1
|
Nazziwa J, Andrews SM, Hou MM, Bruhn CAW, Garcia-Knight MA, Slyker J, Hill S, Lohman Payne B, Moringas D, Lemey P, John-Stewart G, Rowland-Jones SL, Esbjörnsson J. Higher HIV-1 evolutionary rate is associated with cytotoxic T lymphocyte escape mutations in infants. J Virol 2024; 98:e0007224. [PMID: 38814066 PMCID: PMC11265422 DOI: 10.1128/jvi.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024] Open
Abstract
Escape from cytotoxic T lymphocyte (CTL) responses toward HIV-1 Gag and Nef has been associated with reduced control of HIV-1 replication in adults. However, less is known about CTL-driven immune selection in infants as longitudinal studies of infants are limited. Here, 1,210 gag and 1,264 nef sequences longitudinally collected within 15 months after birth from 14 HIV-1 perinatally infected infants and their mothers were analyzed. The number of transmitted founder (T/F) viruses and associations between virus evolution, selection, CTL escape, and disease progression were determined. The analyses indicated that a paraphyletic-monophyletic relationship between the mother-infant sequences was common (80%), and that the HIV-1 infection was established by a single T/F virus in 10 of the 12 analyzed infants (83%). Furthermore, most HIV-1 CTL escape mutations among infants were transmitted from the mothers and did not revert during the first year of infection. Still, immune-driven selection was observed at approximately 3 months after HIV-1 infection in infants. Moreover, virus populations with CTL escape mutations in gag evolved faster than those without, independently of disease progression rate. These findings expand the current knowledge of HIV-1 transmission, evolution, and CTL escape in infant HIV-1 infection and are relevant for the development of immune-directed interventions in infants.IMPORTANCEDespite increased coverage in antiretroviral therapy for the prevention of perinatal transmission, paediatric HIV-1 infection remains a significant public health concern, especially in areas of high HIV-1 prevalence. Understanding HIV-1 transmission and the subsequent virus adaptation from the mother to the infant's host environment, as well as the viral factors that affect disease outcome, is important for the development of early immune-directed interventions for infants. This study advances our understanding of vertical HIV-1 transmission, and how infant immune selection pressure is shaping the intra-host evolutionary dynamics of HIV-1.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
| | - Sophie M. Andrews
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Mimi M. Hou
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Miguel A. Garcia-Knight
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Sarah Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Barbara Lohman Payne
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Moringas
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Global Center for Integrated Health of Women, Adolescents and Children (Global WACh), University of Washington, Seattle, Washington, USA
| | | | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Lund University Virus Centre, Lund University, Lund, Sweden
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Aliota MT, Dudley DM, Newman CM, Weger-Lucarelli J, Stewart LM, Koenig MR, Breitbach ME, Weiler AM, Semler MR, Barry GL, Zarbock KR, Haj AK, Moriarty RV, Mohns MS, Mohr EL, Venturi V, Schultz-Darken N, Peterson E, Newton W, Schotzko ML, Simmons HA, Mejia A, Hayes JM, Capuano S, Davenport MP, Friedrich TC, Ebel GD, O’Connor SL, O’Connor DH. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. PLoS Pathog 2018; 14:e1006964. [PMID: 29590202 PMCID: PMC5891079 DOI: 10.1371/journal.ppat.1006964] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/09/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a “synthetic swarm” whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics. Understanding the complex dynamics of Zika virus (ZIKV) infection during pregnancy and during transmission to and from vertebrate host and mosquito vector is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and reservoir establishment. We sought to develop a virus model system for use in nonhuman primates and mosquitoes that allows for the genetic discrimination of molecularly cloned viruses. This “synthetic swarm” of viruses incorporates a molecular barcode that allows for tracking and monitoring individual viral lineages during infection. Here we infected rhesus macaques with this virus to study the dynamics of ZIKV infection in nonhuman primates as well as during mosquito infection/transmission. We found that the proportions of individual barcoded viruses remained relatively stable during acute infection in pregnant and nonpregnant animals. However, in a pregnant animal, the complexity of the virus population declined precipitously 8 days following infection, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Weger-Lucarelli
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Koenig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie R. Zarbock
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amelia K. Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wendy Newton
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michele L. Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory D. Ebel
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (DHO); (SLO)
| |
Collapse
|
4
|
Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection. J Virol 2017; 91:JVI.01372-17. [PMID: 28931691 DOI: 10.1128/jvi.01372-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies.IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of conjecture. By carrying out a detailed examination of viral sequences, we showed that transmission could take place comparatively early in pregnancy. In addition, we showed that when the mother also carried human immunodeficiency virus type 1 (HIV-1), many more HCV variants were shared between her and her child, suggesting that the mechanism and/or the route of transmission of HCV differed in the presence of coinfection with HIV-1. These results could explain why cesarean section is ineffective in preventing vertical HCV transmission and guide the development of interventions to avert pediatric HCV infection.
Collapse
|
5
|
Van Zyl GU, Katusiime MG, Wiegand A, McManus WR, Bale MJ, Halvas EK, Luke B, Boltz VF, Spindler J, Laughton B, Engelbrecht S, Coffin JM, Cotton MF, Shao W, Mellors JW, Kearney MF. No evidence of HIV replication in children on antiretroviral therapy. J Clin Invest 2017; 127:3827-3834. [PMID: 28891813 PMCID: PMC5617669 DOI: 10.1172/jci94582] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
It remains controversial whether current antiretroviral therapy (ART) fully suppresses the cycles of HIV replication and viral evolution in vivo. If replication persists in sanctuary sites such as the lymph nodes, a high priority should be placed on improving ART regimes to target these sites. To investigate the question of ongoing viral replication on current ART regimens, we analyzed HIV populations in longitudinal samples from 10 HIV-1-infected children who initiated ART when viral diversity was low. Eight children started ART at less than ten months of age and showed suppression of plasma viremia for seven to nine years. Two children had uncontrolled viremia for fifteen and thirty months, respectively, before viremia suppression, and served as positive controls for HIV replication and evolution. These latter 2 children showed clear evidence of virus evolution, whereas multiple methods of analysis bore no evidence of virus evolution in any of the 8 children with viremia suppression on ART. Phylogenetic trees simulated with the recently reported evolutionary rate of HIV-1 on ART of 6 × 10-4 substitutions/site/month bore no resemblance to the observed data. Taken together, these data refute the concept that ongoing HIV replication is common with ART and is the major barrier to curing HIV-1 infection.
Collapse
Affiliation(s)
- Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Mary Grace Katusiime
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - William R. McManus
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Michael J. Bale
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Elias K. Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Luke
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc. and Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - Valerie F. Boltz
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Barbara Laughton
- Department Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Clinical Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Mark F. Cotton
- Department Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Clinical Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Wei Shao
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc. and Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), Frederick, Maryland, USA
| |
Collapse
|
6
|
Mother-to-Child HIV Transmission Bottleneck Selects for Consensus Virus with Lower Gag-Protease-Driven Replication Capacity. J Virol 2017. [PMID: 28637761 DOI: 10.1128/jvi.00518-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities.IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT bottleneck. This study advances our understanding of the genetic bottleneck in MTCT by revealing that viruses transmitted to infants have a lower replicative ability as well as a higher similarity to the population consensus (in this case HIV subtype C) than those of their mothers. Furthermore, the observation that "consensus-like" virus sequences correspond to lower in vitro replication abilities yet appear to be preferentially transmitted suggests that viral characteristics favoring transmission are decoupled from those that enhance replicative capacity.
Collapse
|
7
|
Ashokkumar M, Nesakumar M, Cheedarla N, Vidyavijayan KK, Babu H, Tripathy SP, Hanna LE. Molecular Characteristics of the Envelope of Vertically Transmitted HIV-1 Strains from Infants with HIV Infection. AIDS Res Hum Retroviruses 2017; 33:796-806. [PMID: 28401776 DOI: 10.1089/aid.2016.0260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mother-to-child transmission (MTCT) of HIV offers a good opportunity to study the dynamics of early viral evolution in the host environment to which the virus has partially adapted. Such studies would throw light on the unique features of the infecting viruses, which will subsequently help to design preventive or therapeutic measures against the newly infecting and evolving strains of HIV. Therefore, we undertook a study to determine the genetic divergence of proviral envelope sequences from the HIV-infected infants (<2 years). Detailed analysis revealed unique features of potential N-linked glycosylation sites (PNGS) and their frequency of occurrence that built on the difference in length of the V1V2 region of the envelope sequences. Surprisingly, frequency of PNGS in the V5 region was found to revert rapidly, in about 75% of the sequences, which could surmise a fitness disadvantage in the variant forms. Further, a stable net charge was observed in the V2 and V3 regions prompting us to speculate on the established interaction of the transmitted variant with the integrin α4β7 receptor and R5 co-receptor, respectively. In brief, our observations suggest that differences in the length of the variable regions and variation in the frequency of PNGS in the envelope of the viruses obtained from very recently infected individuals in our population could be important characteristics of the unique quasispecies that is responsible for the spread of HIV in the early stages of infection in MTCT.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Narayaniah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - K K Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Hemalatha Babu
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Srikanth P Tripathy
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR) , Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Mouafo LCM, Dambaya B, Ngoufack NN, Nkenfou CN. Host Molecular Factors and Viral Genotypes in the Mother-to-Child HIV-1 Transmission in Sub-Saharan Africa. J Public Health Afr 2017; 8:594. [PMID: 28748061 PMCID: PMC5510234 DOI: 10.4081/jphia.2017.594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Maternal viral load and immune status, timing and route of delivery, viral subtype, and host genetics are known to influence the transmission, acquisition and disease progression of human immunodeficiency virus-1 (HIV-1) infection. This review summarizes the findings from published works on host molecular factors and virus genotypes affecting mother to child transmission (MTCT) in Africa and identifies the gaps that need to be addressed in future research. Articles in PubMed, Google and AIDSearch and relevant conference abstracts publications were searched. Accessible articles on host factors and viral genetics impacting the MTCT of HIV, done on African populations till 2015 were downloaded. Forty-six articles were found and accessed; 70% described host genes impacting the transmission. The most studied gene was the CCR5 promoter, followed by the CCR2-64I found to reduce MTCT; then SDF1-3’A shown to have no effect on MTCT and others like the DC-SIGNR, CD4, CCL3 and IP-10. The HLA class I was most studied and was generally linked to the protective effect on MTCT. Breast milk constituents were associated to protection against MTCT. However, existing studies in Sub Saharan Africa were done just in few countries and some done without control groups. Contradictory results obtained may be due to different genetic background, type of controls, different socio-cultural and economic environment and population size. More studies are thus needed to better understand the mechanism of transmission or prevention.
Collapse
Affiliation(s)
- Linda Chapdeleine M Mouafo
- Department of Biochemistry, University of Dschang, Yaoundé, Cameroon.,Systems Biology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Béatrice Dambaya
- Systems Biology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon.,Department of Animal Sciences, University of Yaounde 1, Cameroon
| | - Nicole N Ngoufack
- Systems Biology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon.,Department of Biochemistry, University of Yaounde 1, Cameroon
| | - Céline N Nkenfou
- Systems Biology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon.,Higher Teachers' Training College, University of Yaounde 1, Cameroon
| |
Collapse
|
9
|
Nakamura KJ, Heath L, Sobrera ER, Wilkinson TA, Semrau K, Kankasa C, Tobin NH, Webb NE, Lee B, Thea DM, Kuhn L, Mullins JI, Aldrovandi GM. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017; 14:6. [PMID: 28122636 PMCID: PMC5267468 DOI: 10.1186/s12977-017-0331-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Results Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother–infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. Conclusions These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle J Nakamura
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Systems Biology and Disease Program, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Edwin R Sobrera
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas A Wilkinson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katherine Semrau
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas E Webb
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald M Thea
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Phan CTT, Pham HV, Bi X, Ishizaki A, Saina M, Phung CD, Khu DTK, Ichimura H. Genetic Analyses of HIV-1 Strains Transmitted from Mother to Child in Northern Vietnam. AIDS Res Hum Retroviruses 2015; 31:797-805. [PMID: 25826000 DOI: 10.1089/aid.2014.0335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously reported mother-to-child transmission of HIV-1 in nine (6.7%) of 135 children on nevirapine prophylaxis in Vietnam. In the current study, we investigated the appearance and profile of antiretroviral drug (ARV) resistance mutations, the predicted coreceptor usage, and the genetic diversity of HIV-1 strains isolated from the eight pairs of HIV-1-infected mothers and their children, who were followed up to 12 months after birth. Portions of the pol and env C2V3 regions of the HIV-1 strains were analyzed genetically. HIV-1 CRF01_AE RNA was detected in four (50%) children at delivery. Y181C, a nevirapine resistance mutation, appeared in two (25%) children 1 and 3 months after birth, respectively. No ARV resistance mutation was detected in the mothers, though three mothers were on ARV prophylaxis. Five mothers and their children harbored CCR5-tropic (R5) viruses. Two mothers harbored both R5 and CXCR4-tropic (X4) viruses, but their children harbored only R5 viruses even though the X4 viruses were dominant in the mothers. In the remaining one mother, HIV-1 RNA was not amplified and her child harbored both R5 and X4 viruses at birth, but only X4 virus 12 months after delivery. The infants' viruses were more homogeneous than their mothers' viruses (mean distance: 0.5% vs. 1.1%, respectively). This is the first molecular epidemiological study of vertical HIV-1 infections in Vietnam. These findings may provide useful knowledge for the prevention of mother-to-child transmission of HIV-1 and the antiretroviral treatment of children in Vietnam.
Collapse
Affiliation(s)
- Chung Thi Thu Phan
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
- National Hospital of Pediatrics, Hanoi, Vietnam
| | - Hung Viet Pham
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
- National Hospital of Pediatrics, Hanoi, Vietnam
| | - Xiuqiong Bi
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Azumi Ishizaki
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Matilda Saina
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Cam Dac Phung
- Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Hiroshi Ichimura
- Department of Viral Infection and International Health, Kanazawa University, Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
11
|
Berzofsky JA, Franchini G. Human/Simian Immunodeficiency Virus Transmission and Infection at Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Fabre F, Moury B, Johansen EI, Simon V, Jacquemond M, Senoussi R. Narrow bottlenecks affect Pea seedborne mosaic virus populations during vertical seed transmission but not during leaf colonization. PLoS Pathog 2014; 10:e1003833. [PMID: 24415934 PMCID: PMC3887104 DOI: 10.1371/journal.ppat.1003833] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence.
Collapse
Affiliation(s)
- Frédéric Fabre
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | - Elisabeth Ida Johansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg C, Denmark
| | - Vincent Simon
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | | - Rachid Senoussi
- INRA, UR546 Biostatistique et Processus Spatiaux, Domaine Saint-Paul, Site Agroparc, Avignon, France
| |
Collapse
|
13
|
Chen I, Khaki L, Lindsey JC, Fry C, Cousins MM, Siliciano RF, Violari A, Palumbo P, Eshleman SH. Association of pol diversity with antiretroviral treatment outcomes among HIV-infected African children. PLoS One 2013; 8:e81213. [PMID: 24312277 PMCID: PMC3842253 DOI: 10.1371/journal.pone.0081213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023] Open
Abstract
Background In HIV-infected children, viral diversity tends to increase with age in the absence of antiretroviral treatment (ART). We measured HIV diversity in African children (ages 6–36 months) enrolled in a randomized clinical trial comparing two ART regimens (Cohort I of the P1060 trial). Children in this cohort were exposed to single dose nevirapine (sdNVP) at birth. Methods HIV diversity was measured retrospectively using a high resolution melting (HRM) diversity assay. Samples were obtained from 139 children at the enrollment visit prior to ART initiation. Six regions of the HIV genome were analyzed: two in gag, one in pol, and three in env. A single numeric HRM score that reflects HIV diversity was generated for each region; composite HRM scores were also calculated (mean and median for all six regions). Results In multivariable median regression models using backwards selection that started with demographic and clinical variables, older age was associated with higher HRM scores (higher HIV diversity) in pol (P = 0.005) and with higher mean (P = 0.014) and median (P<0.001) HRM scores. In multivariable models adjusted for age, pre-treatment HIV viral load, pre-treatment CD4%, and randomized treatment regimen, higher HRM scores in pol were associated with shorter time to virologic suppression (P = 0.016) and longer time to study endpoints (virologic failure [VF], VF/death, and VF/off study treatment; P<0.001 for all measures). Conclusions In this cohort of sdNVP-exposed, ART-naïve African children, higher levels of HIV diversity in the HIV pol region prior to ART initiation were associated with better treatment outcomes.
Collapse
Affiliation(s)
- Iris Chen
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SHE); (IC)
| | - Leila Khaki
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jane C. Lindsey
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Carrie Fry
- Frontier Science and Technology Research Foundation, Amherst, New York, United States of America
| | - Matthew M. Cousins
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert F. Siliciano
- Dept. of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Avy Violari
- PHRU, Chris Baragwanath Hospital, Soweto, South Africa
| | - Paul Palumbo
- Depts. of Pediatrics and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Susan H. Eshleman
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SHE); (IC)
| |
Collapse
|
14
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
15
|
Sanabani SS, Pessôa R, Soares de Oliveira AC, Martinez VP, Giret MTM, de Menezes Succi RC, Carvalho K, Tomiyama CS, Nixon DF, Sabino EC, Kallas EG. Variability of HIV-1 genomes among children and adolescents from São Paulo, Brazil. PLoS One 2013; 8:e62552. [PMID: 23667488 PMCID: PMC3646872 DOI: 10.1371/journal.pone.0062552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genetic variability is a major feature of the human immunodeficiency virus type 1 (HIV-1) and considered the key factor to frustrating efforts to halt the virus epidemic. In this study, we aimed to investigate the genetic variability of HIV-1 strains among children and adolescents born from 1992 to 2009 in the state of Sao Paulo, Brazil. METHODOLOGY Plasma and peripheral blood mononuclear cells (PBMC) were collected from 51 HIV-1-positive children and adolescents on ART followed between September 1992 and July 2009. After extraction, the genetic materials were used in a polymerase chain reaction (PCR) to amplify the viral near full length genomes (NFLGs) from 5 overlapped fragments. NFLGs and partial amplicons were directly sequenced and data were phylogenetically inferred. RESULTS Of the 51 samples studied, the NFLGs and partial fragments of HIV-1 from 42 PBMCs and 25 plasma were successfully subtyped. Results based on proviral DNA revealed that 22 (52.4%) patients were infected with subtype B, 16 (38.1%) were infected with BF1 mosaic variants and 4 (9.5%) were infected with sub-subtype F1. All the BF1 recombinants were unique and distinct from any previously identified unique or circulating recombinant forms in South America. Evidence of dual infections was detected in 3 patients coinfected with the same or distinct HIV-1 subtypes. Ten of the 31 (32.2%) and 12 of the 21 (57.1%) subjects with recovered proviral and plasma, respectively, protease sequences were infected with major mutants resistant to protease inhibitors. The V3 sequences of 14 patients with available sequences from PBMC/or plasma were predicted to be R5-tropic virus except for two patients who harbored an X4 strain. CONCLUSIONS The high proportion of HIV-1 BF1 recombinant, coinfection rate and vertical transmission in Brazil merits urgent attention and effective measures to reduce the transmission of HIV among spouses and sex partners.
Collapse
Affiliation(s)
- Sabri Saeed Sanabani
- Clinical and Research Laboratory (LIM 03), School of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Russell ES, Ojeda S, Fouda GG, Meshnick SR, Montefiori D, Permar SR, Swanstrom R. Short communication: HIV type 1 subtype C variants transmitted through the bottleneck of breastfeeding are sensitive to new generation broadly neutralizing antibodies directed against quaternary and CD4-binding site epitopes. AIDS Res Hum Retroviruses 2013; 29:511-5. [PMID: 23075434 DOI: 10.1089/aid.2012.0197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mother-to-child transmission of HIV-1 subtype C can occur in utero, intrapartum, or via breast milk exposure. While not well understood, there are putative differences in the mechanisms involved with the distinct routes of vertical HIV transmission. Here, we address the question of whether specific viral characteristics are common to variants transmitted through breastfeeding that may facilitate evasion of innate or adaptive immune responses. We amplified the envelope gene (env) from the plasma of six infants during acute infection who were infected with HIV-1 subtype C through breastfeeding, and from three available matched maternal samples. We sequenced the full-length env genes in these subjects revealing heterogeneous viral populations in the mothers and homogeneous populations in the infants. In five infants, the viral population arose from a single variant, while two variants were detected in the remaining infant. Infant env sequences had fewer N-linked glycosylation sites and shorter sequences than those of the available matched maternal samples. Though the small size of the study precluded our ability to test statistical significance, these results are consistent with selection for virus with shorter variable loops and fewer glycosylation sites during transmission of HIV-1 subtype C in other settings. Transmitted envs were resistant to neutralization by antibodies 2G12 and 2F5, but were generally sensitive to the more broadly neutralizing PG9, PG16, and VRC01, indicating that this new generation of broadly neutralizing monoclonal antibodies could be efficacious in passive immunization strategies.
Collapse
Affiliation(s)
- Elizabeth S. Russell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Suany Ojeda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Genevieve G. Fouda
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Steven R. Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - David Montefiori
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Center for Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Abstract
BACKGROUND We used a novel high resolution melting (HRM) diversity assay to analyze HIV diversity in Ugandan children (age 0.6-12.4 years) who were enrolled in an observational study of antiretroviral treatment (ART). Children were maintained on ART if they were clinically and immunologically stable. METHODS HIV diversity was measured before ART (baseline) in 76 children and after 48 or 96 weeks of ART in 14 children who were not virally suppressed. HIV diversity (expressed as HRM scores) was measured in 6 regions of the HIV genome (2 in gag, 1 in pol, 3 in env). RESULTS Higher baseline HRM scores were significantly associated with older age (≥2 years, P ≤ 0.001 for all 6 regions). HRM scores from different regions were weakly correlated. Higher baseline HRM scores in 3 regions (1 in gag, 2 in env) were associated with ART failure. HIV diversity was lower in 4 regions (2 in gag, 1 in pol, 1 in env) after 48-96 weeks of nonsuppressive ART compared with baseline. CONCLUSIONS Higher levels of HIV diversity were observed in older children before ART, and higher levels of diversity in some regions of the HIV genome were associated with ART failure. Prolonged exposure to nonsuppressive ART was associated with a significant decrease in viral diversity in selected regions of the HIV genome.
Collapse
|
18
|
Guo H, Abrahamyan LG, Liu C, Waltke M, Geng Y, Chen Q, Wood C, Kong X. Comparative analysis of the fusion efficiency elicited by the envelope glycoprotein V1-V5 regions derived from human immunodeficiency virus type 1 transmitted perinatally. J Gen Virol 2012; 93:2635-2645. [PMID: 22956734 DOI: 10.1099/vir.0.046771-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the properties of viruses preferentially establishing infection during perinatal transmission of human immunodeficiency virus type 1 (HIV-1) is critical for the development of effective measures to prevent transmission. A previous study demonstrated that the newly transmitted viruses (in infants) of chronically infected mother-infant pairs (MIPs) were fitter in terms of growth, which was imparted by their envelope (Env) glycoprotein V1-V5 regions, than those in the corresponding chronically infected mothers. In order to investigate whether the higher fitness of transmitted viruses was conferred by their higher entry efficiency directed by the V1-V5 regions during perinatal transmission, the fusogenicity of Env containing V1-V5 regions derived from transmitted and non-tranmsmitted viruses of five chronically infected MIPs and two acutely infected MIPs was analysed using two different cell-cell fusion assays. The results showed that, in one chronically infected MIP, a higher fusion efficiency was induced by the infant Env V1-V5 compared with that of the corresponding mother. Moreover, the V4-V5 regions played an important role in discriminating the transmitted and non-transmitted viruses in this pair. However, neither a consistent pattern nor significant differences in fusogenicity mediated by the V1-V5 regions between maternal and infant variants was observed in the other MIPs. This study suggests that there is no consistent and significant correlation between viral fitness selection and entry efficiency directed by the V1-V5 regions during perinatal transmission. Other factors such as the route and timing of transmission may also be involved.
Collapse
Affiliation(s)
- Hongyan Guo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China.,Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Levon G Abrahamyan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| | - Mackenzie Waltke
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Yunqi Geng
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qimin Chen
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, PR China
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, PR China
| |
Collapse
|
19
|
Duri K, Gumbo F, Kristiansen K, Mapingure M, Munjoma M, Chirenje M, Rusakaniko S, Stray-Pedersen B, Műller F. Phylogenetic analysis of human immunodeficiency virus type 1 subtype C env gp120 sequences among four drug-naive families following subsequent heterosexual and vertical transmissions. AIDS Res Hum Retroviruses 2012; 28:885-93. [PMID: 22206228 DOI: 10.1089/aid.2011.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
To characterize phylogenetic relatedness of plasma HIV-1 RNA subtype C env gp120 viral variants capable of establishing an infection following heterosexual and subsequent vertical transmission events a 650-base pair fragment within the C2-V5 subregion was sequenced from four HIV-1-infected families each consisting of biological parent(s), index children (first), and subsequent (second) siblings. None of the family members had received antiretroviral therapy at the time of sample collection. Sequence alignment and analysis were done using Gene Doc, Clustal X, and MEGA software programs. Second siblings' sequences were homogeneous and clustered in a single branch while first siblings' sequences were more heterogeneous, clustering in separate branches, suggestive of more than one donor variants responsible for the infection or evolution from founder variant(s) could have occurred. While the directionality for heterosexual transmission could not be determined, homogeneous viral variants were a unique characteristic of maternal variants as opposed to the more heterogeneous paternal variants. Analysis of families' sequences demonstrated a localized expansion of the subtype C infection. We demonstrated that families' sequences clustered quite closely with other regional HIV-1 subtype C sequences supported by a bootstrap value of 86%, confirming the difficulty of classifying subtype C sequences on a geographic basis. Data are indicative of several mechanisms that may be involved in both vertical and heterosexual transmission. Larger studies are warranted to address the caveats of this study and build on the strengths. Our study could be the beginning of family-based HIV-1 intervention research in Zimbabwe.
Collapse
Affiliation(s)
- Kerina Duri
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - Felicity Gumbo
- Department of Pediatrics and Child Health, University of Zimbabwe, Harare, Zimbabwe
| | - Knut Kristiansen
- Department of Molecular Biology, University of Oslo, Oslo, Norway
| | - Munyaradzi Mapingure
- Department of Bioinformatics, Letten Foundation Research Centre, Harare, Zimbabwe
| | - Marshall Munjoma
- Department of Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Mike Chirenje
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe
| | | | - Babill Stray-Pedersen
- Division of Women and Children, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, Oslo, Norway
| | - Fredrik Műller
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
20
|
Neutralizing antibody escape during HIV-1 mother-to-child transmission involves conformational masking of distal epitopes in envelope. J Virol 2012; 86:9566-82. [PMID: 22740394 DOI: 10.1128/jvi.00953-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
HIV-1 variants transmitted to infants are often resistant to maternal neutralizing antibodies (NAbs), suggesting that they have escaped maternal NAb pressure. To define the molecular basis of NAb escape that contributes to selection of transmitted variants, we analyzed 5 viruses from 2 mother-to-child transmission pairs, in which the infant virus, but not the maternal virus, was resistant to neutralization by maternal plasma near transmission. We generated chimeric viruses between maternal and infant envelope clones obtained near transmission and examined neutralization by maternal plasma. The molecular determinants of NAb escape were distinct, even when comparing two maternal variants to the transmitted infant virus within one pair, in which insertions in V4 of gp120 and substitutions in HR2 of gp41 conferred neutralization resistance. In another pair, deletions and substitutions in V1 to V3 conferred resistance, but neither V1/V2 nor V3 alone was sufficient. Although the sequence determinants of escape were distinct, all of them involved modifications of potential N-linked glycosylation sites. None of the regions that mediated escape were major linear targets of maternal NAbs because corresponding peptides failed to compete for neutralization. Instead, these regions disrupted multiple distal epitopes targeted by HIV-1-specific monoclonal antibodies, suggesting that escape from maternal NAbs occurred through conformational masking of distal epitopes. This strategy likely allows HIV-1 to utilize relatively limited changes in the envelope to preserve the ability to infect a new host while simultaneously evading multiple NAb specificities present in maternal plasma.
Collapse
|
21
|
Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 2012; 8:e1002739. [PMID: 22719248 PMCID: PMC3375288 DOI: 10.1371/journal.ppat.1002739] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 01/25/2023] Open
Abstract
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman's autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS)--only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log(10) lower (compared to 0.59 log(10) lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001) and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.
Collapse
Affiliation(s)
- Jennifer Mabuka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Program of Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ruth Nduati
- Department of Pediatrics, University of Nairobi, Nairobi, Kenya
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dylan Peterson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
22
|
Abstract
OBJECTIVES Identifying the direction of transmission in transmission pairs is important both for forensic investigations and for the monitoring of HIV epidemics, however, reliable methods are not yet available due to the long time lag between infection and sampling in most real cases. DESIGNS Based on bottleneck effect and coreceptor switching, we aimed at identifying an estimator from sequences of viral gp120 proteins to determine transmission direction between transmission pairs. The estimator should be changed with HIV transmission but was independent of disease progression in an individual. METHODS Here, we present a novel and reliable approach for identifying transmission direction. We derived a set of conserved patterns, called common patterns, from the sequences of viruses, which differed in their coreceptor usage. The number of unique common patterns in viral sequences decreased with transmission but remained almost constant with the progress of disease in an individual. We used this number as an estimator to determine transmission direction in 73 transmission pairs for which the transmission direction was already known. RESULTS Our method predicted transmission direction with an accuracy of up to 94.5%. Of greater importance, our approach was not influenced by time lags between infection and sampling, and even transmission direction for transmission pairs with long time lags ranging from 2 years to more than 18 years were correctly determined. CONCLUSION Our approach for accurately determining transmission direction between transmission pairs is irrespective of the time lag between infection and sampling, which means a promising applications prospect.
Collapse
|
23
|
Rossenkhan R, Novitsky V, Sebunya TK, Musonda R, Gashe BA, Essex M. Viral diversity and diversification of major non-structural genes vif, vpr, vpu, tat exon 1 and rev exon 1 during primary HIV-1 subtype C infection. PLoS One 2012; 7:e35491. [PMID: 22590503 PMCID: PMC3348911 DOI: 10.1371/journal.pone.0035491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/16/2012] [Indexed: 01/12/2023] Open
Abstract
To assess the level of intra-patient diversity and evolution of HIV-1C non-structural genes in primary infection, viral quasispecies obtained by single genome amplification (SGA) at multiple sampling timepoints up to 500 days post-seroconversion (p/s) were analyzed. The mean intra-patient diversity was 0.11% (95% CI; 0.02 to 0.20) for vif, 0.23% (95% CI; 0.08 to 0.38) for vpr, 0.35% (95% CI; −0.05 to 0.75) for vpu, 0.18% (95% CI; 0.01 to 0.35) for tat exon 1 and 0.30% (95% CI; 0.02 to 0.58) for rev exon 1 during the time period 0 to 90 days p/s. The intra-patient diversity increased gradually in all non-structural genes over the first year of HIV-1 infection, which was evident from the vif mean intra-patient diversity of 0.46% (95% CI; 0.28 to 0.64), vpr 0.44% (95% CI; 0.24 to 0.64), vpu 0.84% (95% CI; 0.55 to 1.13), tat exon 1 0.35% (95% CI; 0.14 to 0.56 ) and rev exon 1 0.42% (95% CI; 0.18 to 0.66) during the time period of 181 to 500 days p/s. There was a statistically significant increase in viral diversity for vif (p = 0.013) and vpu (p = 0.002). No associations between levels of viral diversity within the non-structural genes and HIV-1 RNA load during primary infection were found. The study details the dynamics of the non-structural viral genes during the early stages of HIV-1C infection.
Collapse
Affiliation(s)
- Raabya Rossenkhan
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Theresa K. Sebunya
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Rosemary Musonda
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Berhanu A. Gashe
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - M. Essex
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Envelope glycoproteins of human immunodeficiency virus type 1 variants issued from mother-infant pairs display a wide spectrum of biological properties. Virology 2012; 426:12-21. [PMID: 22310702 DOI: 10.1016/j.virol.2012.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the early virus population present in HIV-1 infected infants usually is homogeneous when compared to the highly diversified viral population present at delivery in their mothers. We explored the antigenic and functional properties of pseudotyped viruses expressing gp120 encoded by env clones issued from four mother-infant pairs infected by CRF01_AE viruses. We compared their sensitivity to neutralization and to entry inhibitors, their infectivity levels and the Env processing and incorporation levels. We found that both transmitted viruses present in infants and the variants present in their chronically infected mothers display a wide spectrum of biological properties that could not distinguish between them. In contrast, we found that all the transmitted viruses in the infants were more sensitive to neutralization by PG9 and PG16 than the maternal variants, an observation that may have implications for the development of prophylactic strategies to prevent mother-to-child transmission.
Collapse
|
25
|
Gijsbers EF, Schuitemaker H, Kootstra NA. HIV-1 transmission and viral adaptation to the host. Future Virol 2012. [DOI: 10.2217/fvl.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV-1 transmission predominantly occurs via mucosal transmission and blood–blood contact. In most newly infected individuals, outgrowth of a single virus variant has been described. This indicates that HIV-1 transmission is a very inefficient process and is restricted by an extensive transmission bottleneck. The transmission rate is directly correlated to the viral load in the donor and the susceptibility of the recipient, which is influenced by factors such as the integrity of mucosal barriers, target cell availability and genetic host factors. After establishment of infection in the new host, the viral population remains very homogenous until the host immune response drives evolution of the viral quasispecies. This review describes our current knowledge on HIV-1 transmission and recent insights in viral adaption to its host.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Ellington SR, King CC, Kourtis AP. Host factors that influence mother-to-child transmission of HIV-1: genetics, coinfections, behavior and nutrition. Future Virol 2011; 6:1451-1469. [PMID: 29348780 DOI: 10.2217/fvl.11.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mother-to-child transmission (MTCT) is the most important mode of HIV-1 acquisition among infants and children and it can occur in utero, intrapartum and postnatally through breastfeeding. Great progress has been made in preventing MTCT through use of antiretroviral regimens during gestation, labor/delivery and breastfeeding. The mechanisms of MTCT, however, are multifactorial and remain incompletely understood. This review focuses on select host factors affecting MTCT, in particular genetic factors, coexisting infections, behavioral factors and nutrition. Whereas much emphasis has been placed on decreasing maternal HIV-1 viral load, an important determinant of MTCT, through use of antiretroviral agents, complementary focus on overall maternal health is often neglected. By addressing coinfections in mothers and infants, improving the mother's nutritional status and modifying risky behaviors and practices, not only is maternal and child health improved, but a direct benefit in reducing MTCT can be derived. The study of genetic variations in susceptibility to HIV-1 infection is rapidly evolving, and the future is likely to bring revolutionary changes in HIV-1 prevention by enhancing natural resistance to infection and by individually tailoring pharmacologic regimens.
Collapse
Affiliation(s)
- Sascha R Ellington
- Division of Reproductive Health, National Center for Chronic Disease Prevention & Health Promotion, CDC, 4770 Buford Highway, NE, MS K34, Atlanta, GA 30341, USA
| | - Caroline C King
- Division of Reproductive Health, National Center for Chronic Disease Prevention & Health Promotion, CDC, 4770 Buford Highway, NE, MS K34, Atlanta, GA 30341, USA
| | - Athena P Kourtis
- Division of Reproductive Health, National Center for Chronic Disease Prevention & Health Promotion, CDC, 4770 Buford Highway, NE, MS K34, Atlanta, GA 30341, USA
| |
Collapse
|
27
|
Kumar SB, Handelman SK, Voronkin I, Mwapasa V, Janies D, Rogerson SJ, Meshnick SR, Kwiek JJ. Different regions of HIV-1 subtype C env are associated with placental localization and in utero mother-to-child transmission. J Virol 2011; 85:7142-52. [PMID: 21543508 PMCID: PMC3126595 DOI: 10.1128/jvi.01955-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/13/2011] [Indexed: 01/22/2023] Open
Abstract
HIV infections are initiated by a limited number of variants that diverge into a diverse quasispecies swarm. During in utero mother-to-child transmission (IU MTCT), transmitted viral variants must pass through multiple unique environments, and our previously published data suggest a nonstochastic model of transmission. As an alternative to a stochastic model of viral transmission, we hypothesize that viral selection in the placental environment influences the character of the viral quasispecies when HIV-1 is transmitted in utero. To test this hypothesis, we used single-template amplification to isolate HIV-1 envelope gene (env) sequences from both peripheral plasma and the placentas of eight nontransmitting (NT) and nine IU-transmitting participants. Statistically significant compartmentalization between peripheral and placental HIV-1 env was detected in one of the eight NT cases and six of the nine IU MTCT cases. In addition, viral sequences isolated from IU MTCT placental tissue showed variation in env V1 loop lengths compared to matched maternal sequences, while NT placental env sequences did not. Finally, comparison of env sequences from NT and IU MTCT participants indicated statistically significant differences in Kyte-Doolittle hydropathy in the signal peptide, C2, V3, and C3 regions. Our working hypothesis is that the hydropathy differences in Env associated with IU MTCT alter viral cellular tropism or affinity, allowing HIV-1 to efficiently infect placentally localized cells.
Collapse
Affiliation(s)
- Surender B. Kumar
- Department of Veterinary Biosciences and Center for Retrovirus Research
| | | | | | - Victor Mwapasa
- Department of Community Health, Malawi College of Medicine, Blantyre, Malawi
| | | | - Stephen J. Rogerson
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Steven R. Meshnick
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jesse J. Kwiek
- Division of Infectious Diseases, and Department of Microbiology, Center for Microbial Interface Biology, and Center for Retrovirus Research, Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
The genetic bottleneck in vertical transmission of subtype C HIV-1 is not driven by selection of especially neutralization-resistant virus from the maternal viral population. J Virol 2011; 85:8253-62. [PMID: 21593171 DOI: 10.1128/jvi.00197-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Subtype C human immunodeficiency virus type 1 (HIV-1C) continues to cause the majority of new cases of mother-to-child transmission (MTCT), and yet there are limited data on HIV-1C transmission. We amplified env from plasma RNA for 19 HIV-1C MTCT pairs, 10 transmitting in utero (IU) and 9 transmitting intrapartum (IP). There was a strong genetic bottleneck between all mother-infant pairs, with a majority of transmission events involving the transmission of a single virus. env genes of viruses transmitted to infants IP, but not IU, encoded Env proteins that were shorter and had fewer putative N-linked glycosylation sites in the V1-V5 region than matched maternal sequences. Viruses pseudotyped with env clones representative of each maternal and infant population were tested for neutralization sensitivity. The 50% inhibitory concentration of autologous serum was similar against both transmitted (infant) and nontransmitted (maternal) viruses in a paired analysis. Mother and infant Env proteins were also similar in sensitivity to soluble CD4, to a panel of monoclonal antibodies, and to heterologous HIV-1C sera. In addition, there was no difference in the breadth or potency of neutralizing antibodies between sera from 50 nontransmitting and 23 IU and 23 IP transmitting HIV-1C-infected women against four Env proteins from heterologous viruses. Thus, while a strong genetic bottleneck was detected during MCTC, with viruses of shorter and fewer glycosylation sites in env present in IP transmission, our data do not support this bottleneck being driven by selective resistance to antibodies.
Collapse
|
29
|
James MM, Wang L, Musoke P, Donnell D, Fogel J, Towler WI, Khaki L, Nakabiito C, Jackson JB, Eshleman SH. Association of HIV diversity and survival in HIV-infected Ugandan infants. PLoS One 2011; 6:e18642. [PMID: 21533179 PMCID: PMC3077388 DOI: 10.1371/journal.pone.0018642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/13/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The level of viral diversity in an HIV-infected individual can change during the course of HIV infection, reflecting mutagenesis during viral replication and selection of viral variants by immune and other selective pressures. Differences in the level of viral diversity in HIV-infected infants may reflect differences in viral dynamics, immune responses, or other factors that may also influence HIV disease progression. We used a novel high resolution melting (HRM) assay to measure HIV diversity in Ugandan infants and examined the relationship between diversity and survival through 5 years of age. METHODS Plasma samples were obtained from 31 HIV-infected infants (HIVNET 012 trial). The HRM assay was used to measure diversity in two regions in the gag gene (Gag1 and Gag2) and one region in the pol gene (Pol). RESULTS HRM scores in all three regions increased with age from 6-8 weeks to 12-18 months (for Gag1: P = 0.005; for Gag2: P = 0.006; for Pol: P = 0.016). Higher HRM scores at 6-8 weeks of age (scores above the 75(th) percentile) were associated with an increased risk of death by 5 years of age (for Pol: P = 0.005; for Gag1/Gag2 (mean of two scores): P = 0.003; for Gag1/Gag2/Pol (mean of three scores): P = 0.002). We did not find an association between HRM scores and other clinical and laboratory variables. CONCLUSIONS Genetic diversity in HIV gag and pol measured using the HRM assay was typically low near birth and increased over time. Higher HIV diversity in these regions at 6-8 weeks of age was associated with a significantly increased risk of death by 5 years of age.
Collapse
Affiliation(s)
- Maria M. James
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lei Wang
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Philippa Musoke
- Makerere University-Johns Hopkins University Research Collaboration (MU-JHU), Baltimore, Maryland, United States of America, and Kampala, Uganda
- Makerere University School of Medicine, Kampala, Uganda
| | - Deborah Donnell
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica Fogel
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William I. Towler
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leila Khaki
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Clemensia Nakabiito
- Makerere University-Johns Hopkins University Research Collaboration (MU-JHU), Baltimore, Maryland, United States of America, and Kampala, Uganda
- Makerere University School of Medicine, Kampala, Uganda
| | - J. Brooks Jackson
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H. Eshleman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
30
|
Kourtis AP, Amedee AM, Bulterys M, Danner S, Van Dyke R, O'Sullivan MJ, Maupin R, Jamieson DJ. Various viral compartments in HIV-1-infected mothers contribute to in utero transmission of HIV-1. AIDS Res Hum Retroviruses 2011; 27:421-7. [PMID: 21034247 DOI: 10.1089/aid.2010.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal HIV transmission occurs in utero or intrapartum. The mechanisms and timing of transmission are not clearly understood. To compare the genetic sequences of the V3 envelope region of infant's plasma HIV to that of the mother's plasma, peripheral blood mononuclear cells (PBMC) and vaginal secretions, and correlate with timing of transmission. All 3 infants had a positive HIV PCR in the first days of life, thus classified as in utero infections. In the first mother-infant pair, two different variants were present in the infant, one correlating with maternal PBMC virus and highly homologous to virus from vaginal secretions and the other identical to sequences in maternal plasma. In the second pair, the infant plasma virus was similar to that of maternal PBMC. In the third pair, the cord blood and infant plasma virus were highly similar to maternal vaginal virus. The presence of more than one HIV variant from the maternal blood and from the vaginal compartment in the cord blood of infants presumably infected in utero could point to more than one episode of transmission or, alternatively, to transmission of PBMC virus.
Collapse
Affiliation(s)
- Athena P. Kourtis
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia
| | - Angela Martin Amedee
- Department of Microbiology, Immunology, and Parisitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Marc Bulterys
- Global AIDS Program, Center for Global Health, CDC, Beijing, China
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Susan Danner
- Division of HIV/AIDS Prevention, National Center for HIV, Viral Hepatitis, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Russell Van Dyke
- Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana
| | | | - Robert Maupin
- Department of Microbiology, Immunology, and Parisitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Denise J. Jamieson
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia
| |
Collapse
|
31
|
Bulterys PL, Dalai SC, Katzenstein DA. Viral sequence analysis from HIV-infected mothers and infants: molecular evolution, diversity, and risk factors for mother-to-child transmission. Clin Perinatol 2010; 37:739-50, viii. [PMID: 21078447 PMCID: PMC3175486 DOI: 10.1016/j.clp.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Great progress has been made in understanding the pathogenesis, treatment, and transmission of HIV and the factors influencing the risk of mother-to-child transmission (MTCT). Many questions regarding the molecular evolution and genetic diversity of HIV in the context of MTCT remain unanswered. Further research to identify the selective factors governing which variants are transmitted, how the compartmentalization of HIV in different cells and tissues contributes to transmission, and the influence of host immunity, viral diversity, and recombination on MTCT may provide insight into new prevention strategies and the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Philip L Bulterys
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-4200, USA
| | | | | |
Collapse
|
32
|
Kirchherr JL, Hamilton J, Lu X, Gnanakaran S, Muldoon M, Daniels M, Kasongo W, Chalwe V, Mulenga C, Mwananyanda L, Musonda RM, Yuan X, Montefiori DC, Korber BT, Haynes BF, Gao F. Identification of amino acid substitutions associated with neutralization phenotype in the human immunodeficiency virus type-1 subtype C gp120. Virology 2010; 409:163-74. [PMID: 21036380 DOI: 10.1016/j.virol.2010.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/22/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Neutralizing antibodies (Nabs) are thought to play an important role in prevention and control of HIV-1 infection and should be targeted by an AIDS vaccine. It is critical to understand how HIV-1 induces Nabs by analyzing viral sequences in both tested viruses and sera. Neutralization susceptibility to antibodies in autologous and heterologous plasma was determined for multiple Envs (3-6) from each of 15 subtype-C-infected individuals. Heterologous neutralization was divided into two distinct groups: plasma with strong, cross-reactive neutralization (n=9) and plasma with weak neutralization (n=6). Plasma with cross-reactive heterologous Nabs also more potently neutralized contemporaneous autologous viruses. Analysis of Env sequences in plasma from both groups revealed a three-amino-acid substitution pattern in the V4 region that was associated with greater neutralization potency and breadth. Identification of such potential neutralization signatures may have important implications for the development of HIV-1 vaccines capable of inducing Nabs to subtype C HIV-1.
Collapse
Affiliation(s)
- Jennifer L Kirchherr
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pisoni G, Bertoni G, Manarolla G, Vogt HR, Scaccabarozzi L, Locatelli C, Moroni P. Genetic analysis of small ruminant lentiviruses following lactogenic transmission. Virology 2010; 407:91-9. [PMID: 20797752 DOI: 10.1016/j.virol.2010.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/16/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
Abstract
Lactogenic transmission plays an important role in the biology of lentiviruses such as HIV and SIV or the small ruminant lentiviruses (SRLV). In this work we analyzed the characteristics of viruses that goats, naturally infected with two strains of SRLV, transmitted to their kids. The spectrum of viral genotypes transmitted was broader and the efficiency of transmission greater compared to their human and simian counterparts. The newly described A10 subgroup of SRLV was more efficiently transmitted than the B1 genotype. The analysis of a particular stretch of the envelope glycoprotein encompassing a potential neutralizing epitope revealed that, as in SIV, the transmitted viruses were positively charged in this region, but, in contrast to SIV, they tended to lack a glycosylation site that might protect against antibody neutralization. We conclude that the physiology of the ruminant neonatal intestine, which permits the adsorption of infected maternal cells, shaped the evolution of these particular lentiviruses that represent a valid model of lactogenic lentivirus transmission.
Collapse
Affiliation(s)
- Giuliano Pisoni
- Università degli Studi di Milano, Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, via Celoria 10, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Shanmugasundaram U, Solomon S, Murugavel KG, Nagalingeswaran K, Solomon SS, Mayer KH, Pachamuthu B. Short communication: Nucleotide variation and positively selected sites in HIV type 1 reverse transcriptase among heterosexual transmission pairs. AIDS Res Hum Retroviruses 2010; 26:895-9. [PMID: 20672974 DOI: 10.1089/aid.2010.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the env gene of HIV-1 have been the primary focus in most epidemiologically related cohort studies of virus evolution and very limited studies have focused on the reverse transcriptase (RT) region, the primary target of antiretroviral therapy (ART). Hence, we measured the selection pressure and searched for the positively selected sites in the RT sequences amplified from HIV-1-infected heterosexual transmission pairs. Married couples (n = 10) who were ART naive were included in this study. Phylogenetic analysis, the measurement of synonymous and nonsynonymous ratio (dN/dS) and the interpatient nucleotide variation, was done. Phylogenetic analysis demonstrated distinct subclusters of the RT sequences from heterosexual transmission pairs and the median (IQR) nucleotide variation between the epidemiologically related transmission pairs was significantly (p < 0.001) lower [0.01% (0.01-0.02%)] compared to the epidemiologically unrelated transmission pairs [0.04% (0.03-0.04%)]. The ratio of dN/dS was <1 and codons 135, 162, 166, 207, and 211 were positively selected in >50% of the donor and recipient RT sequences. Purifying selection pressure and low nucleotide variation in the RT sequences between epidemiologically related transmission pairs highlight its essential role in HIV-1 replication. The effect of the RT positively selected mutations that persist over time following transmission between individuals needs to be studied to determine the fitness cost of the mutations in vivo, which may possibly represent good targets for inclusion in HIV-1 vaccines.
Collapse
Affiliation(s)
| | - Suniti Solomon
- Y.R. Gaitonde Centre for AIDS Research and Education, Chennai, India
| | | | | | - Sunil S. Solomon
- Y.R. Gaitonde Centre for AIDS Research and Education, Chennai, India
| | - Kenneth H. Mayer
- Warren Alpert School of Medicine, Brown University/Miriam Hospital, Providence, Rhode Island
| | | |
Collapse
|
35
|
Restricted genetic diversity of HIV-1 subtype C envelope glycoprotein from perinatally infected Zambian infants. PLoS One 2010; 5:e9294. [PMID: 20174636 PMCID: PMC2823783 DOI: 10.1371/journal.pone.0009294] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/29/2010] [Indexed: 01/10/2023] Open
Abstract
Background Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission. Methodology and Findings The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS<1). Conclusions Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW To summarize our current understanding of the restricted diversity and biological characteristics of newly transmitted HIV-1 variants. RECENT FINDINGS Transmission of HIV-1 involves a reduction in viral diversity, supporting the concept of a genetic bottleneck. In most cases, transmission appears to be mediated by a single infectious unit. Transmission of multiple variants has also been observed and is associated with factors that compromise the genital mucosa. The biological characteristics of the newly transmitted variants are influenced by the mode of transmission and perhaps the viral subtype. For sexual transmission, the integrity of the mucosal barrier is likely to impose a major restriction on the infecting virus, whereas mother-to-child transmission is also influenced by the presence of maternal antibody. SUMMARY Transmission of HIV-1 is complex, multimodal, and poorly understood, but one common feature appears to be a window of opportunity when the infection is localized and viral diversity is limited; at this time the virus is at its most vulnerable. A better understanding of the restrictions inflicted upon transmitting HIV-1 should therefore lead to improved biomedical interventions that have the potential to protect against HIV infection.
Collapse
|
37
|
Samleerat T, Thenin S, Jourdain G, Ngo-Giang-Huong N, Moreau A, Leechanachai P, Ithisuknanth J, Pagdi K, Wannarit P, Sangsawang S, Lallemant M, Barin F, Braibant M. Maternal neutralizing antibodies against a CRF01_AE primary isolate are associated with a low rate of intrapartum HIV-1 transmission. Virology 2009; 387:388-94. [PMID: 19303619 DOI: 10.1016/j.virol.2009.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/09/2009] [Accepted: 02/18/2009] [Indexed: 02/01/2023]
Abstract
Mother-to-child transmission (MTCT) of HIV-1 provides a model for studying the role of passively acquired antibodies in preventing HIV infection. We determined the titers of neutralizing antibodies (NAbs) against six primary isolates of clades B and CRF01_AE in sera from 45 transmitting and 45 nontransmitting mothers matched for the main independent factors associated with MTCT in Thailand. A lower risk of MTCT, particularly for intrapartum transmission, was associated only with higher NAb titers against the CRF01_AE strain, MBA. The envelope glycoprotein of this strain showed an unusually long V2 domain of 63 amino acids, encoding six potential N-linked glycosylation sites. We provided experimental data indicating that the extended V2 domain contributed to the higher level of resistance to neutralization by mothers' sera in this strain. Taken together the data suggest that some primary isolates with specific properties may be useful indicators for identifying protective antibodies.
Collapse
|
38
|
Ceballos A, Andreani G, Ripamonti C, Dilernia D, Mendez R, Rabinovich RD, Cárdenas PC, Zala C, Cahn P, Scarlatti G, Peralta LM. Lack of viral selection in human immunodeficiency virus type 1 mother-to-child transmission with primary infection during late pregnancy and/or breastfeeding. J Gen Virol 2009; 89:2773-2782. [PMID: 18931075 DOI: 10.1099/vir.0.83697-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) as described for women with an established infection is, in most cases, associated with the transmission of few maternal variants. This study analysed virus variability in four cases of maternal primary infection occurring during pregnancy and/or breastfeeding. Estimated time of seroconversion was at 4 months of pregnancy for one woman (early seroconversion) and during the last months of pregnancy and/or breastfeeding for the remaining three (late seroconversion). The C2V3 envelope region was analysed in samples of mother-child pairs by molecular cloning and sequencing. Comparisons of nucleotide and amino acid sequences as well as phylogenetic analysis were performed. The results showed low variability in the virus population of both mother and child. Maximum-likelihood analysis showed that, in the early pregnancy seroconversion case, a minor viral variant with further evolution in the child was transmitted, which could indicate a selection event in MTCT or a stochastic event, whereas in the late seroconversion cases, the mother's and child's sequences were intermingled, which is compatible with the transmission of multiple viral variants from the mother's major population. These results could be explained by the less pronounced selective pressure exerted by the immune system in the early stages of the mother's infection, which could play a role in MTCT of HIV-1.
Collapse
Affiliation(s)
- Ana Ceballos
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Guadalupe Andreani
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Chiara Ripamonti
- Viral Evolution and Transmission Unit, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Dario Dilernia
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Ramiro Mendez
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Roberto D Rabinovich
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | | | - Carlos Zala
- Hospital Juan Fernández, Buenos Aires, Argentina
| | - Pedro Cahn
- Hospital Juan Fernández, Buenos Aires, Argentina
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Liliana Martínez Peralta
- National Reference Center for AIDS, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
39
|
Samleerat T, Braibant M, Jourdain G, Moreau A, Ngo-Giang-Huong N, Leechanachai P, Hemvuttiphan J, Hinjiranandana T, Changchit T, Warachit B, Suraseranivong V, Lallemant M, Barin F. Characteristics of HIV type 1 (HIV-1) glycoprotein 120 env sequences in mother-infant pairs infected with HIV-1 subtype CRF01_AE. J Infect Dis 2008; 198:868-76. [PMID: 18700833 DOI: 10.1086/591251] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We analyzed the characteristics of the envelope genes of human immunodeficiency virus type 1 in 17 mother-infant pairs infected with variants of the CRF01_AE clade. A total of 353 sequences covering almost the entire glycoprotein (gp) 120 region were available for analysis. We found that, even if the virus population in the mother was complex, only viruses of a restricted subset were transmitted to her infant, independently of whether transmission occurred in utero or during the intrapartum period. We did not find that shorter gp120 regions or fewer potential N-glycosylation sites (PNGS) were characteristic of viruses transmitted from mother to infant. However, our data suggest that a limited number of PNGS that seem to be conserved in all variants in infants but are not uniformly present in variants in mothers may confer an advantage for transmission of the virus, thereby highlighting the potentially important role of the "glycan shield." This finding was particularly significant for the PNGS at positions N301 and N384.
Collapse
Affiliation(s)
- Tanawan Samleerat
- Faculty of Associated Medical Sciences, Chiang Mai University, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The human immunodeficiency virus type 1 envelope confers higher rates of replicative fitness to perinatally transmitted viruses than to nontransmitted viruses. J Virol 2008; 82:11609-18. [PMID: 18786994 DOI: 10.1128/jvi.00952-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selection of a minor viral genotype during perinatal transmission of human Immunodeficiency virus type 1 (HIV-1) has been observed, but there is a lack of information on the correlation of the restrictive transmission with biological properties of the virus, such as replicative fitness. Recombinant viruses expressing the enhanced green fluorescent protein or the Discosoma sp. red fluorescent (DsRed2) protein carrying the V1 to V5 regions of env from seven mother-infant pairs (MIPs) infected by subtype C HIV-1 were constructed, and competition assays were carried out to compare the fitness between the transmitted and nontransmitted viruses. Flow cytometry was used to quantify the frequency of infected cells, and the replicative fitness was determined based on a calculation that takes into account replication of competing viruses in a single infection versus dual infections. Transmitted viruses from five MIPs with the mothers chronically infected showed a restrictive env genotype, and all the recombinant viruses carrying the infants' Env had higher replicative fitness than those carrying the Env from the mothers. This growth fitness is lineage specific and can be observed only within the same MIP. In contrast, in two MIPs where the mothers had undergone recent acute infection, the viral Env sequences were similar between the mothers and infants and showed no further restriction in quasispecies during perinatal transmission. The recombinant viruses carrying the Env from the infants' viruses also showed replication fitness similar to those carrying the mothers' Env proteins. Our results suggest that newly transmitted viruses from chronically infected mothers have been selected to have higher replicative fitness to favor transmission, and this advantage is conferred by the V1 to V5 region of Env of the transmitted viruses. This finding has important implications for vaccine design or development of strategies to prevent HIV-1 transmission.
Collapse
|
41
|
Abstract
OBJECTIVE To characterize the envelope (Env) glycoprotein of HIV-1 in mother-infant pairs (MIP) that underwent near simultaneous or acute-phase seroconversion, we examined the Env sequence of the transmitted viruses and compare viral evolution within the pair. DESIGN Three MIP from a Zambian cohort that seroconverted at the same sampling time were identified and followed longitudinally. METHODS The V1-V5 region of the HIV-1 Env gene was sequenced for each sample collected. Phylogenetic and population genetics analyses were carried out to subtype the viruses, estimate relationships among viral genotypes, and compare molecular evolution between the viral populations. RESULTS Genetic analyses demonstrated a close intrapair relationship between viral sequences from each MIP. Transmission involved several closely related viral genotypes and did not result in a reduction in viral diversity. Amino acid changes were not evenly distributed along Env V1-V5 but concentrated in concordant areas within each MIP. Several positions under positive selection were shared between the MIP viruses. Interestingly, selective pressure on the virus was higher in the infants than in the mothers. CONCLUSIONS In contrast to most cases of perinatal transmission of HIV-1 from chronically infected mothers, there is no evidence of a genetic bottleneck in the transmitted viruses in these three instances of acute seroconversion. The longitudinal changes in the amino acids are in similar positions in Env for the MIP, suggesting shared evolutionary constrains among the closely related viruses infecting the MIP; such constrains may lead to similar genetic changes in the virus in two different hosts.
Collapse
|
42
|
The molecular epidemiology of HIV-1 envelope diversity during HIV-1 subtype C vertical transmission in Malawian mother-infant pairs. AIDS 2008; 22:863-71. [PMID: 18427205 DOI: 10.1097/qad.0b013e3282f51ea0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To study the relationship between HIV-1 subtype C genetic diversity and mother-to-child transmission and to determine if transmission of HIV-1 V1/V2 env variants occurs stochastically. DESIGN Case-case-control study of Malawian mother-infant pairs consisting of 32 nontransmitting women, 25 intrauterine transmitters, and 23 intrapartum transmitters in Blantyre, Malawi. METHODS A heteroduplex tracking assay against the highly variable HIV-1 env V1/V2 region was used to characterize the relationship between HIV-1 diversity and mother-to-child transmission. The relative abundance of the maternal env variants was quantified and categorized as transmitted or nontransmitted based on the env variants detected in the infant plasma. The V1/V2 region was sequenced from two mother-infant pairs and a phylogenetic tree was built. RESULTS No relationship was found between transmission and overall maternal env diversity. Infants had less diverse HIV-1 populations than their mothers, and intrauterine-infected infants had fewer V1/V2 variants and were more likely to harbor a homogeneous V1/V2 population than infants infected intrapartum. V1/V2 sequences cloned from two mother-infant transmission pairs support multiple env variant transmission when multiple variants are detected, rather than single variant transmission followed by diversification. Almost 50% of the HIV-infected infants contained V1/V2 env variants that were not detected in maternal plasma samples. Finally transmission of env variants was not related to their abundance in maternal blood. CONCLUSION These data suggest that the predominant mechanism(s) of HIV-1 subtype C mother-to-child transmission differs by the timing of transmission and is unlikely to be explained by a simple stochastic model.
Collapse
|
43
|
Nora T, Bouchonnet F, Labrosse B, Charpentier C, Mammano F, Clavel F, Hance AJ. Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses. Retrovirology 2008; 5:23. [PMID: 18312646 PMCID: PMC2270869 DOI: 10.1186/1742-4690-5-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies have shown that viral quasi-species with genetically diverse envelope proteins (Env) replicate simultaneously in patients infected with the human immunodeficiency virus type 1 (HIV-1). Less information is available concerning the extent that envelope sequence diversity translates into a diversity of phenotypic properties, including infectivity and resistance to entry inhibitors. Methods To study these questions, we isolated genetically distinct contemporaneous clonal viral populations from the plasma of 5 HIV-1 infected individuals (n = 70), and evaluated the infectivity of recombinant viruses expressing Env proteins from the clonal viruses in several target cells. The sensitivity to entry inhibitors (enfuvirtide, TAK-799), soluble CD4 and monoclonal antibodies (2G12, 48d, 2F5) was also evaluated for a subset of the recombinant viruses (n = 20). Results Even when comparisons were restricted to viruses with similar tropism, the infectivity for a given target cell of viruses carrying different Env proteins from the same patient varied over an approximately 10-fold range, and differences in their relative ability to infect different target cells were also observed. Variable region haplotypes associated with high and low infectivity could be identified for one patient. In addition, clones carrying unique mutations in V3 often displayed low infectivity. No correlation was observed between viral infectivity and sensitivity to inhibition by any of the six entry inhibitors evaluated, indicating that these properties can be dissociated. Significant inter-patient differences, independent of infectivity, were observed for the sensitivity of Env proteins to several entry inhibitors and their ability to infect different target cells. Conclusion These findings demonstrate the marked functional heterogeneity of HIV-1 Env proteins expressed by contemporaneous circulating viruses, and underscore the advantage of clonal analyses in characterizing the spectrum of functional properties of the genetically diverse viral populations present in a given patient.
Collapse
Affiliation(s)
- Tamara Nora
- Unité de Recherche Antivirale, INSERM U 552, Université Denis Diderot Paris 7, Paris F-75018, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Reinis M, Weiser B, Kuiken C, Dong T, Lang D, Nachman S, Zhang Y, Rowland-Jones S, Burger H. Genomic analysis of HIV type 1 strains derived from a mother and child pair of long-term nonprogressors. AIDS Res Hum Retroviruses 2007; 23:309-15. [PMID: 17331038 PMCID: PMC2925658 DOI: 10.1089/aid.2006.0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the viral features of long-term nonprogressive HIV-1 infection and the selection of viral genomes, we studied serial complete HIV-1 sequences obtained from a mother-child pair, both long-term nonprogressors. Analysis of four genomic sequences demonstrated that all viral genes were intact, lacking major deletions or premature stop codons to easily explain the slow disease progression. These data suggest that viral attenuation, if present, was caused by subtle sequence variations or virus-host interactions. Serial sequences from an HIV-1-infected mother-child pair afforded us the opportunity to examine the immune selection of HIV-1 sequences years after transmission between individuals. We demonstrated that the daughter's strains were most likely subjected to immunoselection or immunoediting according to the presence of novel MHC class I alleles that differed between mother and daughter. An analysis of nef-specific cytotoxic T-lymphocyte responses in the child, whose HIV-1 nef sequence differed from the maternal nef, supported this interpretation. This study highlights the potential of full genome analysis in the investigation of pathogenesis and immune selection during HIV-1 evolution.
Collapse
Affiliation(s)
- Milan Reinis
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rychert J, Lacour N, Amedee AM. Genetic analysis of simian immunodeficiency virus expressed in milk and selectively transmitted through breastfeeding. J Virol 2006; 80:3721-31. [PMID: 16571789 PMCID: PMC1440429 DOI: 10.1128/jvi.80.8.3721-3731.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop effective intervention strategies that prevent breast milk transmission of human immunodeficiency virus (HIV), we must understand the specific viral properties and mechanisms responsible for infant infection. We have used lactating rhesus macaques infected with a pathogenic simian immunodeficiency virus (SIV) stock to analyze the viral genotypes expressed in plasma and milk throughout the disease course and to identify those variants ultimately transmitted to infants through breastfeeding. In these studies we observed mother-to-infant transmission of SIV/Delta(B670) by eight females during the chronic phase of disease, and we analyzed by heteroduplex tracking assays and sequence analysis the distribution and fluctuations in viral genotypes expressed. Each female expressed multiple V1 envelope genotypes in milk near the time of transmission, while a single genotype was found in each of the infants. Variants transmitted to infants were not expressed throughout the maternal disease course but were only detected near the time of transmission. The emergence of the transmitted genotype in the dam typically occurred in plasma before milk and was coincident with increased milk viral loads. Transmitted genotypes tended to be longer and more glycosylated and had a less negative charge over the V1 region compared to viral genotypes expressed in milk but not transmitted. These observations demonstrate that specific viral genotypes are selectively transmitted to infants through breastfeeding and support the hypothesis that transmission occurs as genotypes adapt for efficient expression in milk.
Collapse
Affiliation(s)
- Jenna Rychert
- Department of Microbiology, Immunology, Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
46
|
Sanchez-Merino V, Nie S, Luzuriaga K. HIV-1-specific CD8+ T cell responses and viral evolution in women and infants. THE JOURNAL OF IMMUNOLOGY 2006; 175:6976-86. [PMID: 16272358 DOI: 10.4049/jimmunol.175.10.6976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8+ T lymphocyte responses play an important role in controlling HIV-1 replication but escape from CD8+ T cell surveillance may limit the effectiveness of these responses. Mother-to-child transmission of CD8+ T cell escape variants may particularly affect CD8+ T cell recognition of infant HIV-1 epitopes. In this study, amino acid sequence variation in HIV-1 gag and nef was examined in five untreated mother-infant pairs to evaluate the potential role of CD8+ T cell responses in the evolution of the viral quasispecies. Several CD8+ T cell escape variants were detected in maternal plasma. Evaluation of infant plasma viruses at 1-3 mo documented heterogeneity of gag and nef gene sequences and mother-to-child transmission of CD8+ T cell escape variants. Infant HLA haplotype and viral fitness appeared to determine the stability of the escape mutants in the infant over time. Changes in CD8+ T cell epitope sequences were detected in infants' sequential plasma specimens, suggesting that infants are capable of generating virus-specific CD8+ T cell responses that exert selective pressures in vivo. Altogether, these studies document that HIV-1-specific CD8+ T cell responses contribute to the evolution of the viral quasispecies in HIV-1-infected women and their infants and may have important implications for vaccine design.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- DNA, Viral/genetics
- Epitopes/genetics
- Female
- Gene Products, gag/genetics
- Gene Products, nef/genetics
- Genes, gag
- Genes, nef
- Genetic Variation
- HIV Infections/immunology
- HIV Infections/transmission
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- In Vitro Techniques
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Lymphocyte Activation
- Molecular Sequence Data
- Mutation
- Pregnancy
- Selection, Genetic
- Sequence Homology, Amino Acid
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Victor Sanchez-Merino
- Department of Pediatrics/Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
47
|
Wu X, Parast AB, Richardson BA, Nduati R, John-Stewart G, Mbori-Ngacha D, Rainwater SMJ, Overbaugh J. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J Virol 2006; 80:835-44. [PMID: 16378985 PMCID: PMC1346878 DOI: 10.1128/jvi.80.2.835-844.2006] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/20/2005] [Indexed: 11/20/2022] Open
Abstract
Maternal passive immunity typically plays a critical role in protecting infants from new infections; however, the specific contribution of neutralizing antibodies in limiting mother-to-child transmission of human immunodeficiency virus type 1 is unclear. By examining cloned envelope variants from 12 transmission pairs, we found that vertically transmitted variants were more resistant to neutralization by maternal plasma than were maternal viral variants near the time of transmission. The vertically transmitted envelope variants were poorly neutralized by monoclonal antibodies b12 [corrected] 2G12, 2F5, and 4E10 individually or in combination. Despite the fact that the infant viruses were among the most neutralization resistant in the mother, they had relatively few glycosylation sites. Moreover, the transmitted variants elicited de novo neutralizing antibodies in the infants, indicating that they were not inherently difficult to neutralize. The neutralization resistance of vertically transmitted viruses is in contrast to the relative neutralization sensitivity of viruses sexually transmitted within discordant couples, suggesting that the antigenic properties of viruses that are favored for transmission may differ depending upon mode of transmission.
Collapse
Affiliation(s)
- Xueling Wu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang H, Hoffmann F, He J, He X, Kankasa C, Ruprecht R, West JT, Orti G, Wood C. Evolution of subtype C HIV-1 Env in a slowly progressing Zambian infant. Retrovirology 2005; 2:67. [PMID: 16274482 PMCID: PMC1308862 DOI: 10.1186/1742-4690-2-67] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 11/07/2005] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Given the high prevalence of mother to child infection, the development of a better understanding of African subtype C HIV-1 transmission and natural evolution is of significant importance. In this study, we genotypically and phenotypically characterized subtype C viruses isolated over a 67-month follow-up period from an in utero-infected Zambian infant. Changes in genotype and phenotype were correlated to alterations of the host humoral immune response. RESULTS A comparison of baseline maternal and infant samples indicated that the infant sequences are monophyletic and contain a fraction of the diversity observed in the mother. This finding suggests that selective transmission occurred from mother to child. Peaks in infant HIV-1 Env genetic diversity and divergence were noted at 48 months, but were not correlated with changes in co-receptor usage or syncytia phenotype. Phylogenetic analyses revealed an accumulation of mutations over time, as well as the reappearance of ancestral lineages. In the infant C2-V4 region of Env, neither the median number of putative N-glycosylation sites or median sequence length showed consistent increases over time. The infant possessed neutralizing antibodies at birth, but these decreased in effectiveness or quantity with time. De novo humoral responses were detected in the child after 12 months, and corresponded with an increase in Env diversity. CONCLUSION Our study demonstrates a correlation between HIV-1 Env evolution and the humoral immune response. There was an increase in genetic diversification in the infant viral sequences after 12 months, which coincided with increases in neutralizing antibody titers. In addition, episodes of viral growth and successive immune reactions in the first 5-6 years were observed in this slow progressor infant with delayed onset of AIDS. Whether this pattern is typical of slow progressing subtype C HIV-1 infected infant needs to be further substantiated.
Collapse
Affiliation(s)
- Hong Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Federico Hoffmann
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Jun He
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Xiang He
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Chipepo Kankasa
- Department of Pediatrics, University Teaching Hospital, Lusaka, Zambia
| | - Ruth Ruprecht
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John T West
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Guillermo Orti
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
49
|
Sullivan ST, Mandava U, Evans-Strickfaden T, Lennox JL, Ellerbrock TV, Hart CE. Diversity, divergence, and evolution of cell-free human immunodeficiency virus type 1 in vaginal secretions and blood of chronically infected women: associations with immune status. J Virol 2005; 79:9799-809. [PMID: 16014941 PMCID: PMC1181596 DOI: 10.1128/jvi.79.15.9799-9809.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) infections are believed to be the result of exposure to the virus in genital secretions. However, prevention and therapeutic strategies are usually based on characterizations of HIV-1 in blood. To understand better the dynamics between HIV-1 quasispecies in the genital tract and blood, we performed heteroduplex assays on amplified env products from cell-free viral RNA in paired vaginal secretion (VS) and blood plasma (BP) samples of 14 women followed for 1.5 to 3.5 years. Diversity and divergence were less in VS than in BP (P = 0.03 and P < 0.01, respectively), and divergence at both sites was correlated with blood CD4(+) cell levels (VS, P = 0.05; BP, P = 0.01). Evolution of quasispecies was observed in 58% of the women; the loss or gain of quasispecies in VS or BP was always accompanied by such changes at the other site. In addition, sustained compartmentalization of quasispecies in VS was found for four women, even as CD4(+) cell levels decreased to low levels (<50 cells/microl). Quasispecies changes over time were associated with fluctuations in CD4(+) cell levels; concordant increases or decreases in VS and BP divergence had greater CD4(+) cell level changes than intervals with discordant changes (P = 0.05), and women with evolving quasispecies had greater decreases in CD4(+) cell levels compared to that for women who maintained the same quasispecies (P < 0.05). Thus, diversity, divergence, and evolution of cell-free HIV-1 in VS can be different from that in BP, and dynamics between their respective quasispecies are associated with changes in CD4(+) cell levels.
Collapse
Affiliation(s)
- Sharon T Sullivan
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|
50
|
Fischetti L, Danso K, Dompreh A, Addo V, Haaheim L, Allain JP. Vertical transmission of HIV in Ghanaian women diagnosed in cord blood and post-natal samples. J Med Virol 2005; 77:351-9. [PMID: 16173021 DOI: 10.1002/jmv.20463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HIV RNA detection in the newborn is the main diagnostic tool for vertical transmission. Most infections are thought to occur peri- or post-natally, hence preventive antiviral therapy administered days before and during delivery. This study used cord blood for molecular diagnosis, examined viral load and HIV-1 subtypes as determinants of transmission, and compared molecular variability of maternal, cord blood, and post-natal quasispecies. Ninety-seven seropositive mother-cord blood paired plasmas from Ghana were tested for HIV RNA. Viral load was quantified and a subgroup of 45 random women samples was typed and subtyped. HIV-1 from infected pairs was cloned, sequenced, and analyzed phylogenetically. The prevalence of HIV infection in pregnant women was 3.3%. 13/97 cord blood samples (13.5%) contained HIV RNA. No correlation between either viral load at labor (range 10(3)-10(7)) or HIV-1 subtype and in utero transmission was found. In both transmitting and non-transmitting mothers, 56% of HIV-1 strains were CRF02_AG. In three pairs, maternal and cord blood quasispecies were closely related, suggesting late pregnancy or perinatal transmission, while in four pairs, genetic distances suggested transmission earlier during gestation. Maternal viral load and genotype did not correlate with HIV-1 pre-natal transmission. HIV infection during gestation appears relatively frequent.
Collapse
Affiliation(s)
- Lucia Fischetti
- Department of Haematology, Division of Transfusion Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|