitivity and specificity were 93.5 % and 99.8 %, respectively. The between run coefficient of variation for internal quality control serum was 6.61 %. In the seroconversion analysis, the p22∆TM/p30-based indirect ELISA showed equal or better ability to detect antibodies in pigs experimentally challenged with ASFV p72 genotypes I and II (p < 0.05). In conclusion, the p22∆TM/p30-based indirect ELISA is a reliable diagnostic method for detecting anti-ASFV antibodies.
Collapse
|
12
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
13
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
14
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
15
|
Deletion of the H240R Gene of African Swine Fever Virus Decreases Infectious Progeny Virus Production due to Aberrant Virion Morphogenesis and Enhances the Inflammatory Cytokines Expression in Porcine Macrophages. J Virol 2021; 96:e0166721. [PMID: 34787458 PMCID: PMC8826909 DOI: 10.1128/jvi.01667-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.
Collapse
|
16
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Guo F, Shi Y, Yang M, Guo Y, Shen Z, Li M, Chen Y, Liang R, Yang Y, Chen H, Peng G. The structural basis of African swine fever virus core shell protein p15 binding to DNA. FASEB J 2021; 35:e21350. [PMID: 33629764 DOI: 10.1096/fj.202002145r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and highly contagious disease caused by African swine fever virus (ASFV). The mortality rate of acute infection up to 100% have posed an unprecedented challenge of the swine industry. Currently no commercial antiviral drug is available for the control and treatment of ASFV. The structural resolution of ASFV virions reveals the details of ASFV morphogenesis, providing a new perspective for the research and promotion of the development of ASFV vaccines. Although the architecture of ASFV have been solved via cryo-EM, the structural details of four of the five viral layers remain unclear (except the outer capsid). In this study, we resolved the crystal structure of the ASFV core shell protein p15. The secondary structural elements of a protomer include four α-helix structures and six antiparallel β-strands. Further analysis revealed that ASFV p15 forms disulfide-linked trimers between the Cys9 from one protomer and Cys30 from other protomer. Additionally, the nucleic acid-binding property was characterized by electrophoretic mobility shift assay. Two critical amino acid Lys10 and Lys39 have been identified which is essential to the nucleic acid-binding affinity of ASFV p15. Together, these findings may provide new insight into antiviral drug development.
Collapse
Affiliation(s)
- Fenglin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yilin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Xian Y, Xiao C. Current capsid assembly models of icosahedral nucleocytoviricota viruses. Adv Virus Res 2020; 108:275-313. [PMID: 33837719 PMCID: PMC8328511 DOI: 10.1016/bs.aivir.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nucleocytoviricota viruses (NCVs) belong to a newly established phylum originally grouped as Nucleocytoplasmic large DNA viruses. NCVs are unique because of their large and complicated genomes that contain cellular genes with homologs from all kingdoms of life, raising intensive debates on their evolutional origins. Many NCVs pack their genomes inside massive icosahedral capsids assembled from thousands of proteins. Studying the assembly mechanism of such capsids has been challenging until breakthroughs from structural studies. Subsequently, several models of the capsid assembly were proposed, which provided some interesting insights on this elaborate process. In this review, we discuss three of the most recent assembly models as well as supporting experimental observations. Furthermore, we propose a new model that combines research developments from multiple sources. Investigation of the assembly process of these vast NCV capsids will facilitate future deciphering of the molecular mechanisms driving the formation of similar supramolecular complexes.
Collapse
Affiliation(s)
- Yuejiao Xian
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, United States
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, United States.
| |
Collapse
|
19
|
Role of the DNA-Binding Protein pA104R in ASFV Genome Packaging and as a Novel Target for Vaccine and Drug Development. Vaccines (Basel) 2020; 8:vaccines8040585. [PMID: 33023005 PMCID: PMC7712801 DOI: 10.3390/vaccines8040585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
The recent incursions of African swine fever (ASF), a severe, highly contagious, transboundary viral disease that affects members of the Suidae family, in Europe and China have had a catastrophic impact on trade and pig production, with serious implications for global food security. Despite efforts made over past decades, there is no vaccine or treatment available for preventing and controlling the ASF virus (ASFV) infection, and there is an urgent need to develop novel strategies. Genome condensation and packaging are essential processes in the life cycle of viruses. The involvement of viral DNA-binding proteins in the regulation of virulence genes, transcription, DNA replication, and repair make them significant targets. pA104R is a highly conserved HU/IHF-like DNA-packaging protein identified in the ASFV nucleoid that appears to be profoundly involved in the spatial organization and packaging of the ASFV genome. Here, we briefly review the components of the ASFV packaging machinery, the structure, function, and phylogeny of pA104R, and its potential as a target for vaccine and drug development.
Collapse
|
20
|
African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration. mBio 2020; 11:mBio.00789-20. [PMID: 32788374 PMCID: PMC7439464 DOI: 10.1128/mbio.00789-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) causes a highly lethal swine disease that is currently present in many countries of Eastern Europe, the Russian Federation, and Southeast Asia, severely affecting the pig industry. Despite extensive research, effective vaccines or antiviral strategies are still lacking and relevant gaps in knowledge of the fundamental biology of the viral infection cycle exist. In this study, we identified pE199L, a protein of the inner viral membrane that is required for virus entry. More specifically, pE199L is necessary for the fusion event that leads to the penetration of the genome-containing core in the host cell. Our results significantly increase our knowledge of the process of internalization of African swine fever virus, which may instruct future research on antiviral strategies. African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) causing a lethal hemorrhagic disease that currently threatens the global pig industry. Despite its relevance in the infectious cycle, very little is known about the internalization of ASFV in the host cell. Here, we report the characterization of ASFV protein pE199L, a cysteine-rich structural polypeptide with similarity to proteins A16, G9, and J5 of the entry fusion complex (EFC) of poxviruses. Using biochemical and immunomicroscopic approaches, we found that, like the corresponding poxviral proteins, pE199L localizes to the inner viral envelope and behaves as an integral transmembrane polypeptide with cytosolic intramolecular disulfide bonds. Using an ASFV recombinant that inducibly expresses the E199L gene, we found that protein pE199L is not required for virus assembly and egress or for virus-cell binding and endocytosis but is required for membrane fusion and core penetration. Interestingly, similar results have been previously reported for ASFV protein pE248R, an inner membrane virion component related to the poxviral L1 and F9 EFC proteins. Taken together, these findings indicate that ASFV entry relies on a form of fusion machinery comprising proteins pE248R and pE199L that displays some similarities to the unconventional fusion apparatus of poxviruses. Also, these results provide novel targets for the development of strategies that block the first stages of ASFV replication.
Collapse
|
21
|
Kosciuk T, Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem Biol 2020; 15:1747-1758. [PMID: 32453941 DOI: 10.1021/acschembio.0c00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein myristoylation, the addition of a 14-carbon saturated acyl group, is an abundant modification implicated in biological events as diverse as development, immunity, oncogenesis, and infections. N-Myristoyltransferase (NMT) is the enzyme that catalyzes this modification. Many elegant studies have established the rules guiding the catalysis including substrate amino acid sequence requirements with the indispensable N-terminal glycine, and a co-translational mode of action. Recent advances in technology such as the development of fatty acid analogs, small molecule inhibitors, and new proteomic strategies, allowed a deeper insight into the NMT activity and function. Here we focus on discussing recent work demonstrating that NMT is also a lysine myristoyltransferase, the enzyme's regulation by a previously unnoticed solvent channel, and the mechanism of NMT regulation by protein-protein interactions. We also summarize recent findings on NMT's role in cancer, immunity, and infections and the advances in pharmacological targeting of myristoylation. Our analyses highlight opportunities for further understanding and discoveries.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An Emerging DNA Arbovirus. Front Vet Sci 2020; 7:215. [PMID: 32478103 PMCID: PMC7237725 DOI: 10.3389/fvets.2020.00215] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV infection. However, ASFV causes a devastating and economically significant disease of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no ASFV vaccine available, and current control measures consist of strict animal quarantine and culling procedures. The virus is highly stable and easily spreads by infected swine, contaminated pork products and fomites, or via transmission by the Ornithodoros vector. Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa, but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs. Establishment of endemic ASFV infections in wild boar populations further complicates the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe, Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently spread into the Russian Federation and Europe, where it has continued to circulate and spread. Most recently, ASFV emerged in China and has now spread to several neighboring countries in Southeast Asia. The high morbidity and mortality associated with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV virion and genome as well as its lifecycle, make this pathogen a serious threat to the global swine industry and national economies. Topics covered by this review include factors important for ASFV infection, replication, maintenance, and transmission, with attention to the role of the argasid tick vector and the sylvatic transmission cycle, current and future control strategies for ASF, and knowledge gaps regarding the virus itself, its vector and host species.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C. Wilson
- Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
23
|
Andrés G, Charro D, Matamoros T, Dillard RS, Abrescia NGA. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. J Biol Chem 2020; 295:1-12. [PMID: 31649031 PMCID: PMC6952596 DOI: 10.1074/jbc.ac119.011196] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Indexed: 11/06/2022] Open
Abstract
African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) that causes a devastating swine disease currently present in many countries of Africa, Europe, and Asia. Despite intense research efforts, relevant gaps in the architecture of the infectious virus particle remain. Here, we used single-particle cryo-EM to analyze the three-dimensional structure of the mature ASFV particle. Our results show that the ASFV virion, with a radial diameter of ∼2,080 Å, encloses a genome-containing nucleoid surrounded by two distinct icosahedral protein capsids and two lipoprotein membranes. The outer capsid forms a hexagonal lattice (triangulation number T = 277) composed of 8,280 copies of the double jelly-roll major capsid protein (MCP) p72, arranged in trimers displaying a pseudo-hexameric morphology, and of 60 copies of a penton protein at the vertices. The inner protein layer, organized as a T = 19 capsid, confines the core shell, and it is composed of the mature products derived from the ASFV polyproteins pp220 and pp62. Also, an icosahedral membrane lies between the two protein layers, whereas a pleomorphic envelope wraps the outer capsid. This high-level organization confers to ASFV a unique architecture among the NCLDVs that likely reflects the complexity of its infection process and may help explain current challenges in controlling it.
Collapse
Affiliation(s)
- German Andrés
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Diego Charro
- Molecular Recognition and Host-Pathogen Interactions Programme, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Tania Matamoros
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rebecca S Dillard
- NeCEN, Institute of Biology Leiden, Leiden University, 2333_CC Leiden, Netherlands
| | - Nicola G A Abrescia
- Molecular Recognition and Host-Pathogen Interactions Programme, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
24
|
A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol 2018; 92:JVI.01293-18. [PMID: 30185597 DOI: 10.1128/jvi.01293-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
Collapse
|
25
|
Cherif Louazani A, Baptiste E, Levasseur A, Colson P, La Scola B. Faustovirus E12 Transcriptome Analysis Reveals Complex Splicing in Capsid Gene. Front Microbiol 2018; 9:2534. [PMID: 30487777 PMCID: PMC6247863 DOI: 10.3389/fmicb.2018.02534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
Faustoviruses are the first giant viruses of amoebae isolated on Vermamoeba vermiformis. They are distantly related to African swine fever virus, the causative agent of lethal hemorrhagic fever in domestic pigs. Structural studies have shown the presence of a double protein layer encapsidating the double-stranded DNA genome of Faustovirus E12, the prototype strain. The major capsid protein (MCP) forming the external layer has been shown to be 645-amino acid-long. Unexpectedly, its encoding sequence has been found to be scattered along a 17 kbp-large genomic region. Using RNA-seq, we studied expression of Faustovirus E12 genes at nine time points over its entire replicative cycle. Paired-end 250 bp-long read sequencing on MiSeq instrument and double-round spliced alignment enabled the identification of 26 different splice-junctions. Reads corresponding to junctions represented 2% of mapped reads and mostly matched with the predicted MCP encoding sequences. Moreover, our study enabled describing a 1,939 bp-long transcript that corresponds to the MCP, delineating 13 exons. At least two types of introns coexist in the MCP gene: group I introns that can self-splice (n = 5) and spliceosome-like introns with non-canonical splice sites (n = 7). All splice-sites were non-canonical with five types of donor/acceptor splice-sites among which AA/TG was the most frequent association.
Collapse
Affiliation(s)
- Amina Cherif Louazani
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Institut de Recherche pour le Développement IRD 198, Aix-Marseille Université UM63, Marseille, France
| | - Emeline Baptiste
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Institut de Recherche pour le Développement IRD 198, Aix-Marseille Université UM63, Marseille, France
| | - Anthony Levasseur
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Institut de Recherche pour le Développement IRD 198, Aix-Marseille Université UM63, Marseille, France
| | - Philippe Colson
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Institut de Recherche pour le Développement IRD 198, Aix-Marseille Université UM63, Marseille, France
| | - Bernard La Scola
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Institut de Recherche pour le Développement IRD 198, Aix-Marseille Université UM63, Marseille, France
| |
Collapse
|
26
|
Jung MH, Nikapitiya C, Jung SJ. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus). Vaccine 2018; 36:802-810. [DOI: 10.1016/j.vaccine.2017.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
27
|
Jia K, Yuan Y, Liu W, Liu L, Qin Q, Yi M. Identification of Inhibitory Compounds Against Singapore Grouper Iridovirus Infection by Cell Viability-Based Screening Assay and Droplet Digital PCR. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:35-44. [PMID: 29209860 DOI: 10.1007/s10126-017-9785-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.
Collapse
Affiliation(s)
- Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lan Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Abstract
African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates.
Collapse
|
29
|
Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus. Vaccines (Basel) 2017; 5:vaccines5040042. [PMID: 29117102 PMCID: PMC5748609 DOI: 10.3390/vaccines5040042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol.
Collapse
|
30
|
BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J Virol 2017; 91:JVI.01058-17. [PMID: 28814514 PMCID: PMC5640839 DOI: 10.1128/jvi.01058-17] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/04/2022] Open
Abstract
African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo. Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro. Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating. IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.
Collapse
|
31
|
Portugal RS, Bauer A, Keil GM. Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression. Virology 2017; 508:70-80. [PMID: 28502836 DOI: 10.1016/j.virol.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
African swine fever virus threatens pig production worldwide due to the lack of vaccines, for which generation of both deletion and insertion mutants is considered. For development of the latter, operational ASFV promoters of different temporal regulation and strengths are desirable. We therefore compared the capacities of putative promoter sequences from p72, CD2v, p30, viral DNA polymerase and U104L genes to mediate expression of luciferase from transfected plasmids after activation in trans, or p30-, DNA polymerase- and U104L promoters in cis, using respective ASFV recombinants. We identified sequences with promoter activities upstream the viral ORFs, and showed that they differ in both their expression intensity regulating properties and in their temporal regulation. In summary, p30 and DNA polymerase promoters are recommended for high level early regulated transgene expression. For late expression, the p72, CD2v and U104L promoter are suitable. The latter however, only if low level transgene expression is aimed.
Collapse
Affiliation(s)
- Raquel S Portugal
- Institut für molekulare Virologie und Zellbiologie, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| | - Anja Bauer
- Institut für molekulare Virologie und Zellbiologie, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Guenther M Keil
- Institut für molekulare Virologie und Zellbiologie, Friedrich-Loeffler-Institut, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
32
|
Abstract
African swine fever virus (ASFV) is a large, multienveloped DNA virus composed of a genome-containing core successively wrapped by an inner lipid envelope, an icosahedral protein capsid, and an outer lipid envelope. In keeping with this structural complexity, recent studies have revealed an intricate entry program. This Gem highlights how ASFV uses two alternative pathways, macropinocytosis and clathrin-mediated endocytosis, to enter into the host macrophage and how the endocytosed particles undergo a stepwise, low pH-driven disassembly leading to inner envelope fusion and core delivery in the cytoplasm.
Collapse
Affiliation(s)
- Germán Andrés
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Robert J, Jancovich JK. Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates. Viruses 2016; 8:E187. [PMID: 27399758 PMCID: PMC4974522 DOI: 10.3390/v8070187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses (Iridoviridae) are large DNA viruses that are causing emerging infectious diseases at an alarming rate in both wild and captive cold blood vertebrate species all over the world. Although the general biology of these viruses that presents some similarities with poxvirus is characterized, many aspects of their replication cycles, host cell interactions and evolution still remain largely unclear, especially in vivo. Over several years, strategies to generate site-specific ranavirus recombinant, either expressing fluorescent reporter genes or deficient for particular viral genes, have been developed. We review here these strategies, the main ranavirus recombinants characterized and their usefulness for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA.
| |
Collapse
|
34
|
Suarez C, Andres G, Kolovou A, Hoppe S, Salas ML, Walther P, Krijnse Locker J. African swine fever virus assembles a single membrane derived from rupture of the endoplasmic reticulum. Cell Microbiol 2015; 17:1683-98. [PMID: 26096327 DOI: 10.1111/cmi.12468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Collective evidence argues that two members of the nucleocytoplasmic large DNA viruses (NCLDVs) acquire their membrane from open membrane intermediates, postulated to be derived from membrane rupture. We now study membrane acquisition of the NCLDV African swine fever virus. By electron tomography (ET), the virion assembles a single bilayer, derived from open membrane precursors that collect as ribbons in the cytoplasm. Biochemically, lumenal endoplasmic reticulum (ER) proteins are released into the cytosol, arguing that the open intermediates are ruptured ER membranes. ET shows that viral capsid assembles on the convex side of the open viral membrane to shape it into an icosahedron. The viral capsid is composed of tiny spikes with a diameter of ∼5 nm, connected to the membrane by a 6 nm wide structure displaying thin striations, as observed by several complementary electron microscopy imaging methods. Immature particles display an opening that closes after uptake of the viral genome and core proteins, followed by the formation of the mature virion. Together with our previous data, this study shows a common principle of NCLDVs to build a single internal envelope from open membrane intermediates. Our data now provide biochemical evidence that these open intermediates result from rupture of a cellular membrane, the ER.
Collapse
Affiliation(s)
- Cristina Suarez
- Electron Microscopy (EM) Core Facility and Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - German Andres
- Electron Microscopy (EM) Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Androniki Kolovou
- Electron Microscopy (EM) Core Facility and Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Hoppe
- Electron Microscopy (EM) Core Facility and Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria L Salas
- Virology Department, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul Walther
- Electron Microscopy (EM) Core Facility, University of Ulm, Ulm, Germany
| | - Jacomine Krijnse Locker
- Electron Microscopy (EM) Core Facility and Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Chen ZY, Chiou PP, Liou CJ, Lai YS. Monoclonal antibody against a putative myristoylated membrane protein encoded by grouper iridovirus 59L gene. DISEASES OF AQUATIC ORGANISMS 2015; 113:215-226. [PMID: 25850399 DOI: 10.3354/dao02834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Groupers (Epinephelus spp.) are economically important fish species worldwide, and ranaviruses are major viral pathogens causing heavy economic losses in grouper aquaculture. In this study, the 59L gene of grouper iridovirus (GIV-59L) was cloned and characterized. This gene is 1521 bp and encodes a protein of 506 amino acids with a predicted molecular mass of 53.9 kDa. Interestingly, GIV-59L and its homologs are found in all genera of the family Iridoviridae. A mouse monoclonal antibody specific for the C-terminal domain (amino acid positions 254-506) of the GIV-59L protein, GIV-59L(760-1518)-MAb-21, was produced and proved to be well suited for use in a number of GIV immunoassays. RT-PCR, Western blotting, and cycloheximide and cytosine arabinoside drug inhibition analyses indicated that GIV-59L is a viral late gene in GIV-infected grouper kidney cells. Immunofluorescence analysis revealed that GIV-59L protein mainly accumulates in the cytoplasm of infected cells and is finally packed into a whole virus particle. The GIV-59L(760-1518)-MAb-21 characterized in this study could have widespread application in GIV immunodiagnostics and other research on GIV. In addition, the results presented here offer important insights into the pathogenesis of GIV.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | | | | | | |
Collapse
|
36
|
Jesus DM, Moussatche N, McFadden BBD, Nielsen CP, D'Costa SM, Condit RC. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4. Virology 2015; 481:1-12. [PMID: 25765002 DOI: 10.1016/j.virol.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid.
Collapse
Affiliation(s)
- Desyree Murta Jesus
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Baron B D McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Casey Paulasue Nielsen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
|
38
|
Netherton CL, Wileman TE. African swine fever virus organelle rearrangements. Virus Res 2013; 173:76-86. [PMID: 23291273 DOI: 10.1016/j.virusres.2012.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
Like most viruses African swine fever virus (ASFV) subsumes the host cell apparatus in order to facilitate its replication. ASFV replication is a highly orchestrated process with a least four stages of transcription, immediate-early, early, intermediate and late. As the infective cycle progresses through these stages most if not all of the organelles that comprise a nucleated cell are modified, adapted or in some cases destroyed. The entry of the virus is receptor-mediated, but the precise mechanism of endocytosis is a matter of keen, current debate. Once ASFV has exited from the endosomal-lysosomal complex the virus life-cycle enters into an intimate relationship with the microtubular network. Genome replication is believed to be initiated within the nucleus and ASFV infection completely reorders the structure of this organelle. The majority of replication and assembly occurs in discrete, perinuclear regions of the cell called virus factories and finally progeny virions are transported to the plasma membrane along microtubules where they bud out or are propelled away along actin projections to infect new cells. The generation of ASFV replication sites induces profound reorganisation of the organelles that comprise the secretory pathway and may contribute to the induction of cellular stress responses that ASFV modulates. The level of organisation and complexity of virus factories are not dissimilar to those seen in cellular organelles. Like their cellular counterparts the formation of virus factories, as well as virus entry and exit, are dependent on the various components of the cytoskeleton. This review will summarise these rearrangements, the viral proteins involved and their functional consequences.
Collapse
Affiliation(s)
- Christopher L Netherton
- Vaccinology Group, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | |
Collapse
|
39
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Lei XY, Ou T, Zhang QY. Rana grylio virus (RGV) 50L is associated with viral matrix and exhibited two distribution patterns. PLoS One 2012; 7:e43033. [PMID: 22912781 PMCID: PMC3418244 DOI: 10.1371/journal.pone.0043033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The complete genome of Rana grylio virus (RGV) was sequenced and analyzed recently, which revealed that RGV 50 L had homologues in many iridoviruses with different identities; however, the characteristics and functions of 50 L have not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS We cloned and characterized RGV50L, and revealed 50 L functions in virus assembly and gene regulation. 50 L encoded a 499-amino acid structural protein of about 85 kDa in molecular weight and contained a nuclear localization signal (NLS) and a helix- extension-helix motif. Drug inhibition assay demonstrated that 50 L was an immediate-early (IE) gene. Immuno-fluorescence assay revealed that 50 L appeared early and persisted in RGV-infected cells following two distribution patterns. One pattern was that 50 L exhibited a cytoplasm-nucleus- viromatrix distribution pattern, and mutagenesis of the NLS motif revealed that localization of 50 L in the nucleus was NLS-dependent; the other was that 50 L co-localized with viral matrix which plays important roles in virus assembly and the life circle of viruses. CONCLUSIONS/SIGNIFICANCE RGV 50L is a novel iridovirus IE gene encoded structural protein which plays important roles in virus assembly.
Collapse
Affiliation(s)
- Xiao-Ying Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Tong Ou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
41
|
Whitley DS, Yu K, Sample RC, Sinning A, Henegar J, Norcross E, Chinchar VG. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro. Virology 2010; 405:448-56. [PMID: 20633916 DOI: 10.1016/j.virol.2010.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/26/2010] [Accepted: 06/17/2010] [Indexed: 11/18/2022]
Abstract
Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.
Collapse
Affiliation(s)
- Dexter S Whitley
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates. J Virol 2010; 84:7484-99. [PMID: 20504920 DOI: 10.1128/jvi.00600-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.
Collapse
|
43
|
African swine fever virus polyprotein pp62 is essential for viral core development. J Virol 2010; 84:176-87. [PMID: 19846532 DOI: 10.1128/jvi.01858-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.
Collapse
|
44
|
Sánchez‐Vizcaíno JM, Martínez‐López B, Martínez‐Avilés M, Martins C, Boinas F, Vialc L, Michaud V, Jori F, Etter E, Albina E, Roger F. Scientific review on African Swine Fever. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Carlos Martins
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Fernando Boinas
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Laurence Vialc
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Vincent Michaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Ferran Jori
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Eric Etter
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Emmanuel Albina
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - François Roger
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| |
Collapse
|
45
|
The African swine fever virus virion membrane protein pE248R is required for virus infectivity and an early postentry event. J Virol 2009; 83:12290-300. [PMID: 19793823 DOI: 10.1128/jvi.01333-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The African swine fever virus (ASFV) protein pE248R, encoded by the gene E248R, is a late structural component of the virus particle. The protein contains intramolecular disulfide bonds and has been previously identified as a substrate of the ASFV-encoded redox system. Its amino acid sequence contains a putative myristoylation site and a hydrophobic transmembrane region near its carboxy terminus. We show here that the protein pE248R is myristoylated during infection and associates with the membrane fraction in infected cells, behaving as an integral membrane protein. Furthermore, the protein localizes at the inner envelope of the virus particles in the cytoplasmic factories. The function of the protein pE248R in ASFV replication was investigated by using a recombinant virus that inducibly expresses the gene E248R. Under repressive conditions, the ASFV polyproteins pp220 and pp62 are normally processed and virus particles with morphology indistinguishable from that of those produced in a wild-type infection or under permissive conditions are generated. Moreover, the mutant virus particles can exit the cell as does the parental virus. However, the infectivity of the pE248R-deficient virions was reduced at least 100-fold. An investigation of the defect of the mutant virus indicated that neither virus binding nor internalization was affected by the absence of the protein pE248R, but a cytopathic effect was not induced and early and late gene expression was impaired, indicating that the protein is required for some early postentry event.
Collapse
|
46
|
Majji S, Thodima V, Sample R, Whitley D, Deng Y, Mao J, Chinchar VG. Transcriptome analysis of Frog virus 3, the type species of the genus Ranavirus, family Iridoviridae. Virology 2009; 391:293-303. [PMID: 19608212 DOI: 10.1016/j.virol.2009.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/19/2009] [Accepted: 06/06/2009] [Indexed: 01/04/2023]
Abstract
Frog virus 3 is the best characterized species within the genus Ranavirus, family Iridoviridae. FV3's large ( approximately 105 kbp) dsDNA genome encodes 98 putative open reading frames (ORFs) that are expressed in a coordinated fashion leading to the sequential appearance of immediate early (IE), delayed early (DE) and late (L) viral transcripts. As a step toward elucidating molecular events in FV3 replication, we sought to identify the temporal class of viral messages. To accomplish this objective an oligonucleotide microarray containing 70-mer probes corresponding to each of the 98 FV3 ORFs was designed and used to examine viral gene expression. Viral transcription was initially monitored during the course of a productive replication cycle at 2, 4 and 9 h after infection. To confirm results of the time course assay, viral gene expression was also monitored in the presence of cycloheximide (CHX), which limits expression to only IE genes, and following infection with a temperature-sensitive (ts) mutant which at non-permissive temperatures is defective in viral DNA synthesis and blocked in late gene expression. Subsequently, microarray analyses were validated by RT-PCR and qRT-PCR. Using these approaches we identified 33 IE genes, 22 DE genes and 36 L viral genes. The temporal class of the 7 remaining genes could not be determined. Comparison of protein function with temporal class indicated that, in general, genes encoding putative regulatory factors, or proteins that played a part in nucleic acid metabolism and immune evasion, were classified as IE and DE genes, whereas those involved in DNA packaging and virion assembly were considered L genes. Information on temporal class will provide the basis for determining whether members of the same temporal class contain common upstream regulatory regions and perhaps allow us to identify virion-associated and virus-induced proteins that control viral gene expression.
Collapse
Affiliation(s)
- S Majji
- Department of Microbiology, University of Mississippi Medical Ctr., 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Voehler MW, Eoff RL, McDonald WH, Guengerich FP, Stone MP. Modulation of the structure, catalytic activity, and fidelity of African swine fever virus DNA polymerase X by a reversible disulfide switch. J Biol Chem 2009; 284:18434-44. [PMID: 19419958 DOI: 10.1074/jbc.m109.012542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus polymerase X (pol X) is the smallest DNA polymerase known (174 amino acids), and its tertiary structure resembles the C-terminal half of prototypical X-family pol beta, which includes a catalytic dNTP-binding site (palm domain) and a finger domain. This structural similarity and the presence of viral genes coding for other base excision repair proteins suggest that pol X functions in a manner similar to pol beta, but inconsistencies concerning pol X catalysis have been reported. We examined the structural and functional properties of two forms of pol X using spectroscopic and kinetic analysis. Using (1)H-(15)N correlated NMR, we unambiguously demonstrated the slow interconversion of pol X between a reduced (pol X(red)) and an oxidized form (pol X(ox)), confirmed by mass spectrometry. Steady-state kinetic analysis revealed that pol X(ox), with a disulfide bond between Cys-81 and Cys-86, has approximately 10-fold lower fidelity than pol X(red) during dNTP insertion opposite a template G. The disulfide linkage is located between two beta-strands in the palm domain, near the putative dNTP-binding site. Structural alignment of pol X with a pol beta ternary structure suggests that the disulfide switch may modulate fidelity by altering the ability of the palm domain to align and stabilize the primer terminus and catalytic metal ion for deprotonation of the 3'-OH group and subsequent phosphoryl transfer. Thus, DNA polymerase fidelity is altered by the redox state of the enzyme and its related conformational changes.
Collapse
Affiliation(s)
- Markus W Voehler
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
48
|
Baena-López LA, Alonso J, Rodriguez J, Santarén JF. The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res 2008; 7:2780-8. [PMID: 18549261 DOI: 10.1021/pr800006x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The evolutionarily conserved hsp60 ( heat-shock protein 60) family of molecular chaperones ensures the correct folding of nuclear-encoded proteins after their translocation across the mitochondrial membrane during development as well as after heat-shock treatment. Although the overexpression of HSP60 proteins and their localization in the cytoplasm have been linked with many humans pathologies, the detailed pattern of their expression in different animal models and their subcellular localization during normal development and in stress conditions are little-known. In this report, we have used two-dimensional gel electrophoresis followed by MALDI-TOF to identify and purify heat shock protein HSP60A of Drosophila melanoagaster. We demonstrate that it is heat-shock inducible and describe two novel antisera, specifically designed to recognize the denatured and native polypeptide, respectively, in Drosophila. Immunoelectron microscopy and immunostaining of Drosophila cells with these antibodies reveals that HSP60A is always localized to the inner membrane of mitochondria. Expression of HSP60A is post-transcriptionally regulated in a highly dynamic pattern during embryogenesis, even under heat-shock conditions. In contrast, in very stressful situations, its expression is upregulated transcriptionally over the entire embryo. These findings suggest novel roles for HSP60 family proteins during normal Drosophila development.
Collapse
Affiliation(s)
- Luis Alberto Baena-López
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Nunes-Correia I, Rodríguez JM, Eulálio A, Carvalho AL, Citovsky V, Simões S, Faro C, Salas ML, Pedroso de Lima MC. African swine fever virus p10 protein exhibits nuclear import capacity and accumulates in the nucleus during viral infection. Vet Microbiol 2007; 130:47-59. [PMID: 18243588 DOI: 10.1016/j.vetmic.2007.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/07/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
African swine fever virus (ASFV), a large enveloped DNA-containing virus, infects domestic and wild pigs, and multiplies in soft ticks, causing an economically relevant hemorrhagic disease. Evaluation of the nuclear import ability of ASFV p10 protein was the major purpose of the present work. Two approaches were used to determine if p10 protein is imported into the nucleus by an active process: a yeast-based nuclear import assay and the determination of the subcellular localization of p10 protein in mammalian cells by fluorescence microscopy. The results obtained clearly demonstrate that p10 protein is actively imported into the nucleus, both in yeast and mammalian cells. Experiments aiming at identifying the critical residues responsible for the nuclear import of ASFV p10 protein indicate that the amino acids comprised between the positions 71 and 77 are important, although not sufficient, for the protein active nuclear import. In ASFV-infected cells, the p10 protein strongly accumulates in the nucleus at late times post-infection, indicating that p10 protein may accomplish an important function inside the nucleus during the late phase of the viral replication cycle.
Collapse
Affiliation(s)
- Isabel Nunes-Correia
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eulálio A, Nunes-Correia I, Salas J, Salas ML, Simões S, Pedroso de Lima MC. African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times. Virus Res 2007; 130:18-27. [PMID: 17580096 DOI: 10.1016/j.virusres.2007.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/30/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022]
Abstract
The replication of African swine fever virus DNA is initiated inside the nucleus of host cells, being followed by a longer cytoplasmic replication stage. In face of previous results demonstrating the nucleo-cytoplasmic shuttling activity of ASFV p37 structural protein when considered isolated from the virus infection, we performed a systematic analysis of the subcellular localization of p37 protein in ASFV-infected cells, aiming at identifying the role of the nuclear transport mediated by this protein in the viral replication cycle. We report that the p37 protein of the incoming virions is localized throughout the cell at early times post-infection, concentrated in distinct nuclear regions, while at later times the newly synthesized protein is detected exclusively in the cytoplasm of infected cells. Experiments using leptomycin B and siRNAs targeting the CRM1 receptor demonstrate that the subcellular localization of p37 protein is not affected by inhibition of the CRM1-mediated nuclear export pathway. Finally, results from in situ hybridization experiments show a co-localization of the ASFV DNA and p37 protein in specific nuclear regions at early times post-infection, and in viral factories at later times. Overall, these results support the involvement of p37 protein in the nuclear transport of the viral DNA during ASFV replication cycle.
Collapse
Affiliation(s)
- Ana Eulálio
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|