1
|
Cavinato M, Martic I, Wedel S, Pittl A, Koziel R, Weinmmüllner R, Schosserer M, Jenewein B, Bobbili MR, Arcalis E, Haybaeck J, Pierer G, Ploner C, Hermann M, Romani N, Schmuth M, Grillari J, Jansen‐Dürr P. Elimination of damaged mitochondria during UVB-induced senescence is orchestrated by NIX-dependent mitophagy. Aging Cell 2024; 23:e14186. [PMID: 38761001 PMCID: PMC11320349 DOI: 10.1111/acel.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024] Open
Abstract
Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Sophia Wedel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Annabella Pittl
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
- Present address:
Department of Internal Medicin V, Hematology & OncologyTirol Kliniken InnsbruckInnsbruckAustria
| | - Rafal Koziel
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Present address:
Biosens Labs Ltd.WarsawPoland
| | - Regina Weinmmüllner
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Markus Schosserer
- Institute of Medical Genetics, Center for Pathobiochemistry and GeneticsMedical University ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Brigitte Jenewein
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Elsa Arcalis
- Institut für Pflanzenbiotechnologie und ZellbiologieUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
- Department of PathologySaint Vincent Hospital ZamsZamsAustria
- Department of Pathology, Labor TeamGoldachSwitzerland
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Johannes Grillari
- Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVAViennaAustria
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging ResearchUniversity of InnsbruckInnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
2
|
Abstract
AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Collapse
|
3
|
Bristow CL, Winston R. Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice as a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans. Front Pharmacol 2021; 12:695971. [PMID: 34177602 PMCID: PMC8220083 DOI: 10.3389/fphar.2021.695971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The abundant blood protein α1-proteinase inhibitor (α1PI, Αlpha-1, α1-antitrypsin, SerpinA1) is known to bind to the active site of granule-associated human leukocyte elastase (HLE-G). Less well known is that binding of α1PI to cell surface HLE (HLE-CS) induces lymphocyte locomotion mediated by members of the low density lipoprotein receptor family (LDL-RFMs) thereby facilitating low density lipoprotein (LDL) clearance. LDL and α1PI were previously shown to be in negative feedback regulation during transport and clearance of lipoproteins. Further examination herein of the influence of α1PI in lipoprotein regulation using data from a small randomized, double-blind clinical trial shows that treatment of HIV-1-infected individuals with α1PI plasma products lowered apolipoprotein and lipoprotein levels including LDL. Although promising, plasma-purified α1PI is limited in quantity and not a feasible treatment for the vast number of people who need treatment for lowering LDL levels. We sought to develop orally available small molecules to act as surrogates for α1PI. Small molecule β-lactams are highly characterized for their binding to the active site of HLE-G including crystallographic studies at 1.84 Å. Using high throughput screening (HLE-G inhibition, HLE-CS-induced cellular locomotion), we show here that a panel of β-lactams, including the LDL-lowering drug ezetimibe, have the capacity to act as surrogates for α1PI by binding to HLE-G and HLE-CS. Because β-lactams are antibiotics that also have the capacity to promote evolution of antibiotic resistant bacteria, we modified the β-lactam Alphataxin to prevent antibiotic activity. We demonstrate using the diet-induced obesity (DIO) mouse model that Alphataxin, a penam, is as effective in lowering LDL levels as FDA-approved ezetimibe, a monobactam. Non-antibiotic β-lactams provide a promising new therapeutic class of small molecules for lowering LDL levels.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| | - Ronald Winston
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| |
Collapse
|
4
|
Identification of Host Trafficking Genes Required for HIV-1 Virological Synapse Formation in Dendritic Cells. J Virol 2020; 94:JVI.01597-19. [PMID: 32075937 PMCID: PMC7163131 DOI: 10.1128/jvi.01597-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo. Dendritic cells (DCs) are one of the earliest targets of HIV-1 infection acting as a “Trojan horse,” concealing the virus from the innate immune system and delivering it to T cells via virological synapses (VS). To explicate how the virus is trafficked through the cell to the VS and evades degradation, a high-throughput small interfering RNA screen targeting membrane trafficking proteins was performed in monocyte-derived DCs. We identified several proteins including BIN-1 and RAB7L1 that share common roles in transport from endosomal compartments. Depletion of target proteins resulted in an accumulation of virus in intracellular compartments and significantly reduced viral trans-infection via the VS. By targeting endocytic trafficking and retromer recycling to the plasma membrane, we were able to reduce the virus’s ability to accumulate at budding microdomains and the VS. Thus, we identify key genes involved in a pathway within DCs that is exploited by HIV-1 to traffic to the VS. IMPORTANCE The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo.
Collapse
|
5
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
6
|
Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5. J Virol 2017; 91:JVI.00134-17. [PMID: 28539445 DOI: 10.1128/jvi.00134-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/14/2017] [Indexed: 01/29/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states.IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody.
Collapse
|
7
|
Cavinato M, Koziel R, Romani N, Weinmüllner R, Jenewein B, Hermann M, Dubrac S, Ratzinger G, Grillari J, Schmuth M, Jansen-Dürr P. UVB-Induced Senescence of Human Dermal Fibroblasts Involves Impairment of Proteasome and Enhanced Autophagic Activity. J Gerontol A Biol Sci Med Sci 2017; 72:632-639. [PMID: 27516623 DOI: 10.1093/gerona/glw150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
In the current study, we have extended previous findings aiming at a better understanding of molecular mechanisms underlying UVB-induced senescence of diploid human dermal fibroblasts (HDFs), an experimental model to study the process of photoaging in the skin. We provide evidence that the inhibition of proteasomal degradation of damaged proteins and the activation of autophagosome formation are early events in UVB-induced senescence of HDFs, dependent on UVB-induced accumulation of reactive oxygen species. Our data suggest that autophagy is required for the establishment of the senescent phenotype in UVB-treated HDFs and that inhibition of autophagy is sufficient to change the cell fate from senescence to cell death by apoptosis. Studies in reconstructed skin equivalents revealed that UVB irradiation triggers hallmarks of autophagy induction in the dermal layer. These findings have potential implications for fundamental as well as translational research into skin aging, in particular photoaging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Rafal Koziel
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology and Venerology, Medical University of Innsbruck, Austria
| | - Regina Weinmüllner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Austria
| | - Brigitte Jenewein
- Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venerology, Medical University of Innsbruck, Austria
| | - Gudrun Ratzinger
- Department of Dermatology and Venerology, Medical University of Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Austria
| | - Matthias Schmuth
- Department of Dermatology and Venerology, Medical University of Innsbruck, Austria
| | | |
Collapse
|
8
|
Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. Am J Hum Genet 2016; 99:1005-1014. [PMID: 27745832 PMCID: PMC5097948 DOI: 10.1016/j.ajhg.2016.08.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.
Collapse
|
9
|
Aravantinou M, Frank I, Hallor M, Singer R, Tharinger H, Kenney J, Gettie A, Grasperge B, Blanchard J, Salazar A, Piatak M, Lifson JD, Robbiani M, Derby N. PolyICLC Exerts Pro- and Anti-HIV Effects on the DC-T Cell Milieu In Vitro and In Vivo. PLoS One 2016; 11:e0161730. [PMID: 27603520 PMCID: PMC5014349 DOI: 10.1371/journal.pone.0161730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antiviral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes will inform HIV prevention and treatment strategies. The long double-stranded RNA (dsRNA) viral mimic, polyinosinic polycytidylic acid (polyIC, PIC) potently stimulates DCs to focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses in vivo. Stabilized polyICLC (PICLC) is being developed for vaccine adjuvant applications in humans, making it critical to understand how mDC sensing of PICLC influences HIV infection. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC (vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended this work to in vivo macaque rectal transmission studies by administering PICLC with or before rectal SIVmac239 (SIVwt) or SIVmac239ΔNef (SIVΔNef) challenge. Like PIC, PICLC activated DCs and T cells, increased expression of α4β7 and CD169, and induced type I IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differentially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly, this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVΔNef-infected animals, SIVΔNef viremia was higher, in line with the importance of DC and T cell activation in SIVΔNef replication. In the right combination anti-HIV strategy, PICLC has the potential to limit HIV infection and boost HIV immunity.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Magnus Hallor
- Center for Biomedical Research, Population Council, New York, NY, United States of America
- Linköping University, Linköping, Sweden
| | - Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| |
Collapse
|
10
|
Lucas CGDO, Matassoli FL, Peçanha LMT, Santillo BT, Oliveira LMDS, Oshiro TM, Marques ETDA, Oxenius A, de Arruda LB. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV. FASEB J 2016; 30:2970-84. [PMID: 27199296 DOI: 10.1096/fj.201500059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 05/02/2016] [Indexed: 11/11/2022]
Abstract
The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.
Collapse
Affiliation(s)
- Carolina G D O Lucas
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio L Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia M T Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bruna Tereso Santillo
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Escola de Medicina, Universidade de São Paulo, São Paulo, Brazil; Institute of Microbiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Luanda Mara da Silva Oliveira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Escola de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Telma Miyuki Oshiro
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Escola de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ernesto T D A Marques
- Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA; and Department of Virology, Centro de Pesquisas Aggeu Magalhães (CPqAM), Fundação Oswaldo Cruz (Fiocruz)-Pernambuco, Recife, Brazil
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Luciana B de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;
| |
Collapse
|
11
|
Lymphatic Dissemination of Simian Immunodeficiency Virus after Penile Inoculation. J Virol 2016; 90:4093-4104. [PMID: 26865706 PMCID: PMC4810538 DOI: 10.1128/jvi.02947-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV) is primarily transmitted by heterosexual contact, and approximately equal numbers of men and women worldwide are infected with the virus. Understanding the biology of HIV acquisition and dissemination in men exposed to the virus by insertive penile intercourse is likely to help with the rational design of vaccines that can limit or prevent HIV transmission. To characterize the target cells and dissemination pathways involved in establishing systemic simian immunodeficiency virus (SIV) infection, we necropsied male rhesus macaques at 1, 3, 7, and 14 days after penile SIV inoculation and quantified the levels of unspliced SIV RNA and spliced SIV RNA in tissue lysates and the number of SIV RNA-positive cells in tissue sections. We found that penile (glans, foreskin, coronal sulcus) T cells and, to a lesser extent, macrophages and dendritic cells are primary targets of infection and that SIV rapidly reaches the regional lymph nodes. At 7 days after inoculation, SIV had disseminated to the blood, systemic lymph nodes, and mucosal lymphoid tissues. Further, at 7 days postinoculation (p.i.), spliced SIV RNA levels were the highest in the genital lymph nodes, indicating that this is the site where the infection is initially amplified. By 14 days p.i., spliced SIV RNA levels were high in all tissues, but they were the highest in the gastrointestinal tract, indicating that the primary site of virus replication had shifted from the genital lymph nodes to the gut. The stepwise pattern of virus replication and dissemination described here suggests that vaccine-elicited immune responses in the genital lymph nodes could help prevent infection after penile SIV challenge. IMPORTANCE To be the most effective, vaccines should produce antiviral immune responses in the anatomic sites of virus replication. Thus, understanding the path taken by HIV from the mucosal surfaces, which are the site of virus exposure, to the deeper tissues where the virus replicates will provide insight into where AIDS vaccines should produce immunity to be the most effective. In this study, we determined that, by day 7 after penile inoculation, SIV has moved first to the inguinal lymph nodes and replicates to high levels. Although the virus is widely disseminated to other tissues by day 7, replication is largely limited to the inguinal lymph nodes. The step-by-step movement of SIV from penile mucosal surfaces to the draining lymph nodes may allow an HIV vaccine that produces immunity in these lymph nodes to block HIV from establishing an infection in an exposed person.
Collapse
|
12
|
Chang MC, Chen YL, Chiang YC, Cheng YJ, Jen YW, Chen CA, Cheng WF, Sun WZ. Anti-CD40 antibody and toll-like receptor 3 ligand restore dendritic cell-mediated anti-tumor immunity suppressed by morphine. Am J Cancer Res 2016; 6:157-172. [PMID: 27186393 PMCID: PMC4859650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023] Open
Abstract
The influence of morphine on host immunity and the underlying mechanism are still unclear. In the current study, we investigated the influence of morphine on dendritic cells (DCs), its possible mechanism of action, and the molecules that could reverse these effects. Morphine suppressed DC maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cells. Morphine-treated DCs also secreted higher concentrations of IL-10, but lower IL-6 and TNF-α. Morphine-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The in vivo administration of immuno-modulators, anti-CD40 Ab and TLR3 ligand-poly(I:C), enhanced antigen-specific immunity, promoted the anti-tumor effects, and prolonged the survival of morphine-treated, tumor-bearing mice by promoting the maturation and function of BMM-derived DCs by enhancing ERK1/2 phosphorylation and p38 dephosphorylation. We concluded that morphine can inhibit DC-mediated anti-tumor immunity by suppressing DC maturation and function. Immuno-modulators, such as anti-CD40 Abs and TLR agonists, can restore the DC-mediated anti-tumor immunity. Use of immuno-modulators could serve as a useful approach to overcome the immunocompromised state generated by morphine.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Anesthesiology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Li Chen
- Department of Obstetrics and Gynecology, National Taiwan University HospitalHsinChu Branch, HsihChu, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ya-Jung Cheng
- Department of Anesthesiology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yu-Wei Jen
- Department of Obstetrics and Gynecology, Cathay General HospitalTaipei, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
13
|
van Montfort T, Thomas AAM, Krawczyk PM, Berkhout B, Sanders RW, Paxton WA. Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. THE JOURNAL OF IMMUNOLOGY 2015; 195:3759-68. [DOI: 10.4049/jimmunol.1402344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
14
|
Akiyama H, Ramirez NGP, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog 2015; 11:e1004751. [PMID: 25760631 PMCID: PMC4356592 DOI: 10.1371/journal.ppat.1004751] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/17/2015] [Indexed: 01/12/2023] Open
Abstract
Myeloid dendritic cells (DCs) can capture HIV-1 via the receptor CD169/Siglec-1 that binds to the ganglioside, GM3, in the virus particle membrane. In turn, HIV-1 particles captured by CD169, an I-type lectin, whose expression on DCs is enhanced upon maturation with LPS, are protected from degradation in CD169+ virus-containing compartments (VCCs) and disseminated to CD4+ T cells, a mechanism of DC-mediated HIV-1 trans-infection. In this study, we describe the mechanism of VCC formation and its role in immune evasion mechanisms of HIV-1. We find HIV-1-induced formation of VCCs is restricted to myeloid cells, and that the cytoplasmic tail of CD169 is dispensable for HIV-1 trafficking and retention within VCCs and subsequent trans-infection to CD4+ T cells. Interestingly, introduction of a di-aromatic endocytic motif in the cytoplasmic tail of CD169 that results in endocytosis of HIV-1 particles, suppressed CD169-mediated HIV-1 trans-infection. Furthermore, super-resolution microscopy revealed close association of CD169 and HIV-1 particles in surface-accessible but deep plasma membrane invaginations. Intriguingly, HIV-1 particles in deep VCCs were inefficiently accessed by anti-gp120 broadly neutralizing antibodies, VRC01 and NIH45-46 G54W, and thus were less susceptible to neutralization. Our study suggests that HIV-1 capture by CD169 can provide virus evasion from both innate (phagocytosis) and adaptive immune responses. Dendritic cells (DCs) are professional antigen presenting cells, and their sentinel roles are important to elicit a potent antiviral immunity. However, HIV-1 has exploited DCs to spread infection by several mechanisms. One such mechanism is the DC-mediated trans-infection pathway, whereby DCs transmit captured virus to CD4+ T cells. We have recently identified the type I interferon (IFN-I) inducible protein, CD169, as a receptor on DCs which mediates HIV-1 capture and trans-infection. We have also demonstrated extensive co-localization of HIV-1 with CD169 within peripheral non-lysosomal compartments in DCs, although the mechanism and biological importance of the compartment formation remain unclear. Here in this study, we report that a myeloid cell specific co-factor interacts with CD169 following virus capture leading to compartment formation. This co-factor is induced in DCs by an IFN-I-inducing TLR ligand LPS, but not by IFN-I itself. Though the CD169+ HIV-1 containing compartments are surface-accessible, these compartments have considerable depth and are connected to the surface, such that captured virus particles localized within these unique structures are protected from detection by anti-gp120 broadly neutralizing antibodies. Our study suggests that CD169–HIV-1 interaction provides an evasion mechanism from degradation by phagocytosis and neutralization by anti-viral humoral responses.
Collapse
Affiliation(s)
- Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nora-Guadalupe Pina Ramirez
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Manasa V. Gudheti
- Bruker Nano Surfaces, Salt Lake City, Utah, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kenney J, Derby N, Aravantinou M, Kleinbeck K, Frank I, Gettie A, Grasperge B, Blanchard J, Piatak M, Lifson JD, Zydowsky TM, Robbiani M. Short communication: a repeated simian human immunodeficiency virus reverse transcriptase/herpes simplex virus type 2 cochallenge macaque model for the evaluation of microbicides. AIDS Res Hum Retroviruses 2014; 30:1117-24. [PMID: 25354024 DOI: 10.1089/aid.2014.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | | | | |
Collapse
|
16
|
Hsu M, Keele BF, Aravantinou M, Krawczyk N, Seidor S, Abraham CJ, Zhang S, Rodriguez A, Kizima L, Derby N, Jean-Pierre N, Mizenina O, Gettie A, Grasperge B, Blanchard J, Piatak MJ, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. Exposure to MIV-150 from a high-dose intravaginal ring results in limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques. PLoS One 2014; 9:e89300. [PMID: 24586674 PMCID: PMC3937329 DOI: 10.1371/journal.pone.0089300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.
Collapse
Affiliation(s)
- Mayla Hsu
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Noa Krawczyk
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ciby J. Abraham
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ninochka Jean-Pierre
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Michael J. Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - José A. Fernández-Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
17
|
Hsu M, Aravantinou M, Menon R, Seidor S, Goldman D, Kenney J, Derby N, Gettie A, Blanchard J, Piatak M, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge. AIDS Res Hum Retroviruses 2014; 30:174-83. [PMID: 24117013 PMCID: PMC3910668 DOI: 10.1089/aid.2013.0165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.
Collapse
Affiliation(s)
- Mayla Hsu
- Center for Biomedical Research, Population Council, New York, New York
| | | | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, New York
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York
| | - Daniel Goldman
- Center for Biomedical Research, Population Council, New York, New York
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, New York
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York
| | - James Blanchard
- Tulane National Primate Research Center, Covington, Louisiana
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory, Frederick Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory, Frederick Maryland
| | | | | | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York
| |
Collapse
|
18
|
Mercier SK, Donaghy H, Botting RA, Turville SG, Harman AN, Nasr N, Ji H, Kusebauch U, Mendoza L, Shteynberg D, Sandgren K, Simpson RJ, Moritz RL, Cunningham AL. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes. PLoS Pathog 2013; 9:e1003700. [PMID: 24204260 PMCID: PMC3798598 DOI: 10.1371/journal.ppat.1003700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 08/26/2013] [Indexed: 01/05/2023] Open
Abstract
HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs) into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV) which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54) expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺) MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs) and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1 infected subjects.
Collapse
Affiliation(s)
- Sarah K. Mercier
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Heather Donaghy
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
- * E-mail: (HD); (ALC)
| | - Rachel A. Botting
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Stuart G. Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Andrew N. Harman
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Najla Nasr
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Hong Ji
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - David Shteynberg
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kerrie Sandgren
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Richard J. Simpson
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Anthony L. Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (HD); (ALC)
| |
Collapse
|
19
|
Zhao CC, Gao XQ, Xue J, Cong Z, Zhang WL, Chen T, Wu FX, Xiong J, Ju B, Su A, Wei Q, Qin C. Interleukin-21 up-regulates interleukin-21R expression and interferon gamma production by CD8+ cells in SHIV-infected macaques. Exp Biol Med (Maywood) 2013; 238:400-9. [PMID: 23760006 DOI: 10.1177/1535370213477978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Interleukin-21 (IL-21) is produced primarily by CD4+ T cells and regulates immunity against human/simian immunodeficiency virus (HIV/SIV) infection. Activated CD8+ cells and their secreted interferon-gamma (IFN-γ) are crucial for the control of acute HIV/SIV infection. However, whether IL-21 can regulate IFN-γ production by CD8+ cells remains controversial. Rhesus macaques (RMs, n = 8) were infected with SHIV and the levels of plasma IL-21, IFN-γ and the frequency of peripheral blood activated T cells were measured longitudinally. Following infection with SHIV, the levels of plasma IL-21 and IFN-γ increased, peaked at 17 days postinfection and declined later. Furthermore, IL-21 induced IL-21 receptor (IL-21R) and IFN-γ, perforin, but not granmyze B, expression in CD8+ cells from four selected SHIV-infected RMs. The regulatory effect of IL-21 on CD8+ cell function appeared to be associated with increased levels of STAT3, but not STAT5, phosphorylation in CD8+ cells from SHIV-infected RMs. In parallel, treatment with soluble IL-21R/Fc, an inhibitor of IL-21-induced activation of JAK1/3 and STAT3, abrogated IL-21-induced STAT3 activation and IFN-γ production in CD8+ cells from SHIV-infected RMs in vitro. Our data indicated that IL-21 was a positive regulator of IFN-γ-secreting CD8+ cells and increased the STAT3 phosphorylation, regulating T-cell immunity against acute SHIV infection in RMs. Our findings may provide a new basis for the development of immunotherapies for the control of SHIV/HIV infection.
Collapse
Affiliation(s)
- Chang-cheng Zhao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang Dist, Beijing 100021
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harman AN, Kim M, Nasr N, Sandgren KJ, Cameron PU. Tissue dendritic cells as portals for HIV entry. Rev Med Virol 2013; 23:319-33. [PMID: 23908074 DOI: 10.1002/rmv.1753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are found at the portals of pathogen entry such as the mucosal surfaces of the respiratory, gastrointestinal and genital tracts where they represent the first line of contact between the immune system and the foreign invaders. They are found throughout the body in multiple subsets where they express unique combinations of C-type lectin receptors to best aid them in detection of pathogens associated with their anatomical location. DCs are important in the establishment in HIV infection for two reasons. Firstly, they are one of the first cells to encounter the virus, and the specific interaction that occurs between these cells and HIV is critical to HIV establishing a foothold infection. Secondly and most importantly, HIV is able to efficiently transfer the virus to its primary target cell, the CD4(+) T lymphocyte, in which it replicates explosively. Infection of CD4(+) T lymphocytes via DCs is far more efficient than direct infection. This review surveys the various DCs subsets found within the human sexual mucosa and their interactions with HIV. Mechanisms of HIV uptake are discussed as well as how the virus then traffics through the DC and is transferred to T cells. Until recently, most research has focussed on vaginal transmission despite the increased transmission rate associated with anal intercourse. Here, we also discuss recent advances in our understanding of HIV transmission in the colon.
Collapse
|
21
|
Cunningham AL, Harman A, Kim M, Nasr N, Lai J. Immunobiology of dendritic cells and the influence of HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 762:1-44. [PMID: 22975870 DOI: 10.1007/978-1-4614-4433-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progress in phenotyping of human dendritic cells (DCs) has allowed a closer alignment of the classification and functions of murine and human dendritic cell subsets. Marked differences in the functions of these human DC subsets and their response to HIV infection have become apparent, relevant to HIV pathogenesis and vaccine and microbicide development. Systems biology approaches to studying HIV uptake and infection of dendritic cells has revealed how markedly HIV subverts their functions, especially in relation to the trafficking pathways and viral transfer to T cells. Furthermore the interactions between DCs and other innate immune cells, NK cells, NKT cells and gamma delta T cells are now known to influence DC and T cell function and are also disturbed by HIV infection in vitro and in vivo. Such cellular interactions are potential targets for vaccine adjuvants and immunotherapy.
Collapse
|
22
|
Puryear WB, Gummuluru S. Role of glycosphingolipids in dendritic cell-mediated HIV-1 trans-infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 762:131-53. [PMID: 22975874 PMCID: PMC3686569 DOI: 10.1007/978-1-4614-4433-6_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids (GSLs) are components of the cell membrane that comprise a membrane bound lipid, ceramide, coupled to an extracellular carbohydrate. GSLs impact numerous aspects of membrane biology, including membrane fluidity, curvature, and organization. The role of these molecules in both chronic inflammation and infectious disease and underlying pathogenic mechanisms are just starting to be recognized. As a component of the cell membrane, GSLs are also incorporated into lipid bilayers of diverse enveloped viruses as they bud out from the host cell and can go on to have a significant influence on viral pathogenesis. Dendritic cell (DC) subsets located in the peripheral mucosal tissues are proposed to be one of the earliest cell types that encounter transmitted viruses and help initiate adaptive immune responses against the invading pathogen by interacting with T cells. In turn, viruses, as obligatory intracellular parasites, rely on host cells for completing their replication cycle, and not surprisingly, HIV has evolved to exploit DC biology for the initial transmission event as well as for its dissemination and propagation within the infected host. In this review, we describe the mechanisms by which GSLs impact DC-mediated HIV trans-infection by either modulating virus infectivity, serving as a direct virus particle-associated host-derived ligand for specific interactions with DCs, or modulating the T cell membrane in such a way as to impact viral entry and thereby productive infection of CD4(+) T cells.
Collapse
Affiliation(s)
- Wendy Blay Puryear
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
23
|
Singer R, Mawson P, Derby N, Rodriguez A, Kizima L, Menon R, Goldman D, Kenney J, Aravantinou M, Seidor S, Gettie A, Blanchard J, Piatak M, Lifson JD, Fernández-Romero JA, Robbiani M, Zydowsky TM. An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques. Sci Transl Med 2012; 4:150ra123. [PMID: 22956201 PMCID: PMC4391747 DOI: 10.1126/scitranslmed.3003936] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150-containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.
Collapse
Affiliation(s)
- Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Paul Mawson
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Radhika Menon
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Daniel Goldman
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10065, USA
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| |
Collapse
|
24
|
Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 2012; 8:e1002762. [PMID: 22685410 PMCID: PMC3369929 DOI: 10.1371/journal.ppat.1002762] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks. Dendritic cells represent a unique cell type with respect to HIV, as they are the first point of contact for the virus in the genital mucosa and have the ability to spread virus efficiently in very low numbers to the primary HIV target, CD4 T cells. During the primary immune response, dendritic cells work in small numbers to make numerous and repetitive contacts, in order to filter and communicate with appropriate CD4 T cells. Thus HIV is hypothesized to be hijacking the same DC-CD4 T cell communication. Attempts to observe how HIV would achieve this have largely been limited, as introduction of imaging markers in the virus has often led to significant viral attenuation. Herein by using novel HIV constructs that permit imaging of HIV in infected dendritic cells, we observed newly forming HIV virions on the tips of long finger-like projections known as filopodia. In real-time imaging filopodia pivoted at their base and moved virions along trajectories that led to numerous CD4 T cell contacts. By manipulating filopodial formation we conclude the location of the virus on long filopodial tips allows the virus to corrupt the promiscuous dendritic cell to CD4 T cell contacts for efficient viral spread.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Tina L. Iemma
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Ivy Shih
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Timothy P. Newsome
- School of Molecular Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Samantha McAllery
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Stuart G. Turville
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
25
|
Rodriguez-Plata MT, Urrutia A, Cardinaud S, Buzón MJ, Izquierdo-Useros N, Prado JG, Puertas MC, Erkizia I, Coulon PG, Cedeño S, Clotet B, Moris A, Martinez-Picado J. HIV-1 capture and antigen presentation by dendritic cells: enhanced viral capture does not correlate with better T cell activation. THE JOURNAL OF IMMUNOLOGY 2012; 188:6036-45. [PMID: 22581857 DOI: 10.4049/jimmunol.1200267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.
Collapse
Affiliation(s)
- Maria T Rodriguez-Plata
- Institut de Recerca de la SIDA IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chu H, Wang JJ, Qi M, Yoon JJ, Wen X, Chen X, Ding L, Spearman P. The intracellular virus-containing compartments in primary human macrophages are largely inaccessible to antibodies and small molecules. PLoS One 2012; 7:e35297. [PMID: 22567100 PMCID: PMC3342280 DOI: 10.1371/journal.pone.0035297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/14/2012] [Indexed: 12/29/2022] Open
Abstract
HIV-1 assembly and release occurs at the plasma membrane of human T lymphocytes and model epithelial cell lines, whereas in macrophages intracellular sites of virus assembly or accumulation predominate. The origin of the intracellular virus-containing compartment (VCC) has been controversial. This compartment is enriched in markers of the multivesicular body, and has been described as a modified endosomal compartment. Several studies of this compartment have revealed the presence of small channels connecting to the plasma membrane, suggesting that instead of an endosomal origin the compartment is a modified plasma membrane compartment. If the compartment is accessible to the external environment, this would have important implications for antiviral immune responses and antiviral therapy. We performed a series of experiments designed to determine if the VCC in macrophages was open to the external environment and accessible to antibodies and small molecules. The majority of VCCs were found to be inaccessible to exogenously-applied antibodies to tetraspanins in the absence of membrane permeabilization, while tetraspanin staining was readily observed following membrane permeabilization. Cationized ferritin was utilized to stain the plasma membrane, and revealed that the majority of virus-containing compartments were inaccessible to ferritin. Low molecular weight dextrans could access only a very small percentage of VCCs, and these tended to be more peripheral compartments. We conclude that the VCCs in monocyte-derived human macrophages are heterogeneous, but the majority of VCCs are closed to the external environment.
Collapse
Affiliation(s)
- Hin Chu
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Jaang-Jiun Wang
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Mingli Qi
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Jeong-Joong Yoon
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Xiaoyun Wen
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Xuemin Chen
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Lingmei Ding
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabriàs G, Kräusslich HG, Martinez-Picado J. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 2012; 10:e1001315. [PMID: 22545022 PMCID: PMC3335875 DOI: 10.1371/journal.pbio.1001315] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022] Open
Abstract
HIV-1 is internalized into mature dendritic cells (mDCs) via an as yet undefined mechanism with subsequent transfer of stored, infectious virus to CD4+ T lymphocytes. Thus, HIV-1 subverts a DC antigen capture mechanism to promote viral spread. Here, we show that gangliosides in the HIV-1 membrane are the key molecules for mDC uptake. HIV-1 virus-like particles and liposomes mimicking the HIV-1 lipid composition were shown to use a common internalization pathway and the same trafficking route within mDCs. Hence, these results demonstrate that gangliosides can act as viral attachment factors, in addition to their well known function as cellular receptors for certain viruses. Furthermore, the sialyllactose molecule present in specific gangliosides was identified as the determinant moiety for mDC HIV-1 uptake. Thus, sialyllactose represents a novel molecular recognition pattern for mDC capture, and may be crucial both for antigen presentation leading to immunity against pathogens and for succumbing to subversion by HIV-1.
Collapse
Affiliation(s)
- Nuria Izquierdo-Useros
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | - Maier Lorizate
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | | | - Maria T. Rodriguez-Plata
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Gemma Fabriàs
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| |
Collapse
|
28
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 2012; 10:1569-83. [PMID: 22043956 DOI: 10.1586/erv.11.135] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus-like particles hold great promise for the development of effective and affordable vaccines. Indeed, virus-like particles are suitable for presentation and efficient delivery of linear as well as conformational antigens to antigen-presenting cells. This will ultimately result in optimal B-cell activation and cross-presentation with both MHC class I and II molecules to prime CD4(+) T-helper as well as CD8(+) cytotoxic T cells. This article provides an update on the development and use of virus-like particles as vaccine approaches for infectious diseases and cancer.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
29
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Cellular and viral mechanisms of HIV-1 transmission mediated by dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:109-30. [PMID: 22975873 DOI: 10.1007/978-1-4614-4433-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a key role in the initial infection and cell-to-cell transmission events that occur upon HIV-1 infection. DCs interact closely with CD4(+) T cells, the main target of HIV-1 replication. HIV-1 challenged DCs and target CD4(+) T cells form a virological synapse that allows highly efficient transmission of HIV-1 to the target CD4(+) T cells, in the absence of productive HIV-1 replication in the DCs. Immature and subsets of mature DCs show distinct patterns of HIV-1 replication and cell-to-cell transmission, depending upon the maturation stimulus that is used. The cellular and viral mechanisms that promote formation of the virological synapse have been the subject of intense study and the most recent progress is discussed here. Characterizing the cellular and viral factors that affect DC-mediated cell-to-cell transmission of HIV-1 to CD4(+) T cells is vitally important to understanding, and potentially blocking, the initial dissemination of HIV-1 in vivo.
Collapse
|
31
|
Penicillium marneffei-stimulated dendritic cells enhance HIV-1 trans-infection and promote viral infection by activating primary CD4+ T cells. PLoS One 2011; 6:e27609. [PMID: 22110688 PMCID: PMC3217999 DOI: 10.1371/journal.pone.0027609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022] Open
Abstract
Penicillium marneffei (P. marneffei) is considered an indicator pathogen of AIDS, and the endemicity and clinical features of P. marneffei have been described. While, how the co-infection of P. marneffei exacerbate deterioration of the immune response remains poorly understood. Here we isolated P. marneffei from the cutaneous lesions of AIDS patients and analyzed its effects on HIV-1-dendritic cells (DCs) interaction. We demonstrated that the monocyte-derived dendritic cells (MDDCs) could be activated by both thermally dimorphic forms of P. marneffei for significantly promoting HIV-1 trans-infection of CD4+ T cells, while these activated MDDCs were refractory to HIV-1 infection. Mechanistically, P. marneffei-activated MDDCs endocytosed large amounts of HIV-1 and sequestrated the internalized viruses into tetrapasnin CD81+ compartments potentially for proteolysis escaping. The activated MDDCs increased expression of intercellular adhesion molecule 1 and facilitated the formation of DC-T-cell conjunctions, where much more viruses were recruited. Moreover, we found that P. marneffei-stimulated MDDCs efficiently activated resting CD4+ T cells and induced more susceptible targets for viral infection. Our findings demonstrate that DC function and its interaction with HIV-1 have been modulated by opportunistic pathogens such as P. marneffei for viral dissemination and infection amplification, highlighting the importance of understanding DC-HIV-1 interaction for viral immunopathogenesis elucidation.
Collapse
|
32
|
Izquierdo-Useros N, Esteban O, Rodriguez-Plata MT, Erkizia I, Prado JG, Blanco J, García-Parajo MF, Martinez-Picado J. Dynamic Imaging of Cell-Free and Cell-Associated Viral Capture in Mature Dendritic Cells. Traffic 2011; 12:1702-13. [DOI: 10.1111/j.1600-0854.2011.01281.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Tjomsland V, Ellegård R, Che K, Hinkula J, Lifson JD, Larsson M. Complement opsonization of HIV-1 enhances the uptake by dendritic cells and involves the endocytic lectin and integrin receptor families. PLoS One 2011; 6:e23542. [PMID: 21853149 PMCID: PMC3154940 DOI: 10.1371/journal.pone.0023542] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023] Open
Abstract
Interaction with the complement system is an underappreciated aspect of HIV-1 infection; even in primary infection, complement fragments are found on virions with potential to affect the interplay between the virus and dendritic cells (DC). Since opsonization may affect the efficiency of uptake and the type of receptors utilized, we compared the interactions of DC with free HIV-1 (F-HIV) and complement opsonized HIV-1 (C-HIV). We demonstrate that C-HIV significantly enhanced the uptake by immature DC (IDC) and mature DC (MDC) and that the internalization rate was dependent on both opsonization of the virus and DC maturation state. Increased DC uptake of C-HIV was not due to opsonization related increased binding of virus to the surface of DC but rather increased internalization of C-HIV despite utilizing a similar repertoire of receptors as F-HIV. Both F-HIV and C-HIV interacted with C-type lectins, integrins, and CD4 and blocking these receptor families prevented HIV-1 from binding to DC at 4°C. Blocking integrins significantly reduced the binding and uptake of F-HIV and C-HIV implicating the involvement of several integrins such as β1-integrin, CR3, LFA-1, and α4β7. Distinctive for C-HIV was usage of β1-integrin and for F-HIV, usage of β7-integrin, whereas both F-HIV and C-HIV utilized both integrin chains of CR3. We have in this study identified the receptor types used by both F-HIV and C-HIV to bind to DC. Noteworthy, C-HIV was internalized more efficiently by DC than F-HIV, probably via receptor mediated endocytosis, which may entail different intracellular processing of the virus leading to both elevated infection and altered activation of HIV specific immune responses.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karlhans Che
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Martinelli E, Tharinger H, Frank I, Arthos J, Piatak M, Lifson JD, Blanchard J, Gettie A, Robbiani M. HSV-2 infection of dendritic cells amplifies a highly susceptible HIV-1 cell target. PLoS Pathog 2011; 7:e1002109. [PMID: 21738472 PMCID: PMC3128120 DOI: 10.1371/journal.ppat.1002109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/23/2011] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) increases the risk of HIV-1 infection and, although several reports describe the interaction between these two viruses, the exact mechanism for this increased susceptibility remains unclear. Dendritic cells (DCs) at the site of entry of HSV-2 and HIV-1 contribute to viral spread in the mucosa. Specialized DCs present in the gut-associated lymphoid tissues produce retinoic acid (RA), an important immunomodulator, able to influence HIV-1 replication and a key mediator of integrin α₄β₇ on lymphocytes. α₄β₇ can be engaged by HIV-1 on the cell-surface and CD4⁺ T cells expressing high levels of this integrin (α₄β₇ (high)) are particularly susceptible to HIV-1 infection. Herein we provide in-vivo data in macaques showing an increased percentage of α₄β₇ (high) CD4⁺ T cells in rectal mucosa, iliac lymph nodes and blood within 6 days of rectal exposure to live (n = 11), but not UV-treated (n = 8), HSV-2. We found that CD11c⁺ DCs are a major target of HSV-2 infection in in-vitro exposed PBMCs. We determined that immature monocyte-derived DCs (moDCs) express aldehyde dehydrogenase ALDH1A1, an enzyme essential for RA production, which increases upon HSV-2 infection. Moreover, HSV-2-infected moDCs significantly increase α₄β₇ expression on CD4⁺ T lymphocytes and HIV-1 infection in DC-T cell mixtures in a RA-dependent manner. Thus, we propose that HSV-2 modulates its microenviroment, influencing DC function, increasing RA production capability and amplifying a α₄β₇ (high)CD4⁺ T cells. These factors may play a role in increasing the susceptibility to HIV-1.
Collapse
Affiliation(s)
- Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, Unites States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, Unites States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
35
|
Attachment and fusion inhibitors potently prevent dendritic cell-driven HIV infection. J Acquir Immune Defic Syndr 2011; 56:204-12. [PMID: 21084994 DOI: 10.1097/qai.0b013e3181ff2aa5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dendritic cells (DCs) efficiently transfer captured (trans) or de novo-produced (cis) virus to CD4 T cells. Using monocyte-derived DCs, we evaluated entry inhibitors targeting HIV envelope (BMS-C, T-1249) or CCR5 (CMPD167) for their potency to prevent DC infection, DC-driven infection in T cells in trans and cis, and direct infection of DC-T-cell mixtures. Immature DC-T-cell cultures with distinct mechanisms of viral transfer yielded similar levels of infection and produced more proviral DNA compared with matched mature DC-T-cell cultures or infected immature DCs. Although all compounds completely blocked HIV replication, 16 times more of each inhibitor (250 vs 15.6 nM) was required to prevent low-level infection of DCs compared with the productive DC-T-cell cocultures. Across all cell systems tested, BMS-C blocked infection most potently. BMS-C was significantly more effective than CMPD167 at preventing DC infection. In fact, low doses of CMPD167 significantly enhanced DC infection. Elevated levels of CCL4 were observed when immature DCs were cultured with CMPD167. Viral entry inhibitors did not interfere with Candida albicans-specific DC cytokine/chemokine responses. These findings indicate that an envelope-binding small molecule is a promising tool for topical microbicide design to prevent the infection of early targets needed to establish and disseminate HIV infection.
Collapse
|
36
|
García F, Climent N, Assoumou L, Gil C, González N, Alcamí J, León A, Romeu J, Dalmau J, Martínez-Picado J, Lifson J, Autran B, Costagliola D, Clotet B, Gatell JM, Plana M, Gallart T. A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis 2011; 203:473-8. [PMID: 21233310 DOI: 10.1093/infdis/jiq077] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A double-blinded, controlled study of vaccination of untreated patients with chronic human immunodeficiency virus type 1 (HIV-1) infection with 3 doses of autologous monocyte-derived dendritic cells (MD-DCs) pulsed with heat inactivated autologous HIV-1 was performed. Therapeutic vaccinations were feasible, safe, and well tolerated. At week 24 after first vaccination (primary end point), a modest significant decrease in plasma viral load was observed in vaccine recipients, compared with control subjects (P = .03). In addition, the change in plasma viral load after vaccination tended to be inversely associated with the increase in HIV-specific T cell responses in vaccinated patients but tended to be directly correlated with HIV-specific T cell responses in control subjects.
Collapse
Affiliation(s)
- Felipe García
- Infectious Diseases Department, Hospital Clinic - HIV Development Program in Catalonia, Institut d'Investigacions Biomédiques August Pi I Sunyer, University of Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kenney J, Aravantinou M, Singer R, Hsu M, Rodriguez A, Kizima L, Abraham CJ, Menon R, Seidor S, Chudolij A, Gettie A, Blanchard J, Lifson JD, Piatak M, Fernández-Romero JA, Zydowsky TM, Robbiani M. An antiretroviral/zinc combination gel provides 24 hours of complete protection against vaginal SHIV infection in macaques. PLoS One 2011; 6:e15835. [PMID: 21246052 PMCID: PMC3016413 DOI: 10.1371/journal.pone.0015835] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Repeated use, coitus-independent microbicide gels that do not contain antiretroviral agents also used as first line HIV therapy are urgently needed to curb HIV spread. Current formulations require high doses (millimolar range) of antiretroviral drugs and typically only provide short-term protection in macaques. We used the macaque model to test the efficacy of a novel combination microbicide gel containing zinc acetate and micromolar doses of the novel non-nucleoside reverse transcriptase inhibitor MIV-150 for up to 24 h after repeated gel application. METHODS AND FINDINGS Rhesus macaques were vaginally challenged with SHIV-RT up to 24 h after repeated administration of microbicide versus placebo gels. Infection status was determined by measuring virologic and immunologic parameters. Combination microbicide gels containing 14 mM zinc acetate dihydrate and 50 µM MIV-150 afforded full protection (21 of 21 animals) for up to 24 h after 2 weeks of daily application. Partial protection was achieved with the MIV-150 gel (56% of control at 8 h after last application, 11% at 24 h), while the zinc acetate gel afforded more pronounced protection (67% at 8-24 h). Marked protection persisted when the zinc acetate or MIV-150/zinc acetate gels were applied every other day for 4 weeks prior to challenge 24 h after the last gel was administered (11 of 14 protected). More MIV-150 was associated with cervical tissue 8 h after daily dosing of MIV-150/zinc acetate versus MIV-150, while comparable MIV-150 levels were associated with vaginal tissues and at 24 h. CONCLUSIONS A combination MIV-150/zinc acetate gel and a zinc acetate gel provide significant protection against SHIV-RT infection for up to 24 h. This represents a novel advancement, identifying microbicides that do not contain anti-viral agents used to treat HIV infection and which can be used repeatedly and independently of coitus, and underscores the need for future clinical testing of their safety and ability to prevent HIV transmission in humans.
Collapse
Affiliation(s)
- Jessica Kenney
- Population Council, New York, New York, United States of America
| | | | - Rachel Singer
- Population Council, New York, New York, United States of America
| | - Mayla Hsu
- Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Ciby J. Abraham
- Population Council, New York, New York, United States of America
| | - Radhika Menon
- Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Population Council, New York, New York, United States of America
| | - Anne Chudolij
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| |
Collapse
|
38
|
Vagenas P, Aravantinou M, Williams VG, Jasny E, Piatak M, Lifson JD, Salazar AM, Blanchard JL, Gettie A, Robbiani M. A tonsillar PolyICLC/AT-2 SIV therapeutic vaccine maintains low viremia following antiretroviral therapy cessation. PLoS One 2010; 5:e12891. [PMID: 20877632 PMCID: PMC2943484 DOI: 10.1371/journal.pone.0012891] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/25/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HIV-infected individuals rely on antiretroviral therapy (ART) to control viral replication. Despite abundant demonstrable benefits, the multiple limitations of ART point to the potential advantages of therapeutic vaccination approaches that could provide sustained host control of viral replication after discontinuation of ART. We provide evidence from a non-human primate model that a therapeutic vaccine applied to the tonsils can maintain low viral loads after cessation of ART. METHODOLOGY/PRINCIPAL FINDINGS Animals received 40 weeks of ART initiated 9 weeks after rectal SIVmac239 infection. During ART, animals were vaccinated (or not) with AT-2 inactivated SIVmac239 using CpG-C ISS-ODN (C274) or polyICLC as adjuvants. PolyICLC/AT-2 SIV vaccinated animals maintained viral loads <3×10(3) copies/ml for up to 16 weeks post-ART, whereas the C274/AT-2 SIV vaccinated and non-vaccinated animals' viremia ranged between 1×10(4)-4×10(5) copies/ml (p<0.03). Neutralizing Ab activity in plasma was increased by polyICLC/AT-2 tonsillar vaccination under ART, compared to controls (p<0.03). Subsequent vaccination of all animals with polyICLC/AT-2 SIV in the absence of ART did not alter viral loads. Other immune parameters measured in blood and tissues were comparable between groups. CONCLUSIONS/SIGNIFICANCE These results provide support for the potential benefit of mucosally delivered vaccines in therapeutic immunization strategies for control of AIDS virus infection.
Collapse
Affiliation(s)
- Panagiotis Vagenas
- HIV/AIDS Program, Population Council, Center for Biomedical Research, New York, New York, United States of America
| | - Meropi Aravantinou
- HIV/AIDS Program, Population Council, Center for Biomedical Research, New York, New York, United States of America
| | - Vennansha G. Williams
- HIV/AIDS Program, Population Council, Center for Biomedical Research, New York, New York, United States of America
| | - Edith Jasny
- HIV/AIDS Program, Population Council, Center for Biomedical Research, New York, New York, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | | | - James L. Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Melissa Robbiani
- HIV/AIDS Program, Population Council, Center for Biomedical Research, New York, New York, United States of America
| |
Collapse
|
39
|
Abstract
Entry of enveloped viruses into host cells depends on the interactions of viral surface proteins with cell surface receptors. Many enveloped viruses maximize the efficiency of receptor engagement by first binding to attachment‐promoting factors, which concentrate virions on target cells and thus increase the likelihood of subsequent receptor engagement. Cellular lectins can recognize glycans on viral surface proteins and mediate viral uptake into immune cells for subsequent antigen presentation. Paradoxically, many viral and non‐viral pathogens target lectins to attach to immune cells and to subvert cellular functions to promote their spread. Thus, it has been proposed that attachment of HIV to the dendritic cell lectin DC‐SIGN enables the virus to hijack cellular transport processes to ensure its transmission to adjacent T cells. However, recent studies show that the consequences of viral capture by immune cell lectins can be diverse, and can entail negative and positive regulation of viral spread. Here, we will describe key concepts proposed for the role of lectins in HIV attachment to host cells, and we will discuss recent findings in this rapidly evolving area of research.
Collapse
|
40
|
Cunningham AL, Abendroth A, Jones C, Nasr N, Turville S. Viruses and Langerhans cells. Immunol Cell Biol 2010; 88:416-23. [PMID: 20445632 DOI: 10.1038/icb.2010.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Langerhans cells (LCs) are the resident dendritic cells (DCs) of epidermis in human mucosal stratified squamous epithelium and the skin. A phenotypically similar DC has recently been discovered as a minor population in the murine dermis. In epidermis, LCs function as sentinel antigen-presenting cells that can capture invading viruses such as herpes simplex virus (HSV), varicella-zoster virus (VZV) and human immunodeficiency virus (HIV). This interaction between LCs and viruses results in highly variable responses, depending on the virus as discussed in this review. For example, HSV induces apoptosis in LCs but HIV does not. LCs seem to be the first in a complex chain of antigen presentation to T cells in lymph nodes for HSV and possibly VZV, or they transport virus to T cells, as described for HIV and maybe VZV. Together with epidermal keratinocytes they may also have a role in the initial innate immune response at the site of infection in the epidermis, although this is not fully known. The full spectrum of biological responses of LCs even to these viruses has yet to be understood and will require complementary studies in human LCs in vitro and in murine models in vivo.
Collapse
Affiliation(s)
- Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
41
|
Drutman SB, Trombetta ES. Dendritic cells continue to capture and present antigens after maturation in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 185:2140-6. [PMID: 20644175 DOI: 10.4049/jimmunol.1000642] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC) maturation is critical for the regulation of T cell responses. The downregulation of endocytosis on maturation is considered a key adaptation that dissociates prior Ag capture by DCs from subsequent T cell engagement. To study the dynamics of Ag capture and presentation in situ, we studied the capacity for Ag uptake by DCs matured in their natural tissue environment. We found that after maturation in vivo, mouse DCs retained a robust capacity to capture soluble Ags. Furthermore, Ags internalized by mature DCs were efficiently presented on MHC class II and cross-presented on MHC class I. These results suggest that under inflammatory conditions, mature DCs may contribute to T cell stimulation without exclusively relying on prior exposure to Ags as immature DC precursors.
Collapse
Affiliation(s)
- Scott B Drutman
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
42
|
Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 2010; 6:e1000740. [PMID: 20360840 PMCID: PMC2845607 DOI: 10.1371/journal.ppat.1000740] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gómez
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Francesc E. Borràs
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa Foundation, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
43
|
Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci U S A 2010; 107:4287-92. [PMID: 20142498 DOI: 10.1073/pnas.0910609107] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to inflammatory stimuli, dendritic cells (DCs) trigger the process of maturation, a terminal differentiation program required to initiate T-lymphocyte responses. A hallmark of maturation is down-regulation of endocytosis, which is widely assumed to restrict the ability of mature DCs to capture and present antigens encountered after the initial stimulus. We found that mature DCs continue to accumulate antigens, especially by receptor-mediated endocytosis and phagocytosis. Internalized antigens are transported normally to late endosomes and lysosomes, loaded onto MHC class II molecules (MHCII), and then presented efficiently to T cells. This occurs despite the fact that maturation results in the general depletion of MHCII from late endocytic compartments, with MHCII enrichment being typically thought to be a required feature of antigen processing and peptide loading compartments. Internalized antigens can also be cross-presented on MHC class I molecules, without any reduction in efficiency relative to immature DCs. Thus, although mature DCs markedly down-regulate their capacity for macropinocytosis, they continue to capture, process, and present antigens internalized via endocytic receptors, suggesting that they may continuously initiate responses to newly encountered antigens during the course of an infection.
Collapse
|
44
|
Tonsillar application of AT-2 SIV affords partial protection against rectal challenge with SIVmac239. J Acquir Immune Defic Syndr 2009; 52:433-42. [PMID: 19779309 DOI: 10.1097/qai.0b013e3181b880f3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although mucosal responses are important for preventing infections with HIV, the optimal strategies for inducing them remain unclear. To evaluate vaccine strategies targeting the oral mucosal lymphoid tissue inductive sites as an approach to provide immunity at distal sites, we vaccinated healthy macaques via the palatine/lingual tonsils with aldrithiol 2 (AT-2) inactivated Simian immunodeficiency virus (SIV)mac239, combined with CpG-C immunostimulatory oligonucleotide (CpG-C ISS-ODN, C274) as the adjuvant. METHODS Macaques received 5 doses of C274 or control ODN C661 and AT-2 SIV on the tonsillar tissues every 6 weeks before being challenged rectally with SIVmac239, 8 weeks after the last immunization. RESULTS Although no T-cell or B-cell responses were detected in the blood before challenge, antibody (Ab) responses were detected in the rectum. Immunization with AT-2 SIV significantly reduced the frequency of infection compared with nonimmunized controls, irrespective of adjuvant. In the vaccinated animals that became infected, peak viremias were somewhat reduced. SIV-specific responses were detected in the blood once animals became infected with no detectable differences between the differently immunized groups and the controls. CONCLUSION This work provides evidence that vaccine immunogens applied to the oral mucosal associated lymphoid tissues can provide benefit against rectal challenge, a finding with important implications for mucosal vaccination strategies.
Collapse
|
45
|
Gonzalez MJ, Plummer EM, Rae CS, Manchester M. Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One 2009; 4:e7981. [PMID: 19956734 PMCID: PMC2776531 DOI: 10.1371/journal.pone.0007981] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch.
Collapse
Affiliation(s)
- Maria J. Gonzalez
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Emily M. Plummer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chris S. Rae
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marianne Manchester
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
TSLP production by epithelial cells exposed to immunodeficiency virus triggers DC-mediated mucosal infection of CD4+ T cells. Proc Natl Acad Sci U S A 2009; 106:16776-81. [PMID: 19805372 DOI: 10.1073/pnas.0907347106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mucosal dendritic cells have been implicated in the capture, storage, and transmission of HIV to CD4(+) T cells as well as in the promotion of HIV replication in activated CD4(+) T cells during the cognate T-cell and DC interaction. We report that HIV induces human genital mucosal epithelial cells to produce thymic stromal lymphopoietin (TSLP) via activation of the NFkappaB signaling pathway. The TSLP secreted by HIV exposed epithelial cells activated DC, which promoted proliferation and HIV-1 replication of co-cultured autologous CD4(+) T cells. In rhesus macaques, we observed dramatic increases in TSLP expression concurrent with an increase in viral replication in the vaginal tissues within the first 2 weeks after vaginal SIV exposure. These data suggest that HIV-mediated TSLP production by mucosal epithelial cells is a critical trigger for DC-mediated amplification of HIV-infection in activated CD4(+) T cells. The cross talk between mucosal epithelial cells and DC, mediated by HIV-induced TSLP, may be an important mechanism for the high rate of HIV infection in women through the vaginal mucosa.
Collapse
|
47
|
Janas AM, Wu L. HIV-1 interactions with cells: from viral binding to cell-cell transmission. CURRENT PROTOCOLS IN CELL BIOLOGY 2009; Chapter 26:Unit 26.5. [PMID: 19499507 DOI: 10.1002/0471143030.cb2605s43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Characterization of HIV-1 interactions with host cells is critical for cell biology studies of HIV-1. This unit describes a set of methods and protocols to perform quantitative assays of HIV-1 binding, internalization, infection, and cell-cell transmission. The protocols include: (1) generating infectious single-cycle or replication-competent HIV-1 stocks, (2) an HIV-1 binding and internalization assay, (3) HIV-1 infection of target cells and quantification of viral infection, and (4) HIV-1 cell-cell transmission assays. These functional assays provide useful tools to quantitatively study HIV-1 infection and viral transmission.
Collapse
Affiliation(s)
- Alicia M Janas
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
48
|
Abstract
Although most viral infections cause minor, if any, symptoms, a certain number result in serious illness. Viral disease symptoms result both from direct viral replication within host cells and from indirect immunopathological consequences. Dendritic cells (DCs) are key determinants of viral disease outcome; they activate immune responses during viral infection and direct T cells toward distinct T helper type responses. Certain viruses are able to skew cytokine secretion by DCs inducing and/or downregulating the immune system with the aim of facilitating and prolonging release of progeny. Thus, the interaction of DCs with viruses most often results in the absence of disease or complete recovery when natural functions of DCs prevail, but may lead to chronic illness or death when these functions are outmanoeuvred by viruses in the exploitation of DCs.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
49
|
Maddocks S, Scandurra GM, Nourse C, Bye C, Williams RB, Slobedman B, Cunningham AL, Britton WJ. Gene expression in HIV-1/Mycobacterium tuberculosis co-infected macrophages is dominated by M. tuberculosis. Tuberculosis (Edinb) 2009; 89:285-93. [PMID: 19520608 DOI: 10.1016/j.tube.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 04/06/2009] [Accepted: 05/05/2009] [Indexed: 11/28/2022]
Abstract
The resurgence of tuberculosis worldwide has closely mirrored the HIV pandemic. In regions like sub-Saharan Africa, a large proportion of individuals are co-infected with Mycobacterium tuberculosis and HIV. Macrophages are the reservoir host cells for both pathogens, however the interactions between both pathogens in co-infected cells remain poorly understood. Thus, the global gene responses of primary human macrophages following productive co-infection with highly purified HIV and M. tuberculosis were analyzed using cDNA microarrays. A broad range of genes was up-regulated in response to co-infection or M. tuberculosis infection of primary macrophages, including those encoding pro-inflammatory chemokines and cytokines, their receptors, signalling associated genes, type I IFN signalling genes and genes of the tryptophan degradation pathway. Real-time RT-PCR analysis confirmed up-regulation of a wide variety of genes including indoleamine 2,3 dioxygenase and Sp110 in M. tuberculosis and co-infected samples. Downstream analysis confirmed significant elevation of the chemokines CCL3, CCL4 and CCL8 in M. tuberculosis and co-infected culture supernatants. In contrast, the changes seen in gene expression following HIV infection alone were fewer in number and significantly less in magnitude. Thus, the effects of M. tuberculosis infection on global gene expression dominated the effects of HIV-1 in co-infected primary human macrophages.
Collapse
Affiliation(s)
- Susan Maddocks
- HIV Molecular Pathogenesis Group, Centre for Virus Research, Westmead Millennium Institute, University of Sydney, Westmead NSW 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Siggins RW, Bagby GJ, Molina P, Dufour J, Nelson S, Zhang P. Alcohol exposure impairs myeloid dendritic cell function in rhesus macaques. Alcohol Clin Exp Res 2009; 33:1524-31. [PMID: 19485975 DOI: 10.1111/j.1530-0277.2009.00980.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alcohol intoxication suppresses both the innate and adaptive immunities. Dendritic cells (DCs) are the major cell type bridging the innate and acquired immune responses. At the present time, the effects of alcohol on DC development in hematopoietic tissues and the functional activities of DCs are incompletely elucidated. This study investigated the impact of chronic alcohol exposure on the alteration of hematopoietic precursor cell and DC populations in the bone marrow and peripheral blood of rhesus macaques. METHODS Rhesus macaques were administered alcohol or isocaloric sucrose daily for a period of 3 months through surgically implanted gastric catheters. Peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were isolated for flow cytometric analysis after 3 months. Monocytes were cultured with human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml) in the absence and presence of alcohol (50 mM). On day 6 of the culture, a cocktail of stimulants including IL-1beta (18 ng), IL-6 (1800 U), TNF-alpha (18 ng), and PGE(2) (1.8 microg) were added to the designated wells for transformation of immature dendritic cells (iDCs) to mature myeloid DCs. The cells were analyzed on day 8 by flow cytometry for expression of DC costimulatory molecule expression. RESULTS EtOH-treated animals had significantly lower numbers of myeloid DCs (lineage-HLA-DR+CD11c+CD123-) in both the PBMCs and BMCs compared to controls (5,654 +/- 1,273/10(6) vs. 2,353 +/- 660/10(6) PBMCs and 503 +/- 34 vs. 195 +/- 44/10(6) BMCs). Under culture conditions, the number of lineage-HLA-DR+CD83+ cells was low in control wells (0.38 +/- 0.08%). Alcohol inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in iDC wells (2.30 +/- 0.79% vs. 5.73 +/- 1.40%). Alcohol also inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in mature DC wells (1.23 +/- 0.15% vs. 4.13 +/- 0.62%). CONCLUSIONS Chronic EtOH decreases the bone marrow and circulating pools of myeloid DCs. Additionally, EtOH suppresses costimulatory molecule CD83 expression during DC transformation, which may attenuate the ability of DCs to initiate T-cell expansion.
Collapse
Affiliation(s)
- Robert W Siggins
- Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112-1393, USA
| | | | | | | | | | | |
Collapse
|