1
|
Sumitomo T, Kawabata S. Respiratory tract barrier dysfunction in viral-bacterial co-infection cases. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:44-52. [PMID: 38274948 PMCID: PMC10808858 DOI: 10.1016/j.jdsr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
A preceding viral infection of the respiratory tract predisposes the host to secondary bacterial pneumonia, known as a major cause of morbidity and mortality. However, the underlying mechanism of the viral-bacterial synergy that leads to disease progression has remained elusive, thus hampering the production of effective prophylactic and therapeutic intervention options. In addition to viral-induced airway epithelial damage, which allows dissemination of bacteria to the lower respiratory tract and increases their invasiveness, dysfunction of immune defense following a viral infection has been implicated as a factor for enhanced susceptibility to secondary bacterial infections. Given the proximity of the oral cavity to the respiratory tract, where viruses enter and replicate, it is also well-established that oral health status can significantly influence the initiation, progression, and pathology of respiratory viral infections. This review was conducted to focus on the dysfunction of the respiratory barrier, which plays a crucial role in providing physical and secretory barriers as well as immune defense in the context of viral-bacterial synergy. Greater understanding of barrier response to viral-bacterial co-infections, will ultimately lead to development of effective, broad-spectrum therapeutic approaches for prevention of enhanced susceptibility to these pathogens.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770–8504, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka 565–0871, Japan
| |
Collapse
|
2
|
Yamamoto S, Okumura S, Kobayashi R, Maeda Y, Takahashi F, Tanabe T. Bovine respiratory syncytial virus enhances the attachment of Trueperella pyogenes to cells. J Vet Med Sci 2024; 86:1068-1075. [PMID: 39111845 PMCID: PMC11442402 DOI: 10.1292/jvms.24-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.
Collapse
Affiliation(s)
- Satomi Yamamoto
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Shiori Okumura
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Risa Kobayashi
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yosuke Maeda
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Fumiaki Takahashi
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Taishi Tanabe
- Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
3
|
Grochowska M, Strzelak A, Krenke K. Complicated pneumonia caused by group A Streptococcus in children - 2022/2023 infectious season outbreak and update on clinical characteristics. J Infect Chemother 2024; 30:1047-1053. [PMID: 38631479 DOI: 10.1016/j.jiac.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND An increased incidence of group A Streptococcus (GAS) infections has been observed in pediatric population post-COVID-19 pandemic. While the majority of reports refer to scarlet fever or invasive GAS disease, detailed data on pulmonary manifestations such as complicated community-acquired pneumonia (CAP) are scarce. The aim of this study was to assess the contribution of GAS to complicated CAP in children during the 2022/2023 infectious season. METHODS We retrospectively analyzed the etiology and clinical presentation of complicated CAP patients hospitalized in our tertiary care center in Warsaw, Poland, between August 2022 and May 2023. RESULTS Among 91 patients with complicated CAP, GAS was the dominant cause constituting 24.2% (22/91; 95% CI 15.8-34.3%) of the study group. 68.2% of GAS pneumonia patients presented symptoms of scarlet fever, and 27.3% had preceding or concurrent viral infection. GAS complicated CAP was associated with longer hospitalization, higher incidence of chest tube insertion, but shorter duration of chest tube drainage than complicated CAP of other etiology. Children with GAS complicated CAP had higher procalcitonin concentration (28.1 vs. 1.5 ng/dL; p<0.0001) and a lower platelets level (254.5 vs. 422 × 103/μL; p = 0.0031) than those with non-GAS infection. CONCLUSIONS GAS is currently the predominant pathogen of complicated CAP in children. Clinicians should be aware of the current epidemiological situation and a more severe course of GAS pneumonia in this age group, and should monitor patients presenting with symptoms of scarlet fever and preceding viral infection closely.
Collapse
Affiliation(s)
- Magdalena Grochowska
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland.
| | - Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland.
| | - Katarzyna Krenke
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Peetermans M, Matheeussen V, Moerman C, De Rydt F, Thieren S, Pollet E, Casaer M, De Backer B, De Paep R, Debaveye Y, Desmet L, Desmet S, Duval EIM, Fraipont V, Geysels D, Hermans G, Lahaye F, Mathy X, Meersseman P, Meex C, Van Herck J, van Kleef-van Koeveringe S, Layios N, Wauters J, Jorens PG. Clinical and molecular epidemiological features of critically ill patients with invasive group A Streptococcus infections: a Belgian multicenter case-series. Ann Intensive Care 2024; 14:19. [PMID: 38286885 PMCID: PMC10825083 DOI: 10.1186/s13613-024-01249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Recent alerts have highlighted an increase in group A streptococcal (GAS) infections since 2022 in Europe and the United States. Streptococcus pyogenes can cause limited skin or mucosal disease, but can also present as severe invasive disease necessitating critical care. We performed a multicenter retrospective study of patients with GAS infections recently admitted to Belgian intensive care units (ICUs) since January 2022. We describe patient characteristics and investigate the molecular epidemiology of the S. pyogenes strains involved. RESULTS Between January 2022 and May 2023, a total of 86 cases (56 adults, 30 children) with GAS disease were admitted to critical care in the university hospitals of Leuven, Antwerp and Liège. We noted a strikingly high incidence of severe community-acquired pneumonia (sCAP) (45% of adults, 77% of children) complicated with empyema in 45% and 83% of adult and pediatric cases, respectively. Two-thirds of patients with S. pyogenes pneumonia had viral co-infection, with influenza (13 adults, 5 children) predominating. Other disease presentations included necrotizing fasciitis (23% of adults), other severe skin/soft tissue infections (16% of adults, 13% of children) and ear/nose/throat infections (13% of adults, 13% of children). Cardiogenic shock was frequent (36% of adults, 20% of children). Fifty-six patients (65%) had toxic shock syndrome. Organ support requirements were high and included invasive mechanical ventilation (77% of adults, 50% of children), renal replacement therapy (29% of adults, 3% of children) and extracorporeal membrane oxygenation (20% of adults, 7% of children). Mortality was 21% in adults and 3% in children. Genomic analysis of S. pyogenes strains from 55 out of 86 patients showed a predominance of emm1 strains (73%), with a replacement of the M1global lineage by the toxigenic M1UK lineage (83% of emm1 strains were M1UK). CONCLUSIONS The recent rise of severe GAS infections (2022-23) is associated with introduction of the M1UK lineage in Belgium, but other factors may be at play-including intense circulation of respiratory viruses and potentially an immune debt after the COVID pandemic. Importantly, critical care physicians should include S. pyogenes as causative pathogen in the differential diagnosis of sCAP.
Collapse
Affiliation(s)
- Marijke Peetermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Veerle Matheeussen
- Department of Microbiology and Belgian Reference Centre for Invasive β-Hemolytic Streptococci, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
- Laboratory of Medical Biochemistry and Laboratory of Medical Microbiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Cedric Moerman
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
- Department of Anesthesiology and Critical Care Medicine, GZA Hospital Group, Antwerp, Belgium
| | - Fréderic De Rydt
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
- Department of Anesthesiology, Chirec Hospitals, Brussels, Belgium
| | - Sabine Thieren
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Anesthesiology, VITAZ Hospital, Sint-Niklaas, Belgium
| | - Emily Pollet
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Michael Casaer
- Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Benjamin De Backer
- Service de Microbiologie Clinique, CHR Citadelle, Bd du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Rudi De Paep
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Yves Debaveye
- Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lars Desmet
- Pediatric Intensive Care Unit, Department of Intensive Care Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Stefanie Desmet
- Laboratory for Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Els I M Duval
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Vincent Fraipont
- Service des Soins Intensifs, CHR Citadelle, Bd du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Dieter Geysels
- Department of Microbiology and Belgian Reference Centre for Invasive β-Hemolytic Streptococci, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederik Lahaye
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Xavier Mathy
- Service des Soins Intensifs, CHR Citadelle, Bd du Douzième de Ligne 1, 4000, Liège, Belgium
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Cécile Meex
- Service de Microbiologie Clinique, University Hospital Liège, Avenue de l'Hôpital, 4000, Liège, Belgium
| | - Jozef Van Herck
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Stefanie van Kleef-van Koeveringe
- Department of Microbiology and Belgian Reference Centre for Invasive β-Hemolytic Streptococci, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
| | - Nathalie Layios
- Department of Intensive Care, University Hospital Liège, Avenue de l'Hôpital, 4000, Liège, Belgium
- Département des Sciences Cliniques, University of Liège, 4000, Liège, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philippe G Jorens
- Department of Adult and Pediatric Intensive Care Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Antwerp, Belgium
- Department of Medicine and Health Sciences, Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
5
|
Keeley AJ, Groves D, Armitage EP, Senghore E, Jagne YJ, Sallah HJ, Drammeh S, Angyal A, Hornsby H, de Crombrugghe G, Smeesters PR, Rossi O, Carducci M, Peno C, Bogaert D, Kampmann B, Marks M, Shaw HA, Turner CR, de Silva TI. Streptococcus pyogenes Colonization in Children Aged 24-59 Months in the Gambia: Impact of Live Attenuated Influenza Vaccine and Associated Serological Responses. J Infect Dis 2023; 228:957-965. [PMID: 37246259 PMCID: PMC10547459 DOI: 10.1093/infdis/jiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS A post hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative polymerase chain reaction (qPCR) on nasopharyngeal swabs from baseline (day 0), day 7, and day 21. Anti-streptococcal IgG was quantified, including a subset with paired serum before/after S. pyogenes acquisition. RESULTS The point prevalence of S. pyogenes colonization was 7%-13%. In children negative at day 0, S. pyogenes was detected at day 7 or 21 in 18% of LAIV group and 11% of control group participants (P = .12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (day 21 vs day 0 OR, 3.18; P = .003) but not in the control group (OR, 0.86; P = .79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions. Clinical Trials Registration. NCT02972957.
Collapse
Affiliation(s)
- Alexander J Keeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Danielle Groves
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Edwin P Armitage
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ya Jankey Jagne
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Hadijatou J Sallah
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Sainabou Drammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Adri Angyal
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Hailey Hornsby
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Gabrielle de Crombrugghe
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Chikondi Peno
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- Charité Centre for Global Health and Institut für Internationale Gesundheit, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Marks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Helen A Shaw
- Vaccines Division, Scientific Research and Innovation Group, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Claire R Turner
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Thushan I de Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
6
|
Aleith J, Brendel M, Weipert E, Müller M, Schultz D, Müller-Hilke B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022; 11:1320. [PMID: 36365071 PMCID: PMC9699311 DOI: 10.3390/pathogens11111320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/30/2023] Open
Abstract
Seasonal influenza epidemics pose a considerable hazard for global health. In the past decades, accumulating evidence revealed that influenza A virus (IAV) renders the host vulnerable to bacterial superinfections which in turn are a major cause for morbidity and mortality. However, whether the impact of influenza on anti-bacterial innate immunity is restricted to the vicinity of the lung or systemically extends to remote sites is underexplored. We therefore sought to investigate intranasal infection of adult C57BL/6J mice with IAV H1N1 in combination with bacteremia elicited by intravenous application of Group A Streptococcus (GAS). Co-infection in vivo was supplemented in vitro by challenging murine bone marrow derived macrophages and exploring gene expression and cytokine secretion. Our results show that viral infection of mice caused mild disease and induced the depletion of CCL2 in the periphery. Influenza preceding GAS infection promoted the occurrence of paw edemas and was accompanied by exacerbated disease scores. In vitro co-infection of macrophages led to significantly elevated expression of TLR2 and CD80 compared to bacterial mono-infection, whereas CD163 and CD206 were downregulated. The GAS-inducible upregulation of inflammatory genes, such as Nos2, as well as the secretion of TNFα and IL-1β were notably reduced or even abrogated following co-infection. Our results indicate that IAV primes an innate immune layout that is inadequately equipped for bacterial clearance.
Collapse
Affiliation(s)
- Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Brendel
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Erik Weipert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Ko-Infekt Study Group
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
7
|
Oral mitis group streptococci reduce infectivity of influenza A virus via acidification and H2O2 production. PLoS One 2022; 17:e0276293. [DOI: 10.1371/journal.pone.0276293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Members of the mitis group streptococci are the most abundant inhabitants of the oral cavity and dental plaque. Influenza A virus (IAV), the causative agent of influenza, infects the upper respiratory tract, and co-infection with Streptococcus pneumoniae is a major cause of morbidity during influenza epidemics. S. pneumoniae is a member of mitis group streptococci and shares many features with oral mitis group streptococci. In this study, we investigated the effect of viable Streptococcus oralis, a representative member of oral mitis group, on the infectivity of H1N1 IAV. The infectivity of IAV was measured by a plaque assay using Madin-Darby canine kidney cells. When IAV was incubated in growing culture of S. oralis, the IAV titer decreased in a time- and dose-dependent manner and became less than 100-fold, whereas heat-inactivated S. oralis had no effect. Other oral streptococci such as Streptococcus mutans and Streptococcus salivarius also reduced the viral infectivity to a lesser extent compared to S. oralis and Streptococcus gordonii, another member of the oral mitis group. S. oralis produces hydrogen peroxide (H2O2) at a concentration of 1–2 mM, and its mutant deficient in H2O2 production showed a weaker effect on the inactivation of IAV, suggesting that H2O2 contributes to viral inactivation. The contribution of H2O2 was confirmed by an inhibition assay using catalase, an H2O2-decomposing enzyme. These oral streptococci produce short chain fatty acids (SCFA) such as acetic acid as a by-product of sugar metabolism, and we also found that the inactivation of IAV was dependent on the mildly acidic pH (around pH 5.0) of these streptococcal cultures. Although inactivation of IAV in buffers of pH 5.0 was limited, incubation in the same buffer containing 2 mM H2O2 resulted in marked inactivation of IAV, which was similar to the effect of growing S. oralis culture. Taken together, these results reveal that viable S. oralis can inactivate IAV via the production of SCFAs and H2O2. This finding also suggests that the combination of mildly acidic pH and H2O2 at low concentrations could be an effective method to inactivate IAV.
Collapse
|
8
|
Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:antibiotics11060746. [PMID: 35740153 PMCID: PMC9219721 DOI: 10.3390/antibiotics11060746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Nonpharmaceutical interventions implemented during the COVID-19 pandemic (2020−2021) have provided a unique opportunity to understand their impact on the wholesale supply of antibiotics and incidences of infections represented by bacteremia due to common bacterial species in Hong Kong. The wholesale antibiotic supply data (surrogate indicator of antibiotic consumption) and notifications of scarlet fever, chickenpox, and tuberculosis collected by the Centre for Health Protection, and the data of blood cultures of patients admitted to public hospitals in Hong Kong collected by the Hospital Authority for the last 10 years, were tabulated and analyzed. A reduction in the wholesale supply of antibiotics was observed. This decrease coincided with a significant reduction in the incidence of community-onset bacteremia due to Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are encapsulated bacteria with respiratory transmission potential. This reduction was sustained during two pandemic years (period 2: 2020−2021), compared with eight pre-pandemic years (period 1: 2012−2019). Although the mean number of patient admissions per year (1,704,079 vs. 1,702,484, p = 0.985) and blood culture requests per 1000 patient admissions (149.0 vs. 158.3, p = 0.132) were not significantly different between periods 1 and 2, a significant reduction in community-onset bacteremia due to encapsulated bacteria was observed in terms of the mean number of episodes per year (257 vs. 58, p < 0.001), episodes per 100,000 admissions (15.1 vs. 3.4, p < 0.001), and per 10,000 blood culture requests (10.1 vs. 2.1, p < 0.001), out of 17,037,598 episodes of patient admissions with 2,570,164 blood culture requests. Consistent with the findings of bacteremia, a reduction in case notification of scarlet fever and airborne infections, including tuberculosis and chickenpox, was also observed; however, there was no reduction in the incidence of hospital-onset bacteremia due to Staphylococcus aureus or Escherichia coli. Sustained implementation of non-pharmaceutical interventions against respiratory microbes may reduce the overall consumption of antibiotics, which may have a consequential impact on antimicrobial resistance. Rebound of conventional respiratory microbial infections is likely with the relaxation of these interventions.
Collapse
|
9
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
10
|
Okahashi N, Sumitomo T, Nakata M, Kawabata S. Secondary streptococcal infection following influenza. Microbiol Immunol 2022; 66:253-263. [PMID: 35088451 DOI: 10.1111/1348-0421.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Secondary bacterial infection following influenza A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. Since many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
11
|
Sura T, Surabhi S, Maaß S, Hammerschmidt S, Siemens N, Becher D. The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. J Proteomics 2022; 250:104387. [PMID: 34600154 DOI: 10.1016/j.jprot.2021.104387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Viral infections facilitate bacterial trafficking to the lower respiratory tract resulting in bacterial-viral co-infections. Bacterial dissemination to the lower respiratory tract is enhanced by influenza A virus induced epithelial cell damage and dysregulation of immune responses. Epithelial cells act as a line of defense and detect pathogens by a high variety of pattern recognition receptors. The post-translational modification ubiquitin is involved in almost every cellular process. Moreover, ubiquitination contributes to the regulation of host immune responses, influenza A virus uncoating and transport within host cells. We applied proteomics with a special focus on ubiquitination to assess the impact of single bacterial and viral as well as bacterial-viral co-infections on bronchial epithelial cells. We used Tandem Ubiquitin Binding Entities to enrich polyubiquitinated proteins and assess changes in the ubiquitinome. Infecting 16HBE cells with Streptococcus pyogenes led to an increased abundance of proteins related to mitochondrial translation and energy metabolism in proteome and ubiquitinome. In contrast, influenza A virus infection mainly altered the ubiquitinome. Co-infections had no additional impact on protein abundances or affected pathways. Changes in protein abundance and enriched pathways were assigned to imprints of both infecting pathogens. SIGNIFICANCE: Viral and bacterial co-infections of the lower respiratory tract are a burden for health systems worldwide. Therefore, it is necessary to elucidate the complex interplay between the host and the infecting pathogens. Thus, we analyzed the proteome and the ubiquitinome of co-infected bronchial epithelial cells to elaborate a potential synergism of the two infecting organisms. The results presented in this work can be used as a starting point for further analyses.
Collapse
Affiliation(s)
- Thomas Sura
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Surabhi Surabhi
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Nikolai Siemens
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
12
|
Bai X, Yang W, Luan X, Li H, Li H, Tian D, Fan W, Li J, Wang B, Liu W, Sun L. Induction of cyclophilin A by influenza A virus infection facilitates group A Streptococcus coinfection. Cell Rep 2021; 35:109159. [PMID: 34010655 DOI: 10.1016/j.celrep.2021.109159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
During influenza A epidemics, bacterial coinfection is a major cause of increased morbidity and mortality. However, the roles of host factors in regulating influenza A virus (IAV)-triggered bacterial coinfection remain elusive. Cyclophilin A (CypA) is an important regulator of infection and immunity. Here, we show that IAV-induced CypA expression facilitates group A Streptococcus (GAS) coinfection both in vitro and in vivo. Upon IAV infection, CypA interacts with focal adhesion kinase (FAK) and inhibited E3 ligase cCbl-mediated, K48-linked ubiquitination of FAK, which positively regulates integrin α5 expression and actin rearrangement via the FAK/Akt signaling pathway to facilitate GAS colonization and invasion. Notably, CypA deficiency or inhibition by cyclosporine A significantly inhibits IAV-triggered GAS coinfection in mice. Collectively, these findings reveal that CypA is critical for GAS infection, and induction of CypA expression is another way for IAV to promote bacterial coinfection, suggesting that CypA is a promising therapeutic target for the secondary bacterial infection.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Davignon JL, Combe B, Cantagrel A. Cytomegalovirus infection: friend or foe in rheumatoid arthritis? Arthritis Res Ther 2021; 23:16. [PMID: 33413603 PMCID: PMC7792325 DOI: 10.1186/s13075-020-02398-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that causes inflammation and remains for life in a latent state in their host. HCMV has been at the center of many hypotheses regarding RA. We have recently shown that HCMV infection impairs bone erosion through the induction of the mRNA-binding protein QKI5. Latently infected RA patients display a slower progression of bone erosion in patients from a national cohort. Our observations question the possible association between HCMV and the pathophysiology of RA. In this review, we examine the possibility that HCMV may be an aggravating factor of inflammation in RA while protecting from bone erosion. We also assess its relationship with other pathogens such as bacteria causing periodontitis and responsible for ACPA production. This review thus considers whether HCMV can be regarded as a friend or a foe in the pathogenesis and the course of RA.
Collapse
Affiliation(s)
- Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, U.1043 INSERM, CNRS, CHU Purpan, BP 3028, 31024, Toulouse cedex 3, France. .,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.
| | - Bernard Combe
- Lapeyronie Hospital, Montpellier I University, UMR, 5535, Montpellier, France
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, U.1043 INSERM, CNRS, CHU Purpan, BP 3028, 31024, Toulouse cedex 3, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
14
|
Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J Infect Public Health 2020; 13:1397-1404. [PMID: 32712106 PMCID: PMC7359806 DOI: 10.1016/j.jiph.2020.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary bacterial infections are commonly associated with prior or concomitant respiratory viral infections. Viral infections damage respiratory airways and simultaneously defects both innate and acquired immune response that provides a favorable environment for bacterial growth, adherence, and facilitates invasion into healthy sites of the respiratory tract. Understanding the molecular mechanism of viral-induced secondary bacterial infections will provide us a chance to develop novel and effective therapeutic approaches for disease prevention. The present study describes details about the secondary bacterial infection during viral infections and their immunological changes.The outcome of discussion avails an opportunity to understand possible secondary bacterial infections associated with novel SARS-CoV-2, presently causing pandemic outbreak COVID-19.
Collapse
|
15
|
Herrera AL, Van Hove C, Hanson M, Dale JB, Tweten RK, Huber VC, Diel D, Chaussee MS. Immunotherapy targeting the Streptococcus pyogenes M protein or streptolysin O to treat or prevent influenza A superinfection. PLoS One 2020; 15:e0235139. [PMID: 32574205 PMCID: PMC7310742 DOI: 10.1371/journal.pone.0235139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections complicated by a bacterial infection are typically referred to as coinfections or superinfections. Streptococcus pyogenes, the group A streptococcus (GAS), is not the most common bacteria associated with influenza A virus (IAV) superinfections but did cause significant mortality during the 2009 influenza pandemic even though all isolates are susceptible to penicillin. One approach to improve the outcome of these infections is to use passive immunization targeting GAS. To test this idea, we assessed the efficacy of passive immunotherapy using antisera against either the streptococcal M protein or streptolysin O (SLO) in a murine model of IAV-GAS superinfection. Prophylactic treatment of mice with antiserum to either SLO or the M protein decreased morbidity compared to mice treated with non-immune sera; however, neither significantly decreased mortality. Therapeutic use of antisera to SLO decreased morbidity compared to mice treated with non-immune sera but neither antisera significantly reduced mortality. Overall, the results suggest that further development of antibodies targeting the M protein or SLO may be a useful adjunct in the treatment of invasive GAS diseases, including IAV-GAS superinfections, which may be particularly important during influenza pandemics.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Christopher Van Hove
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Mary Hanson
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - James B. Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Diego Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| |
Collapse
|
16
|
Clinical Description and Outcomes of Australian Children With Invasive Group A Streptococcal Disease. Pediatr Infect Dis J 2020; 39:379-384. [PMID: 32091492 DOI: 10.1097/inf.0000000000002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Invasive group A streptococcal disease is a severe infection with a high case fatality rate, estimated to cause more than 150,000 deaths per year worldwide. The clinical presentation of this infection is variable, and early diagnosis can be challenging. There are few data on its short- and longer-term outcomes, especially in children. The aim of this study was to assess the clinical presentation, management and short- and longer-term outcomes of invasive group A streptococcal disease in children in Australia. METHODS We undertook a prospective surveillance study of children with laboratory-confirmed invasive group A streptococcus disease admitted to 7 sentinel tertiary and quaternary pediatric hospitals in Australia between July 2016 and June 2018. We collected demographic and clinical data and contacted patients 6 months after discharge to assess longer-term outcomes. RESULTS We enrolled 181 children, 7 days to 16 years of age. The principal site of invasive infection was blood (126 children, 69.6%), and the most frequent clinical presentation was pneumonia in 46 children (25.4%). Twenty-six children developed streptococcal toxic shock syndrome (14.4%), and 74 had severe disease (40.9%), including 71 admitted to the intensive care unit. Five children died (2.8%). At discharge and 6 months, 29.3% and 15.2% of the children had persisting health problems, respectively. CONCLUSIONS Invasive group A streptococcal infection in Australian children is frequently severe and has a high long-term morbidity burden, highlighting the need for strengthened clinical care pathways, epidemiologic surveillance and prevention strategies.
Collapse
|
17
|
Volatile scents of influenza A and S. pyogenes (co-)infected cells. Sci Rep 2019; 9:18894. [PMID: 31827195 PMCID: PMC6906285 DOI: 10.1038/s41598-019-55334-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.
Collapse
|
18
|
TIV Vaccination Modulates Host Responses to Influenza Virus Infection that Correlate with Protection against Bacterial Superinfection. Vaccines (Basel) 2019; 7:vaccines7030113. [PMID: 31547409 PMCID: PMC6789870 DOI: 10.3390/vaccines7030113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Influenza virus infection predisposes to secondary bacterial pneumonia. Currently licensed influenza vaccines aim at the induction of neutralizing antibodies and are less effective if the induction of neutralizing antibodies is low and/or the influenza virus changes its antigenic surface. We investigated the effect of suboptimal vaccination on the outcome of post-influenza bacterial superinfection. Methods: We established a mouse vaccination model that allows control of disease severity after influenza virus infection despite inefficient induction of virus-neutralizing antibody titers by vaccination. We investigated the effect of vaccination on virus-induced host immune responses and on the outcome of superinfection with Staphylococcus aureus. Results: Vaccination with trivalent inactivated virus vaccine (TIV) reduced morbidity after influenza A virus infection but did not prevent virus replication completely. Despite the poor induction of influenza-specific antibodies, TIV protected from mortality after bacterial superinfection. Vaccination limited loss of alveolar macrophages and reduced levels of infiltrating pulmonary monocytes after influenza virus infection. Interestingly, TIV vaccination resulted in enhanced levels of eosinophils after influenza virus infection and recruitment of neutrophils in both lungs and mediastinal lymph nodes after bacterial superinfection. Conclusion: These observations highlight the importance of disease modulation by influenza vaccination, even when suboptimal, and suggest that influenza vaccination is still beneficial to protect during bacterial superinfection in the absence of complete virus neutralization.
Collapse
|
19
|
de Gier B, Vlaminckx BJM, Woudt SHS, van Sorge NM, van Asten L. Associations between common respiratory viruses and invasive group A streptococcal infection: A time-series analysis. Influenza Other Respir Viruses 2019; 13:453-458. [PMID: 31237087 PMCID: PMC6692538 DOI: 10.1111/irv.12658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023] Open
Abstract
Background Invasive infections by group A Streptococcus (iGAS, Streptococcus pyogenes) have a winter seasonality which largely coincides with the season for influenza and other respiratory viruses. Influenza superinfections with GAS have been described to occur regularly and to show a severe clinical picture with high mortality. We aimed to study the extent to which influenza A and B viruses (IAV and IBV), respiratory syncytial virus (RSV) and rhinovirus circulation contribute to iGAS incidence and severity. Methods Time‐series regression models were built to explore the temporal associations between weekly laboratory counts of IAV, IBV, RSV and rhinovirus as independent variables and weekly counts of GAS disease notifications or laboratory GAS cultures as dependent variables. Results The weekly number of IAV detections showed a significant temporal association with the number of notifications of streptococcal toxic shock syndrome (STSS), a severe complication of iGAS. Depending on the season, up to 40% of all notified STSS cases was attributable to IAV circulation. Besides STSS, none of the other iGAS manifestations were associated with a respiratory virus. Conclusions Our study found an ecological temporal association between IAV and STSS, the most severe complication of iGAS. Future studies are needed to confirm this association and assess the possible preventability of STSS by influenza vaccination, especially in the age group 60 years and older.
Collapse
Affiliation(s)
- Brechje de Gier
- Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bart J M Vlaminckx
- Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Sjoukje H S Woudt
- Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liselotte van Asten
- Center for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
20
|
Characterization of Host and Bacterial Contributions to Lung Barrier Dysfunction Following Co-infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses 2019; 11:v11020116. [PMID: 30699912 PMCID: PMC6409999 DOI: 10.3390/v11020116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses are a threat to global public health resulting in ~500,000 deaths each year. Despite an intensive vaccination program, influenza infections remain a recurrent, yet unsolved public health problem. Secondary bacterial infections frequently complicate influenza infections during seasonal outbreaks and pandemics, resulting in increased morbidity and mortality. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is frequently associated with these co-infections, including the 2009 influenza pandemic. Damage to alveolar epithelium is a major contributor to severe influenza-bacterial co-infections and can result in gas exchange abnormalities, fluid leakage, and respiratory insufficiency. These deleterious manifestations likely involve both pathogen- and host-mediated mechanisms. However, there is a paucity of information regarding the mechanisms (pathogen- and/or host-mediated) underlying influenza-bacterial co-infection pathogenesis. To address this, we characterized the contributions of viral-, bacterial-, and host-mediated factors to the altered structure and function of alveolar epithelial cells during co-infection with a focus on the 2009 pandemic influenza (pdm2009) and MRSA. Here, we characterized pdm2009 and MRSA replication kinetics, temporal host kinome responses, modulation of MRSA virulence factors, and disruption of alveolar barrier integrity in response to pdm2009-MRSA co-infection. Our results suggest that alveolar barrier disruption during co-infection is mediated primarily through host response dysregulation, resulting in loss of alveolar barrier integrity.
Collapse
|
21
|
Lee KM, Morris-Love J, Cabral DJ, Belenky P, Opal SM, Jamieson AM. Coinfection With Influenza A Virus and Klebsiella oxytoca: An Underrecognized Impact on Host Resistance and Tolerance to Pulmonary Infections. Front Immunol 2018; 9:2377. [PMID: 30420852 PMCID: PMC6217722 DOI: 10.3389/fimmu.2018.02377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
Pneumonia is a world health problem and a leading cause of death, particularly affecting children and the elderly (1, 2). Bacterial pneumonia following infection with influenza A virus (IAV) is associated with increased morbidity and mortality but the mechanisms behind this phenomenon are not yet well-defined (3). Host resistance and tolerance are two processes essential for host survival during infection. Resistance is the host's ability to clear a pathogen while tolerance is the host's ability to overcome the impact of the pathogen as well as the host response to infection (4-8). Some studies have shown that IAV infection suppresses the immune response, leading to overwhelming bacterial loads (9-13). Other studies have shown that some IAV/bacterial coinfections cause alterations in tolerance mechanisms such as tissue resilience (14-16). In a recent analysis of nasopharyngeal swabs from patients hospitalized during the 2013-2014 influenza season, we have found that a significant proportion of IAV-infected patients were also colonized with Klebsiella oxytoca, a gram-negative bacteria known to be an opportunistic pathogen in a variety of diseases (17). Mice that were infected with K. oxytoca following IAV infection demonstrated decreased survival and significant weight loss when compared to mice infected with either single pathogen. Using this model, we found that IAV/K. oxytoca coinfection of the lung is characterized by an exaggerated inflammatory immune response. We observed early inflammatory cytokine and chemokine production, which in turn resulted in massive infiltration of neutrophils and inflammatory monocytes. Despite this swift response, the pulmonary pathogen burden in coinfected mice was similar to singly-infected animals, albeit with a slight delay in bacterial clearance. In addition, during coinfection we observed a shift in pulmonary macrophages toward an inflammatory and away from a tissue reparative phenotype. Interestingly, there was only a small increase in tissue damage in coinfected lungs as compared to either single infection. Our results indicate that during pulmonary coinfection a combination of seemingly modest defects in both host resistance and tolerance may act synergistically to cause worsened outcomes for the host. Given the prevalence of K. oxytoca detected in human IAV patients, these dysfunctional tolerance and resistance mechanisms may play an important role in the response of patients to IAV.
Collapse
Affiliation(s)
- Kayla M Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Jenna Morris-Love
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Damien J Cabral
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Steven M Opal
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI, United States
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Klonoski JM, Watson T, Bickett TE, Svendsen JM, Gau TJ, Britt A, Nelson JT, Schlenker EH, Chaussee MS, Rynda-Apple A, Huber VC. Contributions of Influenza Virus Hemagglutinin and Host Immune Responses Toward the Severity of Influenza Virus: Streptococcus pyogenes Superinfections. Viral Immunol 2018; 31:457-469. [PMID: 29870311 PMCID: PMC6043403 DOI: 10.1089/vim.2017.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections can be complicated by bacterial superinfections, which are medically relevant because of a complex interaction between the host, the virus, and the bacteria. Studies to date have implicated several influenza virus genes, varied host immune responses, and bacterial virulence factors, however, the host-pathogen interactions that predict survival versus lethal outcomes remain undefined. Previous work by our group showed that certain influenza viruses could yield a survival phenotype (A/swine/Texas/4199-2/98-H3N2, TX98), whereas others were associated with a lethal phenotype (A/Puerto Rico/8/34-H1N1, PR8). Based on this observation, we developed the hypothesis that individual influenza virus genes could contribute to a superinfection, and that the host response after influenza virus infection could influence superinfection severity. The present study analyzes individual influenza virus gene contributions to superinfection severity using reassortant viruses created using TX98 and PR8 viral genes. Host and pathogen interactions, relevant to survival and lethal phenotypes, were studied with a focus on pathogen clearance, host cellular infiltrates, and cytokine levels after infection. Specifically, we found that the hemagglutinin gene expressed by an influenza virus can contribute to the severity of a secondary bacterial infection, likely through modulation of host proinflammatory responses. Altogether, these results advance our understanding of molecular mechanisms underlying influenza virus-bacteria superinfections and identify viral and corresponding host factors that may contribute to morbidity and mortality.
Collapse
Affiliation(s)
- Joshua M. Klonoski
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Trevor Watson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Thomas E. Bickett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M. Svendsen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Tonia J. Gau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Alexandra Britt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jeff T. Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Evelyn H. Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
23
|
Okamoto S, Nagase S. Pathogenic mechanisms of invasive group AStreptococcusinfections by influenza virus-group AStreptococcussuperinfection. Microbiol Immunol 2018; 62:141-149. [DOI: 10.1111/1348-0421.12577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Shigefumi Okamoto
- Department of Laboratory Sciences; Faculty of Health Sciences, Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
| | - Satoshi Nagase
- Department of Laboratory Sciences; Faculty of Health Sciences, Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 920-0942 Japan
| |
Collapse
|
24
|
Opatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling. PLoS Pathog 2018; 14:e1006770. [PMID: 29447284 PMCID: PMC5814058 DOI: 10.1371/journal.ppat.1006770] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evidence is mounting that influenza virus interacts with other pathogens colonising or infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. This is particularly true for mathematical modelling studies, which have become critical in public health decision-making. Yet models usually focus on influenza virus acquisition and infection alone, thereby making broad oversimplifications of pathogen ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses and systematically review the modelling studies that have incorporated interactions. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis, respiratory syncytial virus (RSV), human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. The notable exception is the pneumococcus-influenza interaction, for which several recent modelling studies demonstrate the power of dynamic modelling as an approach to test biological hypotheses on interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and possible misinterpretation, and we illustrate the impact of interactions on public health surveillance using simple transmission models. We demonstrate that the development of multipathogen models is essential to assessing the true public health burden of influenza and that it is needed to help improve planning and evaluation of control measures. Finally, we identify the public health, surveillance, modelling, and biological challenges and propose avenues of research for the coming years.
Collapse
Affiliation(s)
- Lulla Opatowski
- Université de Versailles Saint Quentin, Institut Pasteur, Inserm, Paris, France
| | - Marc Baguelin
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Public Health England, London, United Kingdom
| | - Rosalind M. Eggo
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
25
|
Tong J, Fu Y, Wu NH, Rohde M, Meng F, Valentin-Weigand P, Herrler G. Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Jie Tong
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Yuguang Fu
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
- Chinese Academy of Agricultural Sciences, Lanzhou Veterinary Research Institute; State Key Laboratory of Veterinary Etiological Biology; Lanzhou Gansu Province China
| | - Nai-Huei Wu
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | - Manfred Rohde
- Central Facility for Microscopy; Helmholtz Centre for Infection Research, HZI; Braunschweig Germany
| | - Fandan Meng
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| | | | - Georg Herrler
- Institute of Virology; University of Veterinary Medicine Hannover; Hannover Germany
| |
Collapse
|
26
|
Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8:1041. [PMID: 28690590 PMCID: PMC5481322 DOI: 10.3389/fmicb.2017.01041] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.
Collapse
Affiliation(s)
- Denise E. Morris
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - David W. Cleary
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - Stuart C. Clarke
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
- Global Health Research Institute, University of SouthamptonSouthampton, United Kingdom
- NIHR Southampton Respiratory Biomedical Research UnitSouthampton, United Kingdom
| |
Collapse
|
27
|
Wu H, Nakano T, Suzuki Y, Ooi Y, Sano K. Enhancement of adherence of Helicobacter pylori to host cells by virus: possible mechanism of development of symptoms of gastric disease. Med Mol Morphol 2017; 50:103-111. [DOI: 10.1007/s00795-017-0153-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/24/2017] [Indexed: 12/29/2022]
|
28
|
Bellinghausen C, Rohde GGU, Savelkoul PHM, Wouters EFM, Stassen FRM. Viral-bacterial interactions in the respiratory tract. J Gen Virol 2016; 97:3089-3102. [PMID: 27902340 DOI: 10.1099/jgv.0.000627] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
29
|
Guadalupe Ramirez-Valles E, Dayali Gutierrez-Martinez V, Cervantes-Flores M, Ruiz-Baca E, Alvarado-Esquivel C. IL-2 Expression and T lymphocyte Phenotyping in Young Children Suffering from Upper Respiratory Tract Infection with Streptococcus Pyogenes. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2016; 12:53-7. [PMID: 27493590 PMCID: PMC4947089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T cells are components of adaptive immunity and are involved in the resolution of respiratory infections, which are a major cause of morbidity and mortality in young children worldwide. Activation and differentiation of T cells is given mostly by the cytokine IL-2. This study aimed to determine the phenotype of T cells and IL-2 expression in children suffering from upper respiratory tract infection with Streptococcus pyogenes (S. pyogenes). For this purpose, IL-2 expression at its gene and protein levels and quantitation of CD4(+) and CD8(+) T lymphocytes were assessed in children aged 0-5 years old suffering from upper respiratory tract infection with S. pyogenes and healthy children of the same age. Children with S. pyogenes infection had a higher expression of IL-2 gene and a lower level of this cytokine expression at protein level than healthy children. The numbers of CD4(+) T lymphocytes were similar among the groups. In contrast, difference in the numbers of CD8(+) T lymphocytes among the groups was found. We conclude that infections by S. pyogenes in young children lead to an increased expression of IL-2 mRNA.
Collapse
Affiliation(s)
- Eda Guadalupe Ramirez-Valles
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | | | - Maribel Cervantes-Flores
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | - Estela Ruiz-Baca
- Faculty of Chemical Sciences, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| | - Cosme Alvarado-Esquivel
- Faculty of Medicine and Nutrition, Juárez University of Durango State. Avenida Universidad S/N. 34000 Durango, Dgo, Mexico
| |
Collapse
|
30
|
Herrera AL, Huber VC, Chaussee MS. The Association between Invasive Group A Streptococcal Diseases and Viral Respiratory Tract Infections. Front Microbiol 2016; 7:342. [PMID: 27047460 PMCID: PMC4800185 DOI: 10.3389/fmicb.2016.00342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/03/2016] [Indexed: 11/29/2022] Open
Abstract
Viral infections of the upper respiratory tract are associated with a variety of invasive diseases caused by Streptococcus pyogenes, the group A streptococcus, including pneumonia, necrotizing fasciitis, toxic shock syndrome, and bacteremia. While these polymicrobial infections, or superinfections, are complex, progress has been made in understanding the molecular basis of disease. Areas of investigation have included the characterization of virus-induced changes in innate immunity, differences in bacterial adherence and internalization following viral infection, and the efficacy of vaccines in mitigating the morbidity and mortality of superinfections. Here, we briefly summarize viral-S. pyogenes superinfections with an emphasis on those affiliated with influenza viruses.
Collapse
Affiliation(s)
- Andrea L Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| | - Michael S Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota Vermillion, SD, USA
| |
Collapse
|
31
|
Mehta D, Petes C, Gee K, Basta S. The Role of Virus Infection in Deregulating the Cytokine Response to Secondary Bacterial Infection. J Interferon Cytokine Res 2015; 35:925-34. [PMID: 26308503 DOI: 10.1089/jir.2015.0072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proinflammatory cytokines are produced by macrophages and dendritic cells (DCs) after infection to stimulate T helper (Th) cells, linking innate and adaptive immunity. Virus infections can deregulate the proinflammatory cytokine response like tumor necrosis factor-α and interleukin (IL)-2, making the host more susceptible to secondary bacterial infections. Studies using various viruses such as lymphocytic choriomeningitis virus, influenza A virus, and human immunodeficiency virus have revealed several intriguing mechanisms that account for the increased susceptibility to several prevalent bacterial infections. In particular, type I interferons induced during a virus infection have been observed to play a role in suppressing the production of some key antibacterial proinflammatory cytokines such as IL-23 and IL-17. Other suppressive mechanisms as a result of cytokine deregulation by viral infections include reduced function of immune cells such as DC, macrophage, natural killer, CD4(+), and CD8(+) T cells leading to impaired clearance of secondary bacterial infections. In this study, we highlight some of the immune mechanisms that become deregulated by viral infections, and can thus become defective during secondary bacterial infections.
Collapse
Affiliation(s)
- Divya Mehta
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| |
Collapse
|
32
|
Mifsud EJ, Tan AC, Short KR, Brown LE, Chua BY, Jackson DC. Reducing the impact of influenza-associated secondary pneumococcal infections. Immunol Cell Biol 2015; 94:101-8. [PMID: 26134269 DOI: 10.1038/icb.2015.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/19/2023]
Abstract
When administered prophylactically, we show that the Toll-like receptor-2 (TLR-2) agonist PEG-Pam2Cys (pegylated-S-(2,3-bis(palmitoyloxy)propyl)cysteine) not only mediates potent anti-viral activity against influenza virus but also reduces the impact of secondary infections with Streptococcus pneumoniae (the pneumococcus) by reducing (i) pulmonary viral and bacterial burdens, (ii) the levels of proinflammatory cytokines that normally accompany influenza and S. pneumoniae secondary infections and (iii) the vascular permeability of the pulmonary tract that can allow bacterial invasion of the blood in mice. We also show that an inactivated detergent-disrupted influenza virus vaccine formulated with the Pam2Cys-based adjuvant R4-Pam2Cys provides the host with both immediate and long-term protection against secondary pneumococcal infections following influenza virus infection through innate and specific immune mechanisms, respectively. Vaccinated animals generated influenza virus-specific immune responses that provided the host with long-term protection against influenza virus and its sequelae. This vaccine, which generates an immediate response, provides an additional countermeasure, which is ideal for use even in the midst of an influenza outbreak.
Collapse
Affiliation(s)
- Edin J Mifsud
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Amabel C Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
HAMADA S, KAWABATA S, NAKAGAWA I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:539-59. [PMID: 26666305 PMCID: PMC4773581 DOI: 10.2183/pjab.91.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.
Collapse
Affiliation(s)
- Shigeyuki HAMADA
- Research Institute for Microbial Diseases, Japan-Thailand Collaboration Center for Emerging and Reemerging Infections, Osaka University, Osaka, Japan
- Correspondence should be addressed: S. Hamada, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan (e-mail: )
| | - Shigetada KAWABATA
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ichiro NAKAGAWA
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Klonoski JM, Hurtig HR, Juber BA, Schuneman MJ, Bickett TE, Svendsen JM, Burum B, Penfound TA, Sereda G, Dale JB, Chaussee MS, Huber VC. Vaccination against the M protein of Streptococcus pyogenes prevents death after influenza virus: S. pyogenes super-infection. Vaccine 2014; 32:5241-9. [PMID: 25077423 DOI: 10.1016/j.vaccine.2014.06.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
Abstract
Influenza virus infections are associated with a significant number of illnesses and deaths on an annual basis. Many of the deaths are due to complications from secondary bacterial invaders, including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pyogenes. The β-hemolytic bacteria S. pyogenes colonizes both skin and respiratory surfaces, and frequently presents clinically as strep throat or impetigo. However, when these bacteria gain access to normally sterile sites, they can cause deadly diseases including sepsis, necrotizing fasciitis, and pneumonia. We previously developed a model of influenza virus:S. pyogenes super-infection, which we used to demonstrate that vaccination against influenza virus can limit deaths associated with a secondary bacterial infection, but this protection was not complete. In the current study, we evaluated the efficacy of a vaccine that targets the M protein of S. pyogenes to determine whether immunity toward the bacteria alone would allow the host to survive an influenza virus:S. pyogenes super-infection. Our data demonstrate that vaccination against the M protein induces IgG antibodies, in particular those of the IgG1 and IgG2a isotypes, and that these antibodies can interact with macrophages. Ultimately, this vaccine-induced immunity eliminated death within our influenza virus:S. pyogenes super-infection model, despite the fact that all M protein-vaccinated mice showed signs of illness following influenza virus inoculation. These findings identify immunity against bacteria as an important component of protection against influenza virus:bacteria super-infection.
Collapse
Affiliation(s)
- Joshua M Klonoski
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Heather R Hurtig
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Brian A Juber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Margaret J Schuneman
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Thomas E Bickett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Joshua M Svendsen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Brandon Burum
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - Thomas A Penfound
- University of Tennessee Health Science Center and the Veterans Affairs Medical Center Research Service, Memphis, TN, United States
| | - Grigoriy Sereda
- Department of Chemistry, University of South Dakota, Vermillion, SD, United States
| | - James B Dale
- University of Tennessee Health Science Center and the Veterans Affairs Medical Center Research Service, Memphis, TN, United States
| | - Michael S Chaussee
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
35
|
Compans RW, Oldstone MBA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol 2014; 385:327-56. [PMID: 25027822 PMCID: PMC7122299 DOI: 10.1007/82_2014_394] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.
Collapse
Affiliation(s)
- Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| |
Collapse
|
36
|
Crosby EJ, Goldschmidt MH, Wherry EJ, Scott P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog 2014; 10:e1003970. [PMID: 24586170 PMCID: PMC3937277 DOI: 10.1371/journal.ppat.1003970] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/17/2014] [Indexed: 02/07/2023] Open
Abstract
One of the hallmarks of adaptive immunity is the development of a long-term pathogen specific memory response. While persistent memory T cells certainly impact the immune response during a secondary challenge, their role in unrelated infections is less clear. To address this issue, we utilized lymphocytic choriomeningitis virus (LCMV) and Listeria monocytogenes immune mice to investigate whether bystander memory T cells influence Leishmania major infection. Despite similar parasite burdens, LCMV and Listeria immune mice exhibited a significant increase in leishmanial lesion size compared to mice infected with L. major alone. This increased lesion size was due to a severe inflammatory response, consisting not only of monocytes and neutrophils, but also significantly more CD8 T cells. Many of the CD8 T cells were LCMV specific and expressed gzmB and NKG2D, but unexpectedly expressed very little IFN-γ. Moreover, if CD8 T cells were depleted in LCMV immune mice prior to challenge with L. major, the increase in lesion size was lost. Strikingly, treating with NKG2D blocking antibodies abrogated the increased immunopathology observed in LCMV immune mice, showing that NKG2D engagement on LCMV specific memory CD8 T cells was required for the observed phenotype. These results indicate that bystander memory CD8 T cells can participate in an unrelated immune response and induce immunopathology through an NKG2D dependent mechanism without providing increased protection. Cutaneous leishmaniasis has a wide spectrum of clinical presentations, from mild self-healing lesions to severe chronic infections. Differences in each individual's response are related to pathogen dose and the genetic and physiological status of the host, but exactly what causes the broad spectrum of disease is not well understood. Here we show that previous infection with a viral or bacterial pathogen led to increased immunopathology associated with L. major infection. This increase in immunopathology was not associated with any changes in parasite control and was characterized by an exaggerated inflammatory infiltrate into the site of infection. Ultimately, this increase in immunopathology was dependent on the presence of memory CD8 T cells from the previous infection and their expression of the NK cell receptor NKG2D, as depletion of these cells prior to infection with L. major or blockade of this receptor during infection ameliorated the disease. Our work suggests that the immunological history of a patient may be playing an underlying role in the pathology associated with leishmania infection and could be an important consideration for the understanding and treatment of this and other human diseases. This work also identifies the NKG2D pathway as a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Erika J. Crosby
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael H. Goldschmidt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Iida KI, Seki M, Saito M, Kawamura Y, Kajiwara H, Yoshida SI. Capsule ofStreptococcus pyogenesIs Essential for Delayed Death of Mice in a Model of Streptococcal Toxic Shock Syndrome. Microbiol Immunol 2013; 50:127-30. [PMID: 16490930 DOI: 10.1111/j.1348-0421.2006.tb03777.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported a mouse model of severe group A streptococcal infection (Microbiol. Immunol. 45: 777-786, 2001). When we injected Streptococcus pyogenes strains intramuscularly, the mice suffered from acute phase of infection for a few days but recovered from the illness and gained body weight. These mice, however, began to die after 3 weeks of infection, which we called 'delayed death.' Bacterial strains isolated from organs of the dead mice showed thick capsules. We, therefore, constructed a hyaluronic acid capsule gene, hasA, knockout mutant by homologous recombination and the effect of capsule on the death was observed. hasA knockout strain did not cause delayed death, though it caused acute death at high doses of infection. According to this result, the capsule is a critical pathogenic factor for causing the delayed death in our mouse model.
Collapse
Affiliation(s)
- Ken-ichiro Iida
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Okamoto S. [Study of next generation influenza vaccine focused on "cross-protection by mucosal immunization" and "seed virus strains"]. YAKUGAKU ZASSHI 2013; 133:313-21. [PMID: 23449407 DOI: 10.1248/yakushi.12-00237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endemic infection by seasonal influenza virus usually occurs every winter season. Inside the host, human influenza viruses frequently undergo various point mutations at antigenic regions, in response to antibody pressure. Furthermore, the influenza virus has undergone frequent antigenic shifts for at least 100 years, some of which have caused influenza pandemics. In Japan, intramuscular immunization with influenza split-virion vaccines has been used to prevent seasonal influenza virus infections. Unfortunately, the efficacy of the current influenza vaccine immunization method is limited, even against viruses belonging to the same clade. Furthermore, the current vaccines are not expected to be protective against antigenically shifted viruses. Therefore, new approaches to vaccine development are needed to protect human populations against a potential pandemic virus. We are studying novel influenza vaccine designs to resolve the above weaknesses of the current influenza vaccines. I will describe our vaccine studies, "Cross-protection by mucosal immunization," and, "Preparation of seed virus strains to produce vaccines for possible pandemic influenza," in this symposium.
Collapse
Affiliation(s)
- Shigefumi Okamoto
- National Institute of Biomedical Innovation, Laboratory of Virology and Vaccinology, Ibaraki, Osaka, Japan.
| |
Collapse
|
39
|
Abstract
Bacterial coinfection complicated nearly all influenza deaths in the 1918 influenza pandemic and up to 34% of 2009 pandemic influenza A(H1N1) infections managed in intensive care units worldwide. More than 65,000 deaths attributable to influenza and pneumonia occur annually in the United States. Data from 683 critically ill patients with 2009 pandemic influenza A(H1N1) infection admitted to 35 intensive care units in the United States reveal that bacterial coinfection commonly occurs within the first 6 days of influenza infection, presents similarly to influenza infection occurring alone, and is associated with an increased risk of death. Pathogens that colonize the nasopharynx, including Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes, are most commonly isolated. Complex viral, bacterial, and host factors contribute to the pathogenesis of coinfection. Reductions in morbidity and mortality are dependent on prevention with available vaccines as well as early diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel S Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, 10 Center Dr, Room 2C145, Bethesda, MD 20892-1662, USA.
| | | |
Collapse
|
40
|
Leung RKK, Zhou JW, Guan W, Li SK, Yang ZF, Tsui SKW. Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect 2012; 19:930-5. [PMID: 23167452 DOI: 10.1111/1469-0691.12054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
Abstract
While much effort has been made to characterize influenza A pdm09 virus (pH1N1), the flu that was responsible for the fourth influenza pandemic, there is a lack of study on the composition of bacteria that lead to secondary infection. In this study, we recruited pneumonia patients with and without pH1N1 infection and characterized their oropharyngeal microbiota by the unbiased high-throughput sequencing method. While there were no significant differences in common bacterial pneumonia-causative agents (Acinetobacter and Streptococcus species), previously unreported Pseudomonas species equipped with chemotaxis and flagellar assembly genes significantly increased (>20-fold) in the pH1N1-infected group. Bacillus and Ralstonia species that also increased significantly (5-10-fold) were also found to possess similar signaling and motility genes. In contrast, no such genes were found in oral commensal Prevotella, Veillonella and Neisseria species, which decreased significantly, or in either Acinetobacter or 10 out of 21 Streptococcus species, including Streptococcus pneumoniae. Our results support the notion that pH1N1 infection provides a niche for previously unnoticed potential respiratory pathogens that were able to access the lower respiratory tract with weakened immunity.
Collapse
Affiliation(s)
- R K-K Leung
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
41
|
Yamada H, Moriishi E, Haredy AM, Takenaka N, Mori Y, Yamanishi K, Okamoto S. Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains. Antiviral Res 2012; 96:344-52. [PMID: 23022352 DOI: 10.1016/j.antiviral.2012.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 08/17/2012] [Accepted: 09/15/2012] [Indexed: 11/29/2022]
Abstract
Dextran sulfate (DS), a negatively charged, sulfated polysaccharide, suppresses the replication of an influenza A virus strain, and this suppression is associated with inhibition of the hemagglutinin (HA)-dependent fusion activity. However, it remains unknown whether the replication of all or just some influenza A virus strains is suppressed by DS, or whether HA is the only target for the replication suppression. In the present study, we found that DS inhibited the replication of some, but not all influenza A virus strains. The suppression in the DS-sensitive strains was dose-dependent and neutralized by diethylaminoethyl-dextran (DD), which has a positive charge. The suppression by DS was observed not only at the initial stage of viral infection, which includes viral attachment and entry, but also at the late stage, which includes virus assembly and release from infected cells. Electron microscopy revealed that the DS induced viral aggregation at the cell surface. The neuraminidase (NA) activity of the strains whose viral replication was inhibited at the late stage was also more suppressed by DS than that of the strains whose replication was not inhibited, and this inhibition of NA activity was also neutralized by adding positively charged DD. Furthermore, we found that replacing the NA gene of a strain in which viral replication was inhibited by DS at the late stage with the NA gene from a strain in which viral replication was not inhibited, eliminated the DS-dependent suppression. These results suggest that the influenza virus NA contributes to the DS-suppressible virus release from infected cells at the late stage, and the suppression may involve the inhibition of NA activity by DS's negative charge.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Wong SS, Yuen KY. Streptococcus pyogenes and re-emergence of scarlet fever as a public health problem. Emerg Microbes Infect 2012; 1:e2. [PMID: 26038416 PMCID: PMC3630912 DOI: 10.1038/emi.2012.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/16/2012] [Indexed: 11/09/2022]
Abstract
Explosive outbreaks of infectious diseases occasionally occur without immediately obvious epidemiological or microbiological explanations. Plague, cholera and Streptococcus pyogenes infection are some of the epidemic-prone bacterial infections. Besides epidemiological and conventional microbiological methods, the next-generation gene sequencing technology permits prompt detection of genomic and transcriptomic profiles associated with invasive phenotypes. Horizontal gene transfer due to mobile genetic elements carrying virulence factors and antimicrobial resistance, or mutations associated with the two component CovRS operon are important bacterial factors conferring survival advantage or invasiveness. The high incidence of scarlet fever in children less than 10 years old suggests that the lack of protective immunity is an important host factor. A high population density, overcrowded living environment and a low yearly rainfall are environmental factors contributing to outbreak development. Inappropriate antibiotic use is not only ineffective for treatment, but may actually drive an epidemic caused by drug-resistant strains and worsen patient outcomes by increasing the bacterial density at the site of infection and inducing toxin production. Surveillance of severe S. pyogenes infection is important because it can complicate concurrent chickenpox and influenza. Concomitant outbreaks of these two latter infections with a highly virulent and drug-resistant S. pyogenes strain can be disastrous.
Collapse
Affiliation(s)
- Samson Sy Wong
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
43
|
Allard R, Couillard M, Pilon P, Kafka M, Bédard L. Invasive bacterial infections following influenza: a time-series analysis in Montréal, Canada, 1996-2008. Influenza Other Respir Viruses 2012; 6:268-75. [PMID: 21985083 PMCID: PMC5779805 DOI: 10.1111/j.1750-2659.2011.00297.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Shared seasonal patterns, such as between influenza and some respiratory bacterial infections, can create associations between phenomena not causally related. OBJECTIVES To estimate the association of influenza with subsequent bacterial infections after full adjustment for confounding by seasonal and long-term trends. METHODS Time series of weekly counts of notified cases of invasive infections with Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae and Streptococcus pyogenes, in Montréal, Canada, 1996-2008, were modelled by negative binomial regression, with terms representing seasonal and long-term trends and terms for numbers of positive laboratory tests for influenza A and B. RESULTS The associations of S. pneumoniae, H. influenzae and N. meningitidis with influenza disappeared after seasonal terms were added to the model. However, the influenza B count remained associated with the S. pyogenes counts for the same week and the following week: S. pyogenes incidence rate ratios were 1.0376 (95% CI: 1.0009-1.0757) and 1.0354 (0.9958-1.0766), respectively, for each increase of 1 in the influenza count. CONCLUSIONS Influenza B accounts for about 8 percnt; of the incidence of invasive S. pyogenes infections, over and above any effect associated with modellable seasonal and long-term trends. This association of influenza B with S. pyogenes infections can be attributed largely to the years 1997, 2001, 2007 and 2008, when late peaks in influenza B counts were followed by peaks in S. pyogenes notifications. This finding reinforces the case for universal immunization against influenza, as partial protection against the 'flesh eating disease'.
Collapse
Affiliation(s)
- R Allard
- Public Health Department, Montréal Health and Social Services Agency.
| | | | | | | | | |
Collapse
|
44
|
Maruo T, Gotoh Y, Nishimura H, Ohashi S, Toda T, Takahashi K. Oral administration of milk fermented with Lactococcus lactis subsp. cremoris FC protects mice against influenza virus infection. Lett Appl Microbiol 2012; 55:135-40. [PMID: 22642647 DOI: 10.1111/j.1472-765x.2012.03270.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the protective effects of oral administration of milk fermented with a Lactococcus strain against influenza virus (IFV) infection in a mouse model. METHODS AND RESULTS Milk fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris (L. cremoris) FC was orally administered to BALB/c mice for 12 days. Mice were intranasally infected with IFV A/New Caledonia/20/99 (H1N1) on day 8, and survival was determined for 14 days after IFV infection. Survival rate and body weight loss after IFV infection in the L. cremoris FC fermented milk-administered group were significantly improved compared with those in the control group. In the unfermented milk-administered group, survival rate was not improved, whereas body weight loss was slightly improved compared with that in the control group. The mean virus titre in the lung of the L. cremoris FC fermented milk-administered group 3 days after infection was significantly decreased compared with that in the control group. CONCLUSIONS These results suggest that oral administration of milk fermented with L. cremoris FC protects mice against IFV infection. SIGNIFICANCE AND IMPACT OF THE STUDY These results demonstrate that oral administration of milk fermented with exopolysaccharide-producing Lactococcus strains might protect host animals against IFV infection.
Collapse
Affiliation(s)
- T Maruo
- Fujicco Co. Ltd, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Ooi Y, Daikoku E, Wu H, Aoki H, Morita C, Nakano T, Kohno T, Takasaki T, Sano K. Morphology and infectivity of virus that persistently caused infection in an AGS cell line. Med Mol Morphol 2011; 44:213-20. [PMID: 22179184 DOI: 10.1007/s00795-010-0530-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/13/2010] [Indexed: 12/13/2022]
Abstract
A recent report has indicated that proteins and genes of simian virus 5 (SV5) are detected in a human gastric adenocarcinoma (AGS) cell line, which is widely provided for oncology, immunology, and microbiology research. However, the production of infective virions has not been determined in this cell line. In this study, the morphology and infectivity of the virus particles of the AGS cell line were studied by light and electron microscopy and virus transmission assay. The virus particles were approximately 176.0 ± 41.1 nm in diameter. The particles possessed projections 8-12 nm long on the surface and contained a nucleocapsid determined to be 13-18 nm in width and less than 1,000 nm in length. The virus was transmissible to the Vero cell line, induced multinuclear giant cell formation, and reproduced the same shape of antigenic virions. In this study, the persistently infected virus in the AGS cell line was determined to be infective and form reproducible virions, and a new morphological feature of SV5 was determined.
Collapse
Affiliation(s)
- Yukimasa Ooi
- Department of Microbiology and Infection Control, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hafez MM, Abdel-Wahab KSE, El-Fouhil DFI. Augmented adherence and internalization of group A Streptococcus pyogenes to influenza A virus infected MDCK cells. J Basic Microbiol 2011; 50 Suppl 1:S46-57. [PMID: 20967785 DOI: 10.1002/jobm.200900427] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 08/02/2010] [Indexed: 11/06/2022]
Abstract
Respiratory tract infections are one of the leading causes of morbidity and mortality. There is considerable epidemiologic evidence that infection with respiratory viruses increases the incidence and severity of secondary bacterial complications. However, very limited number of studies were concerned with the mechanism behind such synergy. In this context, our study aimed to explore the interaction between Group A Streptococcus pyogenes (GAS) and Influenza A virus (IAV). Our results revealed that the GAS adherence and internalization into Madin-Darby canine kidney (MDCK) cells markedly increased after IAV infection. When M6 protein defective mutant of GAS was used, the virus enhanced adherence and internalization was nearly abolished indicating the involvement of M protein binding sites on the MDCK cell surface. Interestingly, the modulation of some O-linked glycolproteins as well as sialic acid, mucin and fibrinogen-like residues on the surface of MDCK cells contributed to augmented bacterial adherence and/or internalization. In the same way, qRT-PCR experiments showed an overexpression of the membrane associated mucin (MUC1) on the surface of the MDCK cells after IAV infection. Altogether, the present study revealed that IAV infection augments the adherence and internalization of GAS to MDCK cells via modulation of membrane associated O-linked glycoproteins, fibrinogen, sialic acid residues and the mucin, MUC1 on the surface of MDCK cell.
Collapse
Affiliation(s)
- Mohamed M Hafez
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | |
Collapse
|
47
|
Chaussee MS, Sandbulte HR, Schuneman MJ, Depaula FP, Addengast LA, Schlenker EH, Huber VC. Inactivated and live, attenuated influenza vaccines protect mice against influenza: Streptococcus pyogenes super-infections. Vaccine 2011; 29:3773-81. [PMID: 21440037 DOI: 10.1016/j.vaccine.2011.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 01/28/2023]
Abstract
Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with Streptococcus pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete.
Collapse
Affiliation(s)
- Michael S Chaussee
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Murine Model of Chronic Respiratory Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:125-41. [DOI: 10.1007/978-1-4419-5632-3_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
49
|
Saito M, Kajiwara H, Iida KI, Hoshina T, Kusuhara K, Hara T, Yoshida SI. Systemic cytokine response in moribund mice of streptococcal toxic shock syndrome model. Microb Pathog 2010; 50:109-13. [PMID: 21146602 DOI: 10.1016/j.micpath.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
Streptococcus pyogenes causes severe invasive disease in humans, including streptococcal toxic shock syndrome (STSS). We previously reported a mouse model that is similar to human STSS. When mice were infected intramuscularly with 10(7) CFU of S. pyogenes, all of them survived acute phase of infection. After 20 or more days of infection, a number of them died suddenly accompanied by S. pyogenes bacteremia. We call this phenomenon "delayed death". We analyzed the serum cytokine levels of mice with delayed death, and compared them with those of mice who died in the acute phase of intravenous S. pyogenes infection. The serum levels of TNF-α and IFN-γ in mice of delayed death were more than 100 times higher than those in acute death mice. IL-10 and IL-12, which were not detected in acute death, were also significantly higher in mice of delayed death. IL-6 and MCP-1 (CCL-2) were elevated in both groups of mice. It was noteworthy that not only pro-inflammatory cytokines but also anti-inflammatory cytokines were elevated in delayed death. We also found that intravenous TNF-α injection accelerated delayed death, suggesting that an increase of serum TNF-α induced S. pyogenes bacteremia in our mouse model.
Collapse
Affiliation(s)
- Mitsumasa Saito
- Molecular Structure & Function Program, Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Tarsia P, Aliberti S, Pappalettera M, Blasi F. Mixed community-acquired lower respiratory tract infections. Curr Infect Dis Rep 2010; 9:14-20. [PMID: 17254500 PMCID: PMC7089415 DOI: 10.1007/s11908-007-0017-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although mixed infections are known to be clinically relevant in conditions such as nosocomial pneumonia and ventilator-related pneumonia, it is increasingly recognized that a substantial number of community-acquired lower respiratory tract infections may also be attributed to more than one pathogenic organism. A better definition of the true incidence of mixed infections in community-acquired lower respiratory tract infections is partly derived from recent advances in available diagnostic methods (eg, molecular biology). Two points still must be determined: whether the presence of a mixed infection is associated with altered outcomes and whether empirical antibiotic selection should be modified to account for potential polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | - Francesco Blasi
- Institute of Respiratory Diseases, University of Milan, Ospedale Maggiore IRCCS Fondazione Policlinico, Mangiagalli e Regina Elena, Milan, Italy
| |
Collapse
|