1
|
Ijezie EC, Miller MJ, Hardy C, Jarvis AR, Czajka TF, D'Brant L, Rugenstein N, Waickman A, Murphy E, Butler DC. HSV-1 Infection Alters MAPT Splicing and Promotes Tau Pathology in Neural Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618683. [PMID: 39464083 PMCID: PMC11507845 DOI: 10.1101/2024.10.16.618683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Herpes simplex virus 1 (HSV-1) infection alters critical markers of Alzheimer's Disease (AD) in neurons. One key marker of AD is the hyperphosphorylation of Tau, accompanied by altered levels of Tau isoforms. However, an imbalance in these Tau splice variants, specifically resulting from altered 3R to 4R MAPT splicing of exon 10, has yet to be directly associated with HSV-1 infection. METHODS To this end, we infected 2D and 3D human neural models with HSV-1 and monitored MAPT splicing and Tau phosphorylation. Further, we transduced SH-SY5Y-neurons with HSV-1 ICP27 which alters RNA splicing to analyze if ICP27 alone is sufficient to induce altered MAPT exon 10 splicing. RESULTS We show that HSV-1 infection induces altered splicing of MAPT exon 10, increasing 4R-Tau protein levels, Tau hyperphosphorylation, and Tau oligomerization. DISCUSSION Our experiments reveal a novel link between HSV-1 infection and the development of cytopathic phenotypes linked with AD progression. HIGHLIGHTS HSV-1 infection in forebrain organoids reduces the neurite length of MAP2-positive neurons.HSV-1 infection increases Tau hyperphosphorylation in both two-month-old and four-month-old forebrain organoids. HSV-1 infection increases Exon 10 containing (4R) MAPT mRNA and 4R-Tau protein expression in both forebrain organoids and human SH-SY5Y-neurons. HSV-1 ICP27 is both necessary and sufficient to induce increased 4R MAPT mRNA and 4R-Tau protein expression in SH-SY5Y-neurons. HSV-1 infection increases Tau oligomerization in both forebrain organoids and SH-SY5Y-neurons.
Collapse
|
2
|
Szemere ZK, Murphy EA. Import of extracellular 2'-3'cGAMP by the folate transporter, SLC19A1, establishes an antiviral response that limits herpes simplex virus-1. Antiviral Res 2024; 230:105989. [PMID: 39154753 DOI: 10.1016/j.antiviral.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Recently it was discovered that extracellular 2'-3'cGAMP can activate the STING pathway in a cGAS-independent fashion by being transported across the cell membrane via the folate transporter, SLC19A1, the first identified extracellular antiporter of this critical signaling molecule in cancer cells. We hypothesized that this non-canonical activation of STING pathway would function to establish an antiviral state similar to that seen with the paracrine antiviral activities of interferon. Herein, we report that treatment of the monocytic cell line, THP-1 cells and SH-SY5Y neuronal cell line with exogenous 2'-3'cGAMP induces interferon production and establishes an antiviral state that limits herpes simplex virus-1 (HSV-1), a ubiquitous virus with high seropositivity in the human population. Using either pharmaceutical inhibition or genetic knockout of SLC19A1 blocks the 2'-3'cGAMP-induced inhibition of viral replication. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2'-3'cGAMP. This work presents novel and important findings about an antiviral mechanism which information could aid in the development of better antiviral drugs in the future.
Collapse
Affiliation(s)
- Zsuzsa K Szemere
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA
| | - Eain A Murphy
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
3
|
Najarro G, Brackett K, Woosley H, Dorman LC, Turon-Lagot V, Khadka S, Faeldonea C, Moreno OK, Negron AR, Love C, Ward R, Langelier C, McCarthy F, Gonzalez C, Elias JE, Gardner BM, Arias C. BiP/GRP78 is a pro-viral factor for diverse dsDNA viruses that promotes the survival and proliferation of cells upon KSHV infection. PLoS Pathog 2024; 20:e1012660. [PMID: 39471213 DOI: 10.1371/journal.ppat.1012660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients. Our findings reveal that BiP protein levels are upregulated in infected epithelial cells during the lytic phase of KSHV infection. This upregulation occurs independently of the unfolded protein response (UPR), a major signaling pathway that regulates BiP availability. Genetic and pharmacological inhibition of BiP halts KSHV viral replication and reduces the proliferation and survival of KSHV-infected cells. Notably, inhibition of BiP limits the spread of other alpha- and beta-herpesviruses and poxviruses with minimal toxicity for normal cells. Our work suggests that BiP is a potential target for developing broad-spectrum antiviral therapies against double-stranded DNA viruses and a promising candidate for therapeutic intervention in KSHV-related malignancies.
Collapse
Affiliation(s)
- Guillermo Najarro
- University of California, Santa Barbara, California, United States of America
| | - Kevin Brackett
- University of California, Santa Barbara, California, United States of America
| | - Hunter Woosley
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Leah C Dorman
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | | | - Sudip Khadka
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Catya Faeldonea
- University of California, Santa Barbara, California, United States of America
| | | | | | - Christina Love
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Ryan Ward
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Charles Langelier
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Frank McCarthy
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Carlos Gonzalez
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joshua E Elias
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| | - Brooke M Gardner
- University of California, Santa Barbara, California, United States of America
| | - Carolina Arias
- University of California, Santa Barbara, California, United States of America
- Chan Zuckerberg BioHub, San Francisco, California, United States of America
| |
Collapse
|
4
|
Bellizzi A, Çakır S, Donadoni M, Sariyer R, Liao S, Liu H, Ruan GX, Gordon J, Khalili K, Sariyer IK. Suppression of HSV-1 infection and viral reactivation by CRISPR-Cas9 gene editing in 2D and 3D culture models. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102282. [PMID: 39176174 PMCID: PMC11339036 DOI: 10.1016/j.omtn.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Although our understanding of herpes simplex virus type 1 (HSV-1) biology has been considerably enhanced, developing therapeutic strategies to eliminate HSV-1 in latently infected individuals remains a public health concern. Current antiviral drugs used for the treatment of HSV-1 complications are not specific and do not address latent infection. We recently developed a CRISPR-Cas9-based gene editing platform to specifically target the HSV-1 genome. In this study, we further used 2D Vero cell culture and 3D human induced pluripotent stem cell-derived cerebral organoid (CO) models to assess the effectiveness of our editing constructs targeting viral ICP0 or ICP27 genes. We found that targeting the ICP0 or ICP27 genes with AAV2-CRISPR-Cas9 vectors in Vero cells drastically suppressed HSV-1 replication. In addition, we productively infected COs with HSV-1, characterized the viral replication kinetics, and established a viral latency model. Finally, we discovered that ICP0- or ICP27-targeting AAV2-CRISPR-Cas9 vector significantly reduced viral rebound in the COs that were latently infected with HSV-1. In summary, our results suggest that CRISPR-Cas9 gene editing of HSV-1 is an efficient therapeutic approach to eliminate the latent viral reservoir and treat HSV-1-associated complications.
Collapse
Affiliation(s)
- Anna Bellizzi
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Senem Çakır
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Martina Donadoni
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Rahsan Sariyer
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Shuren Liao
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Liu
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Guo-Xiang Ruan
- Excision BioTherapeutics Inc., 134 Coolidge Avenue, Watertown, MA 02472, USA
| | - Jennifer Gordon
- Excision BioTherapeutics Inc., 134 Coolidge Avenue, Watertown, MA 02472, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ilker K. Sariyer
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
6
|
Szemere ZK, Murphy EA. Herpes Simplex Virus-1 targets the 2'-3'cGAMP importer SLC19A1 as an antiviral countermeasure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577105. [PMID: 38328222 PMCID: PMC10849743 DOI: 10.1101/2024.01.24.577105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To establish a successful infection, herpes simplex virus-1 (HSV-1), a virus with high seropositivity in the human population, must undermine host innate and intrinsic immune defense mechanisms, including the stimulator of interferon genes (STING) pathway. Recently it was discovered that not only de novo produced intracellular 2'-3'cGAMP, but also extracellular 2'-3'cGAMP activates the STING pathway by being transported across the cell membrane via the folate transporter, SLC19A1, the first identified extracellular antiporter of this signaling molecule. We hypothesized that the import of exogenous 2'-3'cGAMP functions to establish an antiviral state like that seen with the paracrine antiviral activities of interferon. Further, to establish a successful infection, HSV-1 must undermine this induction of the STING pathway by inhibiting the biological functions of SLC19A1. Herein, we report that treatment of the monocytic cell line, THP-1 cells, epithelial cells (ARPE-19) and SH-SY5Y neuronal cell line with exogenous 2'-3'cGAMP induces interferon production and establishes an antiviral state. Using either pharmaceutical inhibition or genetic knockout of SLC19A1 blocks the 2'-3'cGAMP-induced antiviral state. Additionally, HSV-1 infection results in the reduction of SLC19A1 transcription, translation, and importantly, the rapid removal of SLC19A1 from the cell surface of infected cells. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2'-3'cGAMP which is undermined by HSV-1. This work presents novel and important findings about how HSV-1 manipulates the host's immune environment for viral replication and discovers details about an antiviral mechanism which information could aid in the development of better antiviral drugs in the future. Importance HSV-1 has evolved multiple mechanisms to neutralize of the host's innate and intrinsic defense pathways, such as the STING pathway. Here, we identified an antiviral response in which extracellular 2'-3'cGAMP triggers IFN production via its transporter SLC19A1. Moreover, we report that HSV-1 blocks the functions of this transporter thereby impeding the antiviral response, suggesting exogenous 2'-3'cGAMP can act as an immunomodulatory molecule in uninfected cells to activate the STING pathway, and priming an antiviral state, similar to that seen in interferon responses. The details of this mechanism highlight important details about HSV-1 infections. This work presents novel findings about how HSV-1 manipulates the host's immune environment for viral replication and reveals details about a novel antiviral mechanism. These findings expand our understanding of how viral infections undermine host responses and may help in the development of better broad based antiviral drugs in the future.
Collapse
|
7
|
Cornman RS. Data mining reveals tissue-specific expression and host lineage-associated forms of Apis mellifera filamentous virus. PeerJ 2023; 11:e16455. [PMID: 38025724 PMCID: PMC10655722 DOI: 10.7717/peerj.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Apis mellifera filamentous virus (AmFV) is a large double-stranded DNA virus of uncertain phylogenetic position that infects honey bees (Apis mellifera). Little is known about AmFV evolution or molecular aspects of infection. Accurate annotation of open-reading frames (ORFs) is challenged by weak homology to other known viruses. This study was undertaken to evaluate ORFs (including coding-frame conservation, codon bias, and purifying selection), quantify genetic variation within AmFV, identify host characteristics that covary with infection rate, and examine viral expression patterns in different tissues. Methods Short-read data were accessed from the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI). Sequence reads were downloaded from accessions meeting search criteria and scanned for kmers representative of AmFV genomic sequence. Samples with kmer counts above specified thresholds were downloaded in full for mapping to reference sequences and de novo assembly. Results At least three distinct evolutionary lineages of AmFV exist. Clade 1 predominates in Europe but in the Americas and Africa it is replaced by the other clades as infection level increases in hosts. Only clade 3 was found at high relative abundance in hosts with African ancestry, whereas all clades achieved high relative abundance in bees of non-African ancestry. In Europe and Africa, clade 2 was generally detected only in low-level infections but was locally dominant in some North American samples. The geographic distribution of clade 3 was consistent with an introduction to the Americas with 'Africanized' honey bees in the 1950s. Localized genomic regions of very high nucleotide divergence in individual isolates suggest recombination with additional, as-yet unidentified AmFV lineages. A set of 155 high-confidence ORFs was annotated based on evolutionary conservation in six AmFV genome sequences representative of the three clades. Pairwise protein-level identity averaged 94.6% across ORFs (range 77.1-100%), which generally exhibited low evolutionary rates and moderate to strong codon bias. However, no robust example of positive diversifying selection on coding sequence was found in these alignments. Most of the genome was detected in RNA short-read alignments. Transcriptome assembly often yielded contigs in excess of 50 kb and containing ORFs in both orientations, and the termini of long transcripts were associated with tandem repeats. Lower levels of AmFV RNA were detected in brain tissue compared to abdominal tissue, and a distinct set of ORFs had minimal to no detectable expression in brain tissue. A scan of DNA accessions from the parasitic mite Varroa destructor was inconclusive with respect to replication in that species. Discussion Collectively, these results expand our understanding of this enigmatic virus, revealing transcriptional complexity and co-evolutionary associations with host lineage.
Collapse
|
8
|
Chang W, Hao M, Qiu J, Sherman BT, Imamichi T. Discovery of a Novel Intron in US10/US11/US12 of HSV-1 Strain 17. Viruses 2023; 15:2144. [PMID: 38005822 PMCID: PMC10675037 DOI: 10.3390/v15112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) infects humans and causes a variety of clinical manifestations. Many HSV-1 genomes have been sequenced with high-throughput sequencing technologies and the annotation of these genome sequences heavily relies on the known genes in reference strains. Consequently, the accuracy of reference strain annotation is critical for future research and treatment of HSV-1 infection. In this study, we analyzed RNA-Seq data of HSV-1 from NCBI databases and discovered a novel intron in the overlapping coding sequence (CDS) of US10 and US11, and the 3' UTR of US12 in strain 17, a commonly used HSV-1 reference strain. To comprehensively understand the shared US10/US11/US12 intron structure, we used US11 as a representative and surveyed all US11 gene sequences from the NCBI nt/nr database. A total of 193 high-quality US11 sequences were obtained, of which 186 sequences have a domain of uninterrupted tandemly repeated RXP (Arg-X-Pro) in the C-terminus half of the protein. In total, 97 of the 186 sequences encode US11 protein with the same length of the mature US11 in strain 17:26 of them have the same structure of US11 and can be spliced as in strain 17; 71 of them have transcripts that are the same as mature US11 mRNA in strain 17. In total, 76 US11 gene sequences have either canonical or known noncanonical intron border sequences and may be spliced like strain 17 and obtain mature US11 CDS with the same length. If not spliced, they will have extra RXP repeats. A tandemly repeated RXP domain was proposed to be essential for US11 to bind with RNA and other host factors. US10 protein sequences from the same strains have also been studied. The results of this study show that even a frequently used reference organism may have errors in widely used databases. This study provides accurate annotation of the US10, US11, and US12 gene structure, which will build a more solid foundation to study expression regulation of the function of these genes.
Collapse
Affiliation(s)
- Weizhong Chang
- Laboratory of Human Retrovirology and Lmmunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (M.H.); (J.Q.); (B.T.S.); (T.I.)
| | | | | | | | | |
Collapse
|
9
|
Subedi S, Nag N, Shukla H, Padhi AK, Tripathi T. Comprehensive analysis of liquid-liquid phase separation propensities of HSV-1 proteins and their interaction with host factors. J Cell Biochem 2023. [PMID: 37796176 DOI: 10.1002/jcb.30480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
In recent years, it has been shown that the liquid-liquid phase separation (LLPS) of virus proteins plays a crucial role in their life cycle. It promotes the formation of viral replication organelles, concentrating viral components for efficient replication and facilitates the assembly of viral particles. LLPS has emerged as a crucial process in the replication and assembly of herpes simplex virus-1 (HSV-1). Recent studies have identified several HSV-1 proteins involved in LLPS, including the myristylated tegument protein UL11 and infected cell protein 4; however, a complete proteome-level understanding of the LLPS-prone HSV-1 proteins is not available. We provide a comprehensive analysis of the HSV-1 proteome and explore the potential of its proteins to undergo LLPS. By integrating sequence analysis, prediction algorithms and an array of tools and servers, we identified 10 HSV-1 proteins that exhibit high LLPS potential. By analysing the amino acid sequences of the LLPS-prone proteins, we identified specific sequence motifs and enriched amino acid residues commonly found in LLPS-prone regions. Our findings reveal a diverse range of LLPS-prone proteins within the HSV-1, which are involved in critical viral processes such as replication, transcriptional regulation and assembly of viral particles. This suggests that LLPS might play a crucial role in facilitating the formation of specialized viral replication compartments and the assembly of HSV-1 virion. The identification of LLPS-prone proteins in HSV-1 opens up new avenues for understanding the molecular mechanisms underlying viral pathogenesis. Our work provides valuable insights into the LLPS landscape of HSV-1, highlighting potential targets for further experimental validation and enhancing our understanding of viral replication and pathogenesis.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
10
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
13
|
Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022; 5:387. [PMID: 35468974 PMCID: PMC9038728 DOI: 10.1038/s42003-022-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that increases morbidity and mortality in immunocompromised individuals including transplant recipients and newborns. New anti-HCMV therapies are an urgent medical need for diverse patient populations. HCMV infection of a broad range of host tissues is dependent on the gH/gL/gO trimer and gH/gL/UL28/UL130/UL131A pentamer complexes on the viral envelope. We sought to develop safe and effective therapeutics against HCMV by generating broadly-neutralizing, human monoclonal antibodies (mAbs) from VelocImmune® mice immunized with gH/gL cDNA. Following high-throughput binding and neutralization screening assays, 11 neutralizing antibodies were identified with unique CDR3 regions and a high-affinity (KD 1.4-65 nM) to the pentamer complex. The antibodies bound to distinct regions within Domains 1 and 2 of gH and effectively neutralized diverse clinical strains in physiologically relevant cell types including epithelial cells, trophoblasts, and monocytes. Importantly, combined adminstration of mAbs with ganciclovir, an FDA approved antiviral, greatly limited virus dissemination. Our work identifies several anti-gH/gL mAbs and sheds light on gH neutralizing epitopes that can guide future vaccine strategies.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus-encoded ribosome-associated protein. Proc Natl Acad Sci U S A 2021; 118:2025546118. [PMID: 34725147 DOI: 10.1073/pnas.2025546118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to being required for protein synthesis, ribosomes and ribosomal proteins (RPs) also regulate messenger RNA translation in uninfected and virus-infected cells. By individually depleting 85 RPs using RNA interference, we found that overall protein synthesis in uninfected primary fibroblasts was more sensitive to RP depletion than those infected with herpes simplex virus-1 (HSV-1). Although representative RP depletion (uL3, uS4, uL5) inhibited protein synthesis in cells infected with two different DNA viruses (human cytomegalovirus, vaccinia virus), HSV-1-infected cell protein synthesis unexpectedly endured and required a single virus-encoded gene product, VP22. During individual RP insufficiency, VP22-expressing HSV-1 replicated better than a VP22-deficient variant. Furthermore, VP22 promotes polysome accumulation in virus-infected cells when uL3 or ribosome availability is limiting and cosediments with initiating and elongating ribosomes in infected and uninfected cells. This identifies VP22 as a virus-encoded, ribosome-associated protein that compensates for RP insufficiency to support viral protein synthesis and replication. Moreover, it reveals an unanticipated class of virus-encoded, ribosome-associated effectors that reduce the dependence of protein synthesis upon host RPs and broadly support translation during physiological stress such as infection.
Collapse
|
15
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
16
|
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, Jacobson E, Wu X, Yi S, Rudin CM, MacDonald MR, McMullan LK, Poirier JT, Rice CM. TMEM41B Is a Pan-flavivirus Host Factor. Cell 2021; 184:133-148.e20. [PMID: 33338421 PMCID: PMC7954666 DOI: 10.1016/j.cell.2020.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linde A Miles
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Schuster
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA; Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Laura K McMullan
- Virus Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
18
|
Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 2020; 9:e58037. [PMID: 33350386 PMCID: PMC7773336 DOI: 10.7554/elife.58037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
Collapse
Affiliation(s)
- Sean R Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Philip V Seegren
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Jon Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Parijat Kundu
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Taylor K Downs
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mina Farah
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube CampusGlasgowUnited Kingdom
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
19
|
E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proc Natl Acad Sci U S A 2020; 118:2015794118. [PMID: 33443154 DOI: 10.1073/pnas.2015794118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.
Collapse
|
20
|
Luo Z, Kuang XP, Zhou QQ, Yan CY, Li W, Gong HB, Kurihara H, Li WX, Li YF, He RR. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:2323-2338. [PMID: 33354504 PMCID: PMC7745058 DOI: 10.1016/j.apsb.2020.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IκB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain. Baicalein is highly effective against HSV-1infection ex vivo and in vivo. Inactivation of viral particles and suppression of NF-κB activation were involved in the anti-viral effect of baicalein. Hence, our work offers experimental basis for baicalein as a potential drug in treating HSV-1 associated diseases.
Collapse
Key Words
- Anti-HSV-1
- Baicalein
- CC50, 50% cytotoxic concentration
- DCFH-DA, 2′,7′-dichlorofluorescin diacetate
- EC50, 50% effective concentration
- GB, glycoprotein B
- HSV-1 infection
- HSV-1, herpes simplex virus types 1
- ICP, infected cell polypeptide
- IKK-β phosphorylation
- IKK-β, IκB kinase beta
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IκB-α, inhibitor of NF-κB alpha
- LPS, lipopolysaccharides
- MOI, multiplicity of infection
- NAC, N-acetyl-l-cysteine
- NF-κB activation
- NF-κB, nuclear factor kappa-B
- PFU, plaque-forming units
- PGA1, prostaglandin A1
- ROS, reactive oxygen species
- SI, selectivity index
- TG, trigeminal ganglia
- TNF-α, tumor necrosis factor alpha
- Viral inactivation
- dpi, days post-infection
- p-IKK-β, phosphorylated-IKK beta
- p-IκB-α, phosphorylated-IκB alpha
Collapse
|
21
|
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, Jacobson E, Wu X, Yi S, Rudin CM, MacDonald MR, McMullan LK, Poirier JT, Rice CM. TMEM41B is a pan-flavivirus host factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.09.334128. [PMID: 33052348 PMCID: PMC7553181 DOI: 10.1101/2020.10.09.334128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection.TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes.TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection.TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linde A Miles
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Schuster
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Laura K McMullan
- Virus Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Hu HL, Srinivas KP, Mohr I, Huang TT, Wilson AC. Using Primary SCG Neuron Cultures to Study Molecular Determinants of HSV-1 Latency and Reactivation. Methods Mol Biol 2020; 2060:263-277. [PMID: 31617183 PMCID: PMC8415492 DOI: 10.1007/978-1-4939-9814-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a primary neuronal culture system suitable for molecular characterization of herpes simplex virus type 1 (HSV-1) infection, latency, and reactivation. While several alternative models are available, including infections of live animal or explanted ganglia, these are complicated by the presence of multiple cell types, including immune cells, and difficulties in manipulating the neuronal environment. The highly pure neuron culture system described here can be readily manipulated and is ideal for molecular studies that focus exclusively on the relationship between the virus and host neuron, the fundamental unit of latency. As such this model allows for detailed investigations of both viral and neuronal factors involved in the establishment and maintenance of HSV-1 latency and in viral reactivation induced by defined stimuli.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
24
|
Dilsizoglu Senol A, Tagliafierro L, Gorisse-Hussonnois L, Rebeillard F, Huguet L, Geny D, Contremoulins V, Corlier F, Potier MC, Chasseigneaux S, Darmon M, Allinquant B. Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cell Mol Life Sci 2019; 76:4995-5009. [PMID: 31139847 PMCID: PMC11105537 DOI: 10.1007/s00018-019-03157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Lidia Tagliafierro
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lucie Gorisse-Hussonnois
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Florian Rebeillard
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Léa Huguet
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - David Geny
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris Diderot, Paris, France
| | - Fabian Corlier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144, 75006, Paris, France
| | - Michèle Darmon
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Bernadette Allinquant
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France.
| |
Collapse
|
25
|
Seifert LL, Si C, Saha D, Sadic M, de Vries M, Ballentine S, Briley A, Wang G, Valero-Jimenez AM, Mohamed A, Schaefer U, Moulton HM, García-Sastre A, Tripathi S, Rosenberg BR, Dittmann M. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 2019; 15:e1007634. [PMID: 31682641 PMCID: PMC6932815 DOI: 10.1371/journal.ppat.1007634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons. After decades of research on the innate immune system, we still struggle to understand exactly how this first line of defense protects cells against viral infections. Our gap in knowledge stems, on one hand, from the sheer number of effector genes, few of which have been characterized in mechanistic detail. On the other hand, our understanding of innate gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of gene expression, all of which may contribute to the antiviral power of the innate response. Deciphering these regulatory mechanisms is indispensable for harnessing the power of innate immunity in novel antiviral therapies. Here, we report a novel transcriptional program as part of the cell-intrinsic immune system, raised by E74-like ETS transcription factor 1 (ELF1). ELF1 potently restricts multi-cycle propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminish host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role of this ETS transcription factor. The ELF1 program is complex and comprises over 300 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a program of antiviral protection that expands the previously known arsenal of the innate immune response.
Collapse
Affiliation(s)
- Leon Louis Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Clara Si
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Debjani Saha
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mohammad Sadic
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah Ballentine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aaron Briley
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Adil Mohamed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
| | - Hong M. Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mancuso R, Sicurella M, Agostini S, Marconi P, Clerici M. Herpes simplex virus type 1 and Alzheimer's disease: link and potential impact on treatment. Expert Rev Anti Infect Ther 2019; 17:715-731. [PMID: 31414935 DOI: 10.1080/14787210.2019.1656064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Alzheimer's disease (AD), the most common form of dementia worldwide, is a multifactorial disease with a still unknown etiology. Herpes simplex virus 1 (HSV-1) has long been suspected to be one of the factors involved in the pathogenesis of the disease. Areas covered: We review the literature focusing on viral characteristics of HSV-1, the mechanisms this virus uses to infect neural cells, its interaction with the host immune system and genetic background and summarizes results and research that support the hypothesis of an association between AD and HSV-1. The possible usefulness of virus-directed pharmaceutical approaches as potential treatments for AD will be discussed as well. Expert opinion: We highlight crucial aspects that must be addressed to clarify the possible role of HSV-1 in the pathogenesis of the disease, and to allow the design of new therapeutical approaches for AD.
Collapse
Affiliation(s)
| | | | | | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara , Ferrara , Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi , Milan , Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy
| |
Collapse
|
27
|
The US11 Gene of Herpes Simplex Virus 1 Promotes Neuroinvasion and Periocular Replication following Corneal Infection. J Virol 2019; 93:JVI.02246-18. [PMID: 30760571 DOI: 10.1128/jvi.02246-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) cycles between phases of latency in sensory neurons and replication in mucosal sites. HSV-1 encodes two key proteins that antagonize the shutdown of host translation, US11 through preventing PKR activation and ICP34.5 through mediating dephosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). While profound attenuation of ICP34.5 deletion mutants has been repeatedly demonstrated, a role for US11 in HSV-1 pathogenesis remains unclear. We therefore generated an HSV-1 strain 17 US11-null virus and examined its properties in vitro and in vivo In U373 glioblastoma cells, US11 cooperated with ICP34.5 to prevent eIF2α phosphorylation late in infection. However, the effect was muted in human corneal epithelial cells (HCLEs), which did not accumulate phosphorylated eIF2α unless both US11 and ICP34.5 were absent. Low levels of phosphorylated eIF2α correlated with continued protein synthesis and with the ability of virus lacking US11 to overcome antiviral immunity in HCLE and U373 cells. Neurovirulence following intracerebral inoculation of mice was not affected by the deletion of US11. In contrast, the time to endpoint criteria following corneal infection was greater for the US11-null virus than for the wild-type virus. Replication in trigeminal ganglia and periocular tissue was promoted by US11, as was periocular disease. The establishment of latency and the frequency of virus reactivation from trigeminal ganglia were unaffected by US11 deletion, although emergence of the US11-null virus occurred with slowed kinetics. Considered together, the data indicate that US11 facilitates the countering of antiviral response of infected cells and promotes the efficient emergence of virus following reactivation.IMPORTANCE Alphaherpesviruses are ubiquitous DNA viruses and include the human pathogens herpes simplex virus 1 (HSV-1) and HSV-2 and are significant causes of ulcerative mucosal sores, infectious blindness, encephalitis, and devastating neonatal disease. Successful primary infection and persistent coexistence with host immune defenses are dependent on the ability of these viruses to counter the antiviral response. HSV-1 and HSV-2 and other primate viruses within the Simplexvirus genus encode US11, an immune antagonist that promotes virus production by preventing shutdown of protein translation. Here we investigated the impact of US11 deletion on HSV-1 growth in vitro and pathogenesis in vivo This work supports a role for US11 in pathogenesis and emergence from latency, elucidating immunomodulation by this medically important cohort of viruses.
Collapse
|
28
|
Hu HL, Shiflett LA, Kobayashi M, Chao MV, Wilson AC, Mohr I, Huang TT. TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency. Mol Cell 2019; 74:466-480.e4. [PMID: 30930055 DOI: 10.1016/j.molcel.2019.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Lora A Shiflett
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Mariko Kobayashi
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, Mohr I, Wilson AC. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 2019; 10:754. [PMID: 30765700 PMCID: PMC6376126 DOI: 10.1038/s41467-019-08734-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Characterizing complex viral transcriptomes by conventional RNA sequencing approaches is complicated by high gene density, overlapping reading frames, and complex splicing patterns. Direct RNA sequencing (direct RNA-seq) using nanopore arrays offers an exciting alternative whereby individual polyadenylated RNAs are sequenced directly, without the recoding and amplification biases inherent to other sequencing methodologies. Here we use direct RNA-seq to profile the herpes simplex virus type 1 (HSV-1) transcriptome during productive infection of primary cells. We show how direct RNA-seq data can be used to define transcription initiation and RNA cleavage sites associated with all polyadenylated viral RNAs and demonstrate that low level read-through transcription produces a novel class of chimeric HSV-1 transcripts, including a functional mRNA encoding a fusion of the viral E3 ubiquitin ligase ICP0 and viral membrane glycoprotein L. Thus, direct RNA-seq offers a powerful method to characterize the changing transcriptional landscape of viruses with complex genomes.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| | | | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Devin Bready
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
30
|
Arabi-Derkawi R, O'Dowd Y, Cheng N, Rolas L, Boussetta T, Raad H, Marzaioli V, Pintard C, Fasseu M, Kroviarski Y, Belambri SA, Dang PMC, Ye RD, Gougerot-Pocidalo MA, El-Benna J. The Kinesin Light Chain-Related Protein PAT1 Promotes Superoxide Anion Production in Human Phagocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1549-1558. [PMID: 30665935 DOI: 10.4049/jimmunol.1800610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/22/2018] [Indexed: 11/19/2022]
Abstract
Superoxide anion production by the phagocyte NADPH oxidase plays a crucial role in host defenses and inflammatory reaction. The phagocyte NADPH oxidase is composed of cytosolic components (p40phox, p47phox, p67phox, and Rac1/2) and the membrane flavocytochrome b558, which is composed of two proteins: p22phox and gp91phox/NOX2. p22phox plays a crucial role in the stabilization of gp91phox in phagocytes and is also a docking site for p47phox during activation. In the current study, we have used a yeast two-hybrid approach to identify unknown partners of p22phox. Using the cytosolic C-terminal region of p22phox as bait to screen a human spleen cDNA library, we identified the protein interacting with amyloid precursor protein tail 1 (PAT1) as a potential partner of p22phox. The interaction between p22phox and PAT1 was further confirmed by in vitro GST pulldown and overlay assays and in intact neutrophils and COSphox cells by coimmunoprecipitation. We demonstrated that PAT1 is expressed in human neutrophils and monocytes and colocalizes with p22phox, as shown by confocal microscopy. Overexpression of PAT1 in human monocytes and in COSphox cells increased superoxide anion production and depletion of PAT1 by specific small interfering RNA inhibited this process. These data clearly identify PAT1 as a novel regulator of NADPH oxidase activation and superoxide anion production, a key phagocyte function.
Collapse
Affiliation(s)
- Riad Arabi-Derkawi
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Yvonne O'Dowd
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Garda Headquarters, Forensic Science Ireland, Dublin 8, Ireland
| | - Ni Cheng
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Tarek Boussetta
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Houssam Raad
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Coralie Pintard
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Magali Fasseu
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Yolande Kroviarski
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Sahra A Belambri
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Ferhat Abbas, 19000 Sétif, Algeria
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard D Ye
- University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.,Unité Fonctionnelle Dysfonctionnements Immunitaires, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Xavier Bichat, Paris, F-75018, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; .,Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
31
|
Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I. RNA m 6 A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 2018; 32:1472-1484. [PMID: 30463905 PMCID: PMC6295168 DOI: 10.1101/gad.319475.118] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
In this study, Rubio et al. researched how the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses. They show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase, and their results demonstrate that responses to nonmicrobial dsDNA in uninfected cells are regulated by enzymes controlling m6A epitranscriptomic changes. Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3′ untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNβ production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.
Collapse
Affiliation(s)
- Rosa M Rubio
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher Bianco
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Letitia Thompson
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.,Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
32
|
Proteomic profile associated with cell death induced by androgens in Taenia crassiceps cysticerci: proposed interactome. J Helminthol 2018; 93:539-547. [DOI: 10.1017/s0022149x18000706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAndrogens have been shown to exert a cysticidal effect uponTaenia crassiceps, an experimental model of cysticercosis. To further inquire into this matter, theTaenia crassicepsmodel was used to evaluate the expression of several proteins after testosterone (T4) and dihydrotestosterone (DHT)in vitrotreatment. Under 2-D proteomic maps, parasite extracts were resolved into approximately 130 proteins distributed in a molecular weight range of 10–250 kDa and isoelectrical point range of 3–10. The resultant proteomic pattern was analysed, and significant changes were observed in response to T4 and DHT. Based on our experience with electrophoretic patterns and proteomic maps of cytoskeletal proteins, alteration in the expression of isoforms of actin, tubulin and paramyosin and of other proteins was assessed. Considering that androgens may exert their biological activity in taeniids through the non-specific progesterone receptor membrane component (PGRMC), we harnessed bioinformatics to propose the identity of androgen-regulated proteins and establish their hypothetical physiological role in the parasites. These analyses yield a possible explanation of how androgens exert their cysticidal effects through changes in the expression of proteins involved in cytoskeletal rearrangement, dynamic vesicular traffic and transduction of intracellular signals.
Collapse
|
33
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
34
|
Pourchet A, Copin R, Mulvey MC, Shopsin B, Mohr I, Wilson AC. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology 2017; 512:124-131. [PMID: 28957690 PMCID: PMC5653468 DOI: 10.1016/j.virol.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP-US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Richard Copin
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 2017; 9:v9080210. [PMID: 28783105 PMCID: PMC5580467 DOI: 10.3390/v9080210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
Collapse
|
36
|
Pourchet A, Modrek AS, Placantonakis DG, Mohr I, Wilson AC. Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens 2017; 6:E24. [PMID: 28594343 PMCID: PMC5488658 DOI: 10.3390/pathogens6020024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Aram S Modrek
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
- Brain Tumor Center, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Xu X, Che Y, Li Q. HSV-1 tegument protein and the development of its genome editing technology. Virol J 2016; 13:108. [PMID: 27343062 PMCID: PMC4919851 DOI: 10.1186/s12985-016-0563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is composed of complex structures primarily characterized by four elements: the nucleus, capsid, tegument and envelope. The tegument is an important viral component mainly distributed in the spaces between the capsid and the envelope. The development of viral genome editing technologies, such as the identification of temperature-sensitive mutations, homologous recombination, bacterial artificial chromosome, and the CRISPR/Cas9 system, has been shown to largely contribute to the rapid promotion of studies on the HSV-1 tegument protein. Many researches have demonstrated that tegument proteins play crucial roles in viral gene regulatory transcription, viral replication and virulence, viral assembly and even the interaction of the virus with the host immune system. This article briefly reviews the recent research on the functions of tegument proteins and specifically elucidates the function of tegument proteins in viral infection, and then emphasizes the significance of using genome editing technology in studies of providing new techniques and insights into further studies of HSV-1 infection in the future.
Collapse
Affiliation(s)
- Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
38
|
ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun 2016; 7:11496. [PMID: 27193971 PMCID: PMC4873964 DOI: 10.1038/ncomms11496] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
ISG15 is an interferon (IFN)-α/β-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-γ-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/β signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice. ISG15 is a ubiquitin-like protein which has important immune-related functions in mice and humans. Here the authors demonstrate that, unlike in mice, human ISG15 stabilizes UPS18 and that ISG15-deficient human cells are more resistant to viral infection.
Collapse
|
39
|
Superior Versus Inferior Vestibular Neuritis: Are There Intrinsic Differences in Infection, Reactivation, or Production of Infectious Particles Between the Vestibular Ganglia? Otol Neurotol 2016; 36:1266-74. [PMID: 25978655 DOI: 10.1097/mao.0000000000000758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Intrinsic differences in neurons of the vestibular ganglia result in the increased likelihood of superior vestibular ganglion involvement in vestibular neuritis. BACKGROUND Vestibular neuritis is hypothesized to result from herpes simplex type I (HSV1) infection or reactivation in vestibular ganglia. Involvement of the inferior vestibular ganglion is extremely rare in patients with vestibular neuritis. METHODS Primary cultures of rat superior and inferior vestibular ganglion neurons (VGNs) were cultivated separately. Neurons were lytically and latently infected with HSV1 with a US11-green fluorescent protein (GFP) chimera. Percentage lytic infection and baseline reactivation was assessed by microscopy for GFP fluorescence. Trichostatin-A (TSA) was used to stimulate HSV1 reactivation. Virion production was assessed by viral titers. Relative numbers of latency-associated (LAT) transcripts were determined by real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). RESULTS Lytic infection rates were equivalent between the two ganglia (p > 0.05). Lytic infections yielded similar amounts of plaque-forming units (p > 0.05). Relative amounts of LAT transcripts did not differ between latently infected superior and inferior VGNs. Latently infected cultures showed no differences in rates of baseline and TSA-induced HSV1 reactivation (p > 0.05). Production of virions was not significantly different between reactivated, latently infected superior versus inferior VGNs (p = 0.45). CONCLUSION Differences in prevalence of superior and inferior vestibular neuritis do not result from intrinsic differences in HSV1 infection or virion production of these neurons. Other factors, such as the length and width of the bony canal containing the ganglia and nerves, account for the greater involvement of the superior vestibular ganglion in vestibular neuritis.
Collapse
|
40
|
Biophysical Characterization of Nucleophosmin Interactions with Human Immunodeficiency Virus Rev and Herpes Simplex Virus US11. PLoS One 2015; 10:e0143634. [PMID: 26624888 PMCID: PMC4704560 DOI: 10.1371/journal.pone.0143634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023] Open
Abstract
Nucleophosmin (NPM1, also known as B23, numatrin or NO38) is a pentameric RNA-binding protein with RNA and protein chaperon functions. NPM1 has increasingly emerged as a potential cellular factor that directly associates with viral proteins; however, the significance of these interactions in each case is still not clear. In this study, we have investigated the physical interaction of NPM1 with both human immunodeficiency virus type 1 (HIV-1) Rev and Herpes Simplex virus type 1 (HSV-1) US11, two functionally homologous proteins. Both viral proteins show, in mechanistically different modes, high affinity for a binding site on the N-terminal oligomerization domain of NPM1. Rev, additionally, exhibits low-affinity for the central histone-binding domain of NPM1. We also showed that the proapoptotic cyclic peptide CIGB-300 specifically binds to NPM1 oligomerization domain and blocks its association with Rev and US11. Moreover, HIV-1 virus production was significantly reduced in the cells treated with CIGB-300. Results of this study suggest that targeting NPM1 may represent a useful approach for antiviral intervention.
Collapse
|
41
|
Dilsizoglu Senol A, Tagliafierro L, Huguet L, Gorisse-Hussonnois L, Chasseigneaux S, Allinquant B. PAT1 inversely regulates the surface Amyloid Precursor Protein level in mouse primary neurons. BMC Neurosci 2015; 16:10. [PMID: 25880931 PMCID: PMC4355975 DOI: 10.1186/s12868-015-0152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Background The amyloid precursor protein (APP) is a key molecule in Alzheimer disease. Its localization at the cell surface can trigger downstream signaling and APP cleavages. APP trafficking to the cell surface in neurons is not clearly understood and may be related to the interactions with its partners. In this respect, by having homologies with kinesin light chain domains and because of its capacity to bind APP, PAT1 represents a good candidate. Results We observed that PAT1 binds poorly APP at the cell surface of primary cortical neurons contrary to cytoplasmic APP. Using down and up-regulation of PAT1, we observed respectively an increase and decrease of APP at the cell surface. The increase of APP at the cell surface induced by low levels of PAT1 did not trigger cell death signaling. Conclusions These data suggest that PAT1 slows down APP trafficking to the cell surface in primary cortical neurons. Our results contribute to the elucidation of mechanisms involved in APP trafficking in Alzheimer disease.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| | - Lidia Tagliafierro
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine, Second University of Naples, Naples, Italy.
| | - Léa Huguet
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| | - Lucie Gorisse-Hussonnois
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| | - Stéphanie Chasseigneaux
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France. .,Inserm, U1144, Paris, F-75006, France. .,Université Paris Descartes, UMR-S 1144, Paris, F-75006, France. .,Université Paris Diderot, UMR-S 1144, Paris, F-75013, France.
| | - Bernadette Allinquant
- INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
42
|
The effects of dexamethasone and acyclovir on a cell culture model of delayed facial palsy. Otol Neurotol 2014; 35:712-8. [PMID: 24622026 DOI: 10.1097/mao.0000000000000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Pretreatment with antiherpetic medications and steroids decreases likelihood of development of delayed facial paralysis (DFP) after otologic surgery. BACKGROUND Heat-induced reactivation of herpes simplex virus type 1 (HSV1) in geniculate ganglion neurons (GGNs) is thought to cause of DFP after otologic surgery. Antiherpetic medications and dexamethasone are used to treat DFP. Pretreatment with these medications has been proposed to prevent development of DFP. METHODS Rat GGN cultures were latently infected with HSV1 expressing a lytic protein-GFP chimera. Cultures were divided into pretreatment groups receiving acyclovir (ACV), acyclovir-plus-dexamethasone (ACV + DEX), dexamethasone alone (DEX), or untreated media (control). After pretreatment, all cultures were heated 43°C for 2 hours. Cultures were monitored daily for reactivation with fluorescent microscopy. Viral titers were determined from culture media. RESULTS Heating cultures to 43°C for 2 hours leads to HSV1 reactivation and production of infectious virus particles (59 ± 6.8%); heating cultures to 41°C showed a more variable frequency of reactivation (60 ± 40%), compared with baseline rates of 14.4 ± 5%. Cultures pretreated with ACV showed lower reactivation rates (ACV = 3.7%, ACV + DEX = 1.04%) compared with 44% for DEX alone. Viral titers were lowest for cultures treated with ACV or ACV + DEX. CONCLUSION GGN cultures harboring latent HSV1 infection reactivate when exposed to increased temperatures that can occur during otologic surgery. Pretreatment with ACV before heat provides prophylaxis against heat-induced HSV reactivation, whereas DEX alone is associated with higher viral reactivation rates. This study provides evidence supporting the use of prophylactic antivirals for otologic surgeries associated with high rates of DFP.
Collapse
|
43
|
Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog 2014; 10:e1004503. [PMID: 25375629 PMCID: PMC4223080 DOI: 10.1371/journal.ppat.1004503] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification.
Collapse
Affiliation(s)
- Karen E. Johnson
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Virginie Bottero
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Stephanie Flaherty
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Sujoy Dutta
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Vivek Vikram Singh
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
44
|
Karttunen H, Savas JN, McKinney C, Chen YH, Yates JR, Hukkanen V, Huang TT, Mohr I. Co-opting the Fanconi anemia genomic stability pathway enables herpesvirus DNA synthesis and productive growth. Mol Cell 2014; 55:111-22. [PMID: 24954902 DOI: 10.1016/j.molcel.2014.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/07/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
Abstract
DNA damage associated with viral DNA synthesis can result in double-strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi anemia (FA) genomic stability pathway is exploited by herpes simplex virus 1 (HSV-1) to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV-1-infected cells resulted in monoubiquitination of FA effector proteins FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments, and FANCI-D2 interacted with a multisubunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, whereas HSV-1 productive growth was impaired in monoubiquitination-defective FA cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for nonhomologous end-joining (NHEJ). This identifies the FA-pathway as a cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral life cycle.
Collapse
Affiliation(s)
- Heidi Karttunen
- Department of Microbiology, NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Jeffrey N Savas
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Caleb McKinney
- Department of Microbiology, NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Yu-Hung Chen
- Department of Biochemistry and Molecular Pharmacology, NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku 20520, Finland
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Ian Mohr
- Department of Microbiology, NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci U S A 2013; 110:18268-73. [PMID: 24145430 DOI: 10.1073/pnas.1310760110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although microtubules (MTs) frequently form highly dynamic networks, subsets of MTs become stabilized in response to environmental cues and function as specialized tracks for vesicle and macromolecular trafficking. MT stabilization is controlled by specialized plus-end tracking proteins (+TIPs) whose accumulation at the MT ends is facilitated by the end-binding protein, EB1, and regulated by various signaling pathways. As cargoes themselves, viruses are dependent on MTs for their intracellular movement. Although many viruses affect MT organization, the potential contribution of MT stabilization by +TIPs to infection remains unknown. Here we show that early in infection of primary human fibroblasts, herpes simplex virus type 1 (HSV-1) disrupts the centrosome, the primary MT organizing center in many cell types. As infection progresses HSV-1 induces the formation of stable MT subsets through inactivation of glycogen synthase kinase 3beta by the viral Ser/Thr kinase, Us3. Stable MT formation is reduced in cells infected with Us3 mutants and those stable MTs that form cluster around the trans-Golgi network. Downstream of glycogen synthase kinase 3beta, cytoplasmic linker-associated proteins (CLASPs), specialized host +TIPs that control MT formation at the trans-Golgi network and cortical capture, are specifically required for virus-induced MT stabilization and HSV-1 spread. Our findings demonstrate the biological importance of +TIPs to viral infection and suggest that HSV-1 has evolved to exploit the trans-Golgi network as an alternate MT organizing center to facilitate virus spread.
Collapse
|
46
|
Suppression of PACT-induced type I interferon production by herpes simplex virus 1 Us11 protein. J Virol 2013; 87:13141-9. [PMID: 24067967 DOI: 10.1128/jvi.02564-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) Us11 protein is a double-stranded RNA-binding protein that suppresses type I interferon production through the inhibition of the cytoplasmic RNA sensor RIG-I. Whether additional cellular mediators are involved in this suppression remains to be determined. In this study, we report on the requirement of cellular double-stranded RNA-binding protein PACT for Us11-mediated perturbation of type I interferon production. Us11 associates with PACT tightly to prevent it from binding with and activating RIG-I. The Us11-deficient HSV-1 was indistinguishable from the Us11-proficient virus in the suppression of interferon production when PACT was compromised. More importantly, HSV-1-induced activation of interferon production was abrogated in PACT knockout murine embryonic fibroblasts. Our findings suggest a new mechanism for viral evasion of innate immunity through which a viral double-stranded RNA-binding protein interacts with PACT to circumvent type I interferon production. This mechanism might also be used by other PACT-binding viral interferon-antagonizing proteins such as Ebola virus VP35 and influenza A virus NS1.
Collapse
|
47
|
Pattnaik AK, Dinh PX. Manipulation of cellular processing bodies and their constituents by viruses. DNA Cell Biol 2013; 32:286-91. [PMID: 23617258 PMCID: PMC3665300 DOI: 10.1089/dna.2013.2054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
The processing bodies (PBs) are a form of cytoplasmic aggregates that house the cellular RNA decay machinery as well as many RNA-binding proteins and mRNAs. The PBs are constitutively present in eukaryotic cells and are involved in maintaining cellular homeostasis by regulating RNA metabolism, cell signaling, and survival. Virus infections result in modification of the PBs and their constituents. Many viruses induce compositionally altered PBs, while many others use specific components of the PBs for their replication. PB constituents are also known to restrict virus replication by a variety of mechanisms. Further, continuing studies in this rapidly emerging field of PB-virus interactions will undoubtedly provide important clues to the understanding of the role of PBs in cellular homeostasis as well as their role in virus infections and innate immune signaling.
Collapse
Affiliation(s)
- Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
48
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
49
|
Herdy B, Jaramillo M, Svitkin YV, Rosenfeld AB, Kobayashi M, Walsh D, Alain T, Sean P, Robichaud N, Topisirovic I, Furic L, Dowling RJO, Sylvestre A, Rong L, Colina R, Costa-Mattioli M, Fritz JH, Olivier M, Brown E, Mohr I, Sonenberg N. Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 2012; 13:543-550. [PMID: 22544393 DOI: 10.1038/ni.2291] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/19/2012] [Indexed: 12/17/2022]
Abstract
Type I interferon is an integral component of the antiviral response, and its production is tightly controlled at the levels of transcription and translation. The eukaryotic translation-initiation factor eIF4E is a rate-limiting factor whose activity is regulated by phosphorylation of Ser209. Here we found that mice and fibroblasts in which eIF4E cannot be phosphorylated were less susceptible to virus infection. More production of type I interferon, resulting from less translation of Nfkbia mRNA (which encodes the inhibitor IκBα), largely explained this phenotype. The lower abundance of IκBα resulted in enhanced activity of the transcription factor NF-κB, which promoted the production of interferon-β (IFN-β). Thus, regulated phosphorylation of eIF4E has a key role in antiviral host defense by selectively controlling the translation of an mRNA that encodes a critical suppressor of the innate antiviral response.
Collapse
Affiliation(s)
- Barbara Herdy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maritza Jaramillo
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri V Svitkin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Amy B Rosenfeld
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Mariko Kobayashi
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Derek Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tommy Alain
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Polen Sean
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nathaniel Robichaud
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Luc Furic
- Monash University, Clayton, Australia
| | - Ryan J O Dowling
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Sylvestre
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Liwei Rong
- McGill AIDS Center, Lady Davis Institute of the Jewish General Hospital, Montreal, Canada
| | - Rodney Colina
- Laboratorio de Virologia Molecular, Regional Norte-Salto, Universidad de la República, Salto, Uruguay
| | | | - Jörg H Fritz
- Complex Traits Group and Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Centre for the Study of Host Resistance, Departments of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada
| | - Earl Brown
- Department of Biochemistry, Microbiology and Immunology, and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Canada
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
A cell culture model of facial palsy resulting from reactivation of latent herpes simplex type 1. Otol Neurotol 2012; 33:87-92. [PMID: 22158020 DOI: 10.1097/mao.0b013e31823dbb20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Reactivation of herpes simplex virus type 1 (HSV-1) in geniculate ganglion neurons (GGNs) is an etiologic mechanism of Bell's palsy (BP) and delayed facial palsy (DFP) after otologic surgery. BACKGROUND Several clinical studies, including temporal bone studies, antibody, titers, and intraoperative studies, suggest that reactivation of HSV-1 from latently infected GGNs may lead to both BP and DFP. However, it is difficult to study these processes in humans or live animals. METHODS Primary cultures of GGNs were latently infected with Patton strain HSV-1 expressing a green fluorescent protein-late lytic gene chimera. Four days later, these cultures were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1 in other neurons. Cultures were monitored daily by fluorescent microscopy. Titers of media from lytic, latent, and latent/TSA treated GGN cultures were obtained using plaque assays on Vero cells. RNA was harvested from latently infected GGN cultures and examined for the presence of viral transcripts using reverse transcription-polymerase chain reaction. RESULTS Latently infected GGN cultures displayed latency-associated transcripts only, whereas lytically infected and reactivated latent cultures produced other viral transcripts, as well. The GGN cultures displayed a reactivation rate of 65% after treatment with TSA. Media from latently infected cultures contained no detectable infectious HSV-1, whereas infectious virus was observed in both lytically and latently infected/TSA-treated culture media. CONCLUSION We have shown that cultured GGNs can be latently infected with HSV-1, and HSV-1 in these latently infected neurons can be reactivated using TSA, yielding infectious virus. These results have implications for the cause of both BP and DFP.
Collapse
|