1
|
Atani ZR, Hosseini SS, Goudarzi H, Faghihloo E. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Glob Med Genet 2024; 11:285-296. [PMID: 39224462 PMCID: PMC11368560 DOI: 10.1055/s-0044-1790210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.
Collapse
Affiliation(s)
- Zahra Rafiei Atani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sareh Sadat Hosseini
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
3
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Yoon H, Han J, Jang KL. Hepatitis B Virus X Protein Stimulates Hepatitis C Virus (HCV) Replication by Protecting HCV Core Protein from E6AP-Mediated Proteasomal Degradation. Microbiol Spectr 2022; 10:e0143222. [PMID: 36374094 PMCID: PMC9784765 DOI: 10.1128/spectrum.01432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the underlying mechanism remains unclear. In this study, we found that the HBV X protein (HBx) upregulates the levels of the HCV core protein to stimulate HCV replication during coinfection in human hepatoma cells. For this purpose, HBx upregulated both the protein levels and enzyme activities of cellular DNA methyltransferase 1 (DNMT1) and DNMT3b, and this subsequently reduced the expression levels of the E6-associated protein (E6AP), an E3 ligase of the HCV core protein, via DNA methylation. The ubiquitin-dependent proteasomal degradation of the HCV core protein was severely impaired in the presence of HBx, whereas this effect was not observed when E6AP was either ectopically expressed or restored by treatment with 5-aza-2'dC or DNMT1 knockdown. The effect of HBx on the HCV core protein was accurately reproduced in HBV/HCV coinfection systems, which were established by either monoinfection by HCV in Huh7D cells transfected with a 1.2-mer HBV replicon or coinfection by HBV and HCV in Huh7D-Na+-taurocholate cotransporting polypeptide cells, providing evidence for the stimulation of HCV replication by HBx. The present study may provide insights into understanding HCV dominance during HBV/HCV coinfection in patients. IMPORTANCE Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major human pathogens that cause a substantial proportion of liver diseases worldwide. As the two hepatotropic viruses have the same modes of transmission, coinfection is often observed, especially in areas and populations where HBV is endemic. High-risk populations include people who inject drugs. Both clinical and experimental studies have shown that HCV is more dominant than HBV during coinfection, but the underlying mechanism remains unclear. In this study, we show that HBV X protein (HBx) stimulates HCV replication by inhibiting the expression of E6-associated protein (E6AP) via DNA methylation, thereby protecting the HCV core protein from proteasomal degradation, which can contribute to HCV dominance during HBV/HCV coinfection.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Ikram A, Rauff B, Alzahrani B, Awan FM, Obaid A, Naz A, Kakar SJ, Janjua HA. Integrated analysis to study the interplay between post-translational modifications (PTM) in hepatitis C virus proteins and hepatocellular carcinoma (HCC) development. Sci Rep 2022; 12:15648. [PMID: 36123370 PMCID: PMC9483894 DOI: 10.1038/s41598-022-19854-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Many PTMs dysregulation is known to be the major cause of many cancers including HCV induced HCC. PTMs of hepatitis C virus (HCV) regions NS3/4A, NS5A and NS5B are crucial for proper protein functions and replication that directly affect the generation of infectious virus particles and completion of its life cycle. In this study, we have performed comprehensive analysis of PTMs within HCV non-structural proteins (NS3/4A, NS5A and NS5B) through bioinformatics analysis to examine post-translational crosstalk between phosphorylation, palmitoylation, methylation, acetylation and ubiquitination sites in selected viral proteins. Our analysis has revealed many highly putative PTMs sites that are also conserved among major genotypes conferring the importance of these sites. We have also analysed viral 3D structures in their modified and unmodified forms to address extent and signatures of structural changes upon PTM. This study provides evidence that PTMs induce significant conformational changes and make viral proteins more stable. To find the potential role of PTMs in HCV induced HCC, docking analysis between selected viral proteins and p38-MAPK has been performed which also confirms their strong association with HCV induced HCC. The major findings proposed that PTMs at specific sites of HCV viral proteins could dysregulate specific pathways that cause the development of HCC.
Collapse
Affiliation(s)
- Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore, Pakistan.
| | - Bisma Rauff
- Department of Biomedical Engineering, UET Lahore, Narowal campus, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore, Pakistan
| | - Salik Javed Kakar
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
6
|
Lee HK, Yoon H, Jang KL. All-trans retinoic acid inhibits HCV replication by downregulating core levels via E6AP-mediated proteasomal degradation. Biochem Biophys Res Commun 2022; 594:15-21. [PMID: 35066375 DOI: 10.1016/j.bbrc.2022.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Here, we found that all-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, strengthens the anti-viral defense mechanism of E6-associated protein (E6AP) that downregulates hepatitis C virus (HCV) Core levels via ubiquitin-dependent proteasomal degradation. For this effect, ATRA downregulated both protein and enzyme activity levels of DNA methyltransferase 1 and 3b and activated E6AP expression via promoter hypomethylation in HepG2 cells but not in Hep3B cells, in which p53 was absent. Ectopic p53 expression but not E6AP overexpression restored the ability of ATRA to downregulate HCV Core levels in Hep3B cells, suggesting a direct role of p53 in the E6AP-mediated ubiquitination of HCV Core. ATRA also downregulated HCV Core levels during HCV infection in Huh7D cells to inhibit virus replication, providing theoretical basis for the clinical application of ATRA against HCV infection.
Collapse
Affiliation(s)
- Hye-Kyoung Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea; Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Feng X, Cao A, Qin T, Zhang Q, Fan S, Wang B, Song B, Yu X, Li L. Abnormally elevated ubiquilin‑1 expression in breast cancer regulates metastasis and stemness via AKT signaling. Oncol Rep 2021; 46:236. [PMID: 34528694 PMCID: PMC8453688 DOI: 10.3892/or.2021.8187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ubiquilin-1 (UBQLN1) is an essential factor for the maintenance of proteostasis in cells. It is important for the regulation of different protein degradation mechanisms, including the ubiquitin-proteasome system, autophagy and endoplasmic reticulum-associated protein degradation pathways. However, the role of UBQLN1 in cancer progression remains largely unknown. In the present study, the expression, functions and molecular mechanisms of UBQLN1 in breast cancer tissue samples and cell lines were explored. Immunohistochemical and bioinformatics analyses revealed that UBQLN1 expression was significantly upregulated in breast cancer tissues and cell lines. UBQLN1 expression in breast cancer was significantly associated with lymph node metastasis and TNM stage. Moreover, a high UBQLN1 expression was a predictor of an unfavorable survival in patients with breast cancer. In vitro, UBQLN1 silencing markedly inhibited cell migration and invasion, epithelial-to-mesenchymal transition (EMT) and MMP expression. UBQLN1 silencing attenuated the stem cell-like properties of breast cancer cells, including their mammosphere-forming abilities. UBQLN1 knockdown also enhanced breast cancer cell chemosensitivity to paclitaxel. The expression levels of the stem cell markers. Aldehyde dehydrogenase 1 (ALDH1), Oct-4 and Sox2 were significantly decreased in the cells in which UBQLN1 was silenced, whereas breast cancer stem cells exhibited an increased expression of UBQLN1. Mechanistically, UBQLN1 knockdown inhibited the activation of AKT signaling, as revealed by the increased PTEN expression and the decreased expression of phosphorylated AKT in cells in which UBQLN1 was silenced. On the whole, the present study demonstrates that UBQLN1 is aberrantly upregulated in breast cancer and predicts a poor prognosis. The silencing of UBQLN1 inhibited the invasion, EMT and stemness of breast cancer cells, possibly via AKT signaling.
Collapse
Affiliation(s)
- Xiaoyue Feng
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Anna Cao
- Department of Pathology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Tao Qin
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bo Song
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaotang Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
8
|
Impaired 26S Proteasome Assembly Precedes Neuronal Loss in Mutant UBQLN2 Rats. Int J Mol Sci 2021; 22:ijms22094319. [PMID: 33919255 PMCID: PMC8122323 DOI: 10.3390/ijms22094319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Proteasomal dysfunction is known to be associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). Our previous reports have shown that a mutant form of ubiquilin-2 (UBQLN2) linked to ALS/FTD leads to neurodegeneration accompanied by accumulations of the proteasome subunit Rpt1 in transgenic rats, but the precise pathogenic mechanisms of how this mutation impairs the proteasome remains to be elucidated. Here, we reveal that this UBQLN2 mutation in rats disrupted the proteasome integrity prior to neurodegeneration, that it dissociated the 26S proteasome in vitro, and that its depletion did not affect 26S proteasome assembly. During both disease progression and in an age-dependent manner, we found that proteasome subunits were translocated to the nucleus, including both of the 20S core particles (PSMA1 and PSMB7) and the 19S regulatory particles (Rpt1 and Rpn1), suggesting that defective proteasome function may result from the proteasome-subunit mislocalization. Taken together, the present data demonstrate that impaired proteasome assembly is an early event in the pathogenesis of UBQLN2-associated neurodegeneration in mutant UBQLN2 rats.
Collapse
|
9
|
Lemasson M, Caignard G, Unterfinger Y, Attoui H, Bell-Sakyi L, Hirchaud E, Moutailler S, Johnson N, Vitour D, Richardson J, Lacour SA. Exploration of binary protein-protein interactions between tick-borne flaviviruses and Ixodes ricinus. Parasit Vectors 2021; 14:144. [PMID: 33676573 PMCID: PMC7937244 DOI: 10.1186/s13071-021-04651-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background Louping ill virus (LIV) and tick-borne encephalitis virus (TBEV) are tick-borne flaviviruses that are both transmitted by the major European tick, Ixodes ricinus. Despite the importance of I. ricinus as an arthropod vector, its capacity to acquire and subsequently transmit viruses, known as vector competence, is poorly understood. At the molecular scale, vector competence is governed in part by binary interactions established between viral and cellular proteins within infected tick cells. Methods To investigate virus-vector protein–protein interactions (PPIs), the entire set of open reading frames for LIV and TBEV was screened against an I. ricinus cDNA library established from three embryonic tick cell lines using yeast two-hybrid methodology (Y2H). PPIs revealed for each viral bait were retested in yeast by applying a gap repair (GR) strategy, and notably against the cognate protein of both viruses, to determine whether the PPIs were specific for a single virus or common to both. The interacting tick proteins were identified by automatic BLASTX, and in silico analyses were performed to expose the biological processes targeted by LIV and TBEV. Results For each virus, we identified 24 different PPIs involving six viral proteins and 22 unique tick proteins, with all PPIs being common to both viruses. According to our data, several viral proteins (pM, M, NS2A, NS4A, 2K and NS5) target multiple tick protein modules implicated in critical biological pathways. Of note, the NS5 and pM viral proteins establish PPI with several tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins, which are essential adaptor proteins at the nexus of multiple signal transduction pathways. Conclusion We provide the first description of the TBEV/LIV-I. ricinus PPI network, and indeed of any PPI network involving a tick-borne virus and its tick vector. While further investigation will be needed to elucidate the role of each tick protein in the replication cycle of tick-borne flaviviruses, our study provides a foundation for understanding the vector competence of I. ricinus at the molecular level. Indeed, certain PPIs may represent molecular determinants of vector competence of I. ricinus for TBEV and LIV, and potentially for other tick-borne flaviviruses.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04651-3.
Collapse
Affiliation(s)
- Manon Lemasson
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Grégory Caignard
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Yves Unterfinger
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Houssam Attoui
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Edouard Hirchaud
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | | | - Damien Vitour
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Jennifer Richardson
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France
| | - Sandrine A Lacour
- UMR 1161 Virologie Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, Maisons-Alfort, France.
| |
Collapse
|
10
|
UBQLN2 Promotes the Production of Type I Interferon via the TBK1-IRF3 Pathway. Cells 2020; 9:cells9051205. [PMID: 32413959 PMCID: PMC7290724 DOI: 10.3390/cells9051205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Ubiquilin 2 (UBQLN2) or TANK-binding kinase 1 (TBK1) are associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). However, the mechanisms whereby UBQLN2 or TBK1 mutations lead to ALS and FTD remain unclear. Here, we explored the effect of UBQLN2 on TBK1 in HEK-293T cells or in CRISPR-Cas9-mediated IRF3 and IRF7 knockout (KO) cells. We found an interaction between TBK1 and UBQLN2, which was affected by ALS/FTD-linked mutations in TBK1 or UBQLN2. Co-expression of UBQLN2 with TBK1 elevated the protein level of TBK1 as well as the phosphorylation of TBK1 and IRF3 in a UBQLN2 dose-dependent manner, and this phosphorylation was reduced by mutant UBQLN2. In addition, the cellular production of IFN1 and related pro-inflammatory cytokines was substantially elevated when UBQLN2 and TBK1 were co-expressed, which was also decreased by mutant UBQLN2. Functional assay revealed that mutant UBQLN2 significantly reduced the binding affinity of TBK1 for its partners, including IRF3, (SQSTM1)/p62 and optineurin (OPTN). Moreover, complete loss of IRF3 abolished the induction of IFN1 and related pro-inflammatory cytokines enhanced by UBQLN2 in HEK-293T cells, whereas no significant change in IRF7 knockout cells was observed. Thus, our findings suggest that UBQLN2 promotes IRF3 phosphorylation via TBK1, leading to enhanced IFN1 induction, and also imply that the dysregulated TBK1-IRF3 pathway may play a role in UBQLN2-related neurodegeneration.
Collapse
|
11
|
Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J 2019; 16:127. [PMID: 31694654 PMCID: PMC6833258 DOI: 10.1186/s12985-019-1238-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Capsid (C) protein plays an important role in the replication of classical swine fever virus (CSFV). The ubiquitin proteasome system (UPS) involves in replication of many viruses via modulation of viral proteins. The relationship of CSFV with UPS is poorly understood and the impact of 26S proteasome on C protein has never been reported before. METHODS In this study, fused C protein with an EGFP tag is expressed in PK-15 and 3D4/2 cells. MG132 and 3-methyladenine (3-MA) are used to detect the roles of 26S proteasome and autophagolysosome in expression levels of C protein. Truncated and mutant C proteins are used to find the exact residues responsible for the degradation of C protein. Immunoprecipitaion is performed to find whether C protein is ubiquitinated or not. RESULTS C-EGFP protein expresses in a cleaved form at a low level and is degraded by 26S proteasome which could be partly inhibited by MG132. C-terminal residues play more important roles in the degradation of C protein than N-terminal residues. Residues 260 to 267, especially M260 and L261, are crucial for the degradation. In addition, C-terminal residues 262 to 267 determine cleavage efficiency of C protein. CONCLUSIONS CSFV C protein is degraded by 26S proteasome in a ubiquitin-independent manner. Last 8 residues at C-terminus of immature C protein play a major role in proteasomal degradation of CSFV C protein and determine the cleavage efficiency of C protein by signal peptide peptidase (SPP). Our findings provide valuable help for fully understanding degradation process of C protein and contribute to fully understanding the role of C protein in CSFV replication.
Collapse
|
12
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Wang M, Wang Y, Liu Y, Wang H, Xin X, Li J, Hao Y, Han L, Yu F, Zheng C, Shen C. SPSB2 inhibits hepatitis C virus replication by targeting NS5A for ubiquitination and degradation. PLoS One 2019; 14:e0219989. [PMID: 31344133 PMCID: PMC6657855 DOI: 10.1371/journal.pone.0219989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication involves many viral and host factors. Host factor SPRY domain- and SOCS box-containing protein 2(SPSB2) belongs to SPSB family, and it recruits target proteins by the SPRY domain and forms E3 ubiquitin ligase complexes by the SOCS box. As an adaptor protein, it can regulate the host’s response to infection, but little is known about whether SPSB2 plays a role in HCV replication. In the present study, we found that HCV infection significantly upregulated the mRNA and protein levels of SPSB2 in HCVcc-infected cells. Exogenous expression of SPSB2 in hepatoma cells decreased HCV RNA and protein levels which depended on the SOCS box, while knockdown of endogenous SPSB2 increased HCV RNA and protein levels. Additionally, we demonstrated that SPSB2 interacted with HCV structural protein E1 and nonstructural protein protein 5A (NS5A) via the C-terminal portion of the SPSB2 SPRY domain. Furthermore, SPSB2 induced NS5A ubiquitination and mediated NS5A degradation. Collectively, this study discovered host factor SPSB2 significantly inhibits HCV replication by interacting and degrading NS5A.
Collapse
Affiliation(s)
- Mingzhen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuehong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiu Xin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiadai Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yao Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingling Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
14
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
15
|
Kitab B, Satoh M, Ohmori Y, Munakata T, Sudoh M, Kohara M, Tsukiyama-Kohara K. Ribonucleotide reductase M2 promotes RNA replication of hepatitis C virus by protecting NS5B protein from hPLIC1-dependent proteasomal degradation. J Biol Chem 2019; 294:5759-5773. [PMID: 30755480 DOI: 10.1074/jbc.ra118.004397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) establishes a chronic infection that can lead to cirrhosis and hepatocellular carcinoma. The HCV life cycle is closely associated with host factors that promote or restrict viral replication, the characterization of which could help to identify potential therapeutic targets. To this end, here we performed a genome-wide microarray analysis and identified ribonucleotide reductase M2 (RRM2) as a cellular factor essential for HCV replication. We found that RRM2 is up-regulated in response to HCV infection in quiescent hepatocytes from humanized chimeric mouse livers. To elucidate the molecular basis of RRM2 expression in HCV-infected cells, we used HCV-infected hepatocytes from chimeric mice and hepatoma cells infected with the HCV strain JFH1. Both models exhibited increased RRM2 mRNA and protein expression levels. Moreover, siRNA-mediated silencing of RRM2 suppressed HCV replication and infection. Of note, RRM2 and RNA polymerase nonstructural protein 5B (NS5B) partially co-localized in cells and co-immunoprecipitated, suggesting that they might interact. RRM2 knockdown reduced NS5B expression, which depended on the protein degradation pathway, as NS5B RNA levels did not decrease and NS5B protein stability correlated with RRM2 protein levels. We also found that RRM2 silencing decreased levels of hPLIC1 (human homolog 1 of protein linking integrin-associated protein and cytoskeleton), a ubiquitin-like protein that interacts with NS5B and promotes its degradation. This finding suggests that there is a dynamic interplay between RRM2 and the NS5B-hPLIC1 complex that has an important function in HCV replication. Together, these results identify a role of host RRM2 in viral RNA replication.
Collapse
Affiliation(s)
- Bouchra Kitab
- From the Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima-City 890-8580, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-City 890-8580, Japan
| | - Masaaki Satoh
- Virology I, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo 162-8640, Japan
| | - Yusuke Ohmori
- Research Division, Chugai Pharmaceutical Co., Ltd., Kajiwara, Kamakura-City, Kanagawa 247-8530, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo 156-8506, Japan
| | - Masayuki Sudoh
- Research Division, Chugai Pharmaceutical Co., Ltd., Kajiwara, Kamakura-City, Kanagawa 247-8530, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo 156-8506, Japan.
| | - Kyoko Tsukiyama-Kohara
- From the Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima-City 890-8580, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-City 890-8580, Japan.
| |
Collapse
|
16
|
Suzuki R, Matsuda M, Shimoike T, Watashi K, Aizaki H, Kato T, Suzuki T, Muramatsu M, Wakita T. Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase. Virology 2019; 529:226-233. [PMID: 30738360 DOI: 10.1016/j.virol.2019.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) was shown to activate protein kinase R (PKR), which inhibits expression of interferon (IFN) and IFN-stimulated genes by controlling the translation of newly transcribed mRNAs. However, it is unknown exactly how HCV activates PKR. To address the molecular mechanism(s) of PKR activation mediated by HCV infection, we examined the effects of viral proteins on PKR activation. Here, we show that expression of HCV NS5B strongly induced PKR and eIF2α phosphorylation, and attenuated MHC class I expression. In contrast, expression of Japanese encephalitis virus RNA-dependent RNA polymerase did not induce phosphorylation of PKR. Co-immunoprecipitation analyses showed that HCV NS5B interacted with PKR. Furthermore, expression of NS5B with polymerase activity-deficient mutation failed to phosphorylate PKR, suggesting that RNA polymerase activity is required for PKR activation. These results suggest that HCV activates PKR by association with NS5B, resulting in translational suppression of MHC class I to establish chronic infection.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takashi Shimoike
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
17
|
Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci U S A 2018; 115:E11485-E11494. [PMID: 30442662 DOI: 10.1073/pnas.1811997115] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ubiquitin-like protein ubiquilin 2 (UBQLN2) has been genetically and pathologically linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its normal cellular functions are not well understood. In a search for UBQLN2-interacting proteins, we found an enrichment of stress granule (SG) components, including ALS/FTD-linked heterogeneous ribonucleoprotein fused in sarcoma (FUS). Through the use of an optimized SG detection method, we observed UBQLN2 and its interactors at SGs. A low complexity, Sti1-like repeat region in UBQLN2 was sufficient for its localization to SGs. Functionally, UBQLN2 negatively regulated SG formation. UBQLN2 increased the dynamics of FUS-RNA interaction and promoted the fluidity of FUS-RNA complexes at a single-molecule level. This solubilizing effect corresponded to a dispersal of FUS liquid droplets in vitro and a suppression of FUS SG formation in cells. ALS-linked mutations in UBQLN2 reduced its association with FUS and impaired its function in regulating FUS-RNA complex dynamics and SG formation. These results reveal a previously unrecognized role for UBQLN2 in regulating the early stages of liquid-liquid phase separation by directly modulating the fluidity of protein-RNA complexes and the dynamics of SG formation.
Collapse
|
18
|
Chen T, Huang B, Shi X, Gao L, Huang C. Mutant UBQLN2 P497H in motor neurons leads to ALS-like phenotypes and defective autophagy in rats. Acta Neuropathol Commun 2018; 6:122. [PMID: 30409191 PMCID: PMC6225656 DOI: 10.1186/s40478-018-0627-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in ubiquilin2 (UBQLN2) have been linked to abnormal protein aggregation in amyotrophic lateral sclerosis (ALS). The mechanisms underlying UBQLN2-related neurodegenerative diseases remain unclear. Using a tetracycline-regulated gene expression system, the ALS-linked UBQLN2P497H mutant was selectively expressed in either the spinal motor neurons or astrocytes in rats. We found that selectively expressing mutant UBQLN2P497H in the spinal motor neurons caused several core features of ALS, including the progressive degeneration of motor neurons, the denervation atrophy of skeletal muscles, and the abnormal protein accumulation. Furthermore, mutant UBQLN2P497H accumulation was associated with an age-dependent decrease in several core autophagy-related proteins. ALS-like phenotypes were not observed when mutant UBQLN2P497H was overexpressed in the astrocytes, however, even though the expression of the mutant UBQLN2P497H protein was higher in these rats. Our results suggest that selectively expressing mutant UBQLN2P497H in motor neurons is sufficient to trigger the development of ALS in rats. Our results further indicate that the compromised autophagy-lysosomal pathway plays a critical role in the pathogenesis of UBQLN2-related neurodegenerative diseases.
Collapse
|
19
|
Cheng W, Chen G, Jia H, He X, Jing Z. DDX5 RNA Helicases: Emerging Roles in Viral Infection. Int J Mol Sci 2018; 19:ijms19041122. [PMID: 29642538 PMCID: PMC5979547 DOI: 10.3390/ijms19041122] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 5 (DDX5), also called p68, is a prototypical member of the large ATP-dependent RNA helicases family and is known to participate in all aspects of RNA metabolism ranging from transcription to translation, RNA decay, and miRNA processing. The roles of DDX5 in cell cycle regulation, tumorigenesis, apoptosis, cancer development, adipogenesis, Wnt-β-catenin signaling, and viral infection have been established. Several RNA viruses have been reported to hijack DDX5 to facilitate various steps of their replication cycles. Furthermore, DDX5 can be bounded by the viral proteins of some viruses with unknown functions. Interestingly, an antiviral function of DDX5 has been reported during hepatitis B virus and myxoma virus infection. Thus, the precise roles of this apparently multifaceted protein remain largely obscure. Here, we provide a rapid and critical overview of the structure and functions of DDX5 with a particular emphasis on its role during virus infection.
Collapse
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China.
| |
Collapse
|
20
|
Guo J, Chen D, Gao X, Hu X, Zhou Y, Wu C, Wang Y, Chen J, Pei R, Chen X. Protein Inhibitor of Activated STAT2 Restricts HCV Replication by Modulating Viral Proteins Degradation. Viruses 2017; 9:v9100285. [PMID: 28973998 PMCID: PMC5691636 DOI: 10.3390/v9100285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication in cells is controlled by many host factors. In this report, we found that protein inhibitor of activated STAT2 (PIAS2), which is a small ubiquitin-like modifier (SUMO) E3 ligase, restricted HCV replication. During infection, HCV core, NS3 and NS5A protein expression, as well as the viral assembly and budding efficiency were enhanced when endogenous PIAS2 was knocked down, whereas exogenous PIAS2 expression decreased HCV core, NS3, and NS5A protein expression and the viral assembly and budding efficiency. PIAS2 did not influence the viral entry, RNA replication, and protein translation steps of the viral life cycle. When expressed together with SUMO1, PIAS2 reduced the HCV core, NS3 and NS5A protein levels expressed from individual plasmids through the proteasome pathway in a ubiquitin-independent manner; the stability of these proteins in the HCV infectious system was enhanced when PIAS2 was knocked down. Furthermore, we found that the core was SUMOylated at amino acid K78, and PIAS2 enhanced the SUMOylation level of the core.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoxiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
21
|
Kurlawala Z, Shah PP, Shah C, Beverly LJ. The STI and UBA Domains of UBQLN1 Are Critical Determinants of Substrate Interaction and Proteostasis. J Cell Biochem 2017; 118:2261-2270. [PMID: 28075048 DOI: 10.1002/jcb.25880] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 01/24/2023]
Abstract
There are five Ubiquilin proteins (UBQLN1-4, UBQLN-L), which are evolutionarily conserved and structurally similar. UBQLN proteins have three functional domains: N-terminal ubiquitin-like domain (UBL), C-terminal ubiquitin-associated domain (UBA), and STI chaperone-like regions in the middle. Alterations in UBQLN1 gene have been detected in a variety of disorders ranging from Alzheimer's disease to cancer. UBQLN1 has been largely studied in neurodegenerative disorders in the context of protein quality control. Several studies have hypothesized that the UBA domain of UBQLN1 binds to poly-ubiquitin chains of substrate and shuttles it to the proteasome via its UBL domain for degradation. UBQLN1 either facilitates degradation (Ataxin3, EPS15) or stabilizes (PSEN1/2, BCLb) substrates it binds to. The signal that determines this fate is unknown and there is conflicting data to support the existing working model of UBQLN1. Using BCLb as a model substrate, we characterized UBQLN1-substrate interaction. We identified the first two STI domains of UBQLN1 as critical for binding to BCLb. Interaction of UBQLN1 with BCLb is independent of ubiquitination of BCLb, but interaction with ubiquitin via UBA domain is required for stabilization of BCLb. Similarly, we showed that UBQLN1 interacts with IGF1R and ESYT2 through the STI domains and stabilizes these proteins through its UBA domain. Interactions that are not dependent on STI domains, for example, UBL mediated interaction with PSMD4 and BAG6, do not appear to be stabilized by UBQLN1. We conclude that fate of substrates that UBQLN1 associates with, is interaction domain specific. J. Cell. Biochem. 118: 2261-2270, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zimple Kurlawala
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Charmi Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky.,Division of Hematology and Oncology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
22
|
Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation. Cancer Lett 2016; 380:59-68. [DOI: 10.1016/j.canlet.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/16/2023]
|
23
|
Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta Gen Subj 2016; 1860:1898-909. [PMID: 27241849 PMCID: PMC4949077 DOI: 10.1016/j.bbagen.2016.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Background Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. Methods We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. Results The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. Conclusions We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. General significance Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. A novel mosquito ubiquitin, Ub3881, is identified in Aedes aegypti. Ub3881 is shown to have antiviral functions during dengue virus infection of the mosquito. Ub3881 targets a dengue viral protein for degradation during infection. Future dengue virus prevention strategies could incorporate Ub3881 as a target to prevent mosquito infection.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, United States
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Tonya M Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
24
|
Chen J, Wu X, Chen S, Chen S, Xiang N, Chen Y, Guo D. Ubiquitin ligase Fbw7 restricts the replication of hepatitis C virus by targeting NS5B for ubiquitination and degradation. Biochem Biophys Res Commun 2016; 470:697-703. [PMID: 26774344 DOI: 10.1016/j.bbrc.2016.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) and responsible for replicating the whole HCV genome with help of viral and cellular proteins. However, how cellular factors influence NS5B and, in turn, regulating HCV replication are still poorly defined. The well known tumor suppressor Fbw7, a component of E3 ubiquitin ligase SCF(Fbw7), targets oncoproteins or cellular regulatory proteins for ubiquitin-mediated degradation through a highly conserved binding site called a Cdc4 phosphodegron (CPD). But little is known about whether Fbw7 plays a role in regulation of viral proteins. In this study, we revealed that the conserved CPD is shared by NS5B of almost all genotype of HCV and our data demonstrated that NS5B is a bona fide substrate of Fbw7. Forced expression of Fbw7 promoted the ubiquination of NS5B and negatively regulated its turnover in the proteasome-dependent manner. We further revealed the interaction between NS5B and Fbw7, which resulted in the relocation of Fbw7 from nucleus to cytoplasm. During HCV replication, ectopic expression of Fbw7 could strongly down-regulate NS5B level and consequently inhibited the virus replication. When endogenous Fbw7 was knocked down, both NS5B protein abundance and HCV replication were remarkably up-regulated. The results provide more insights into the interplay of HCV and cellular factors and shed light on molecular mechanisms of HCV replication and pathogenesis.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiaoyun Wu
- Bio-Thera Solutions, Ltd. Co., Enterprise Accelerator A6-5fl, 11 Kaiyuan Rd, Science City, Guangzhou 510530, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shuliang Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Nian Xiang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yu Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China; School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
25
|
Ganesan M, Hindman J, Tillman B, Jaramillo L, Poluektova LI, French BA, Kharbanda KK, French SW, Osna NA. FAT10 suppression stabilizes oxidized proteins in liver cells: Effects of HCV and ethanol. Exp Mol Pathol 2015; 99:506-516. [PMID: 26407761 DOI: 10.1016/j.yexmp.2015.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/21/2015] [Indexed: 02/08/2023]
Abstract
FAT10 belongs to the ubiquitin-like modifier (ULM) family that targets proteins for degradation and is recognized by 26S proteasome. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by IFNγ and TNFα in the non-immune (liver parenchymal) cells. It is not clear how viral proteins and alcohol regulate FAT10 expression on liver cells. In this study, we aimed to investigate whether FAT10 expression on liver cells is activated by the innate immunity factor, IFNα and how HCV protein expression in hepatocytes and ethanol-induced oxidative stress affect the level of FAT10 in liver cells. For this study, we used HCV(+) transgenic mice that express structural HCV proteins and their HCV(-) littermates. Mice were fed Lieber De Carli diet (control and ethanol) as specified in the NIH protocol for chronic-acute ethanol feeding. Alcohol exposure enhanced steatosis, induced oxidative stress and decreased proteasome activity in the liversof these mice, with more robust response to ethanol in HCV(+) mice. IFNα induced transcriptional activation of FAT10 in liver cells, which was dysregulated by ethanol feeding. Accordingly, IFNα-activated expression of FAT10 in hepatocytes (measured by indirect immunofluorescent of liver tissue) was also suppressed by ethanol exposure in both HCV(+) and HCV(-) mice. This suppression was accompanied with ethanol-mediated induction of lipid peroxidation marker, 4-HNE. All aforementioned effects of ethanol were attenuated by in vivo feeding of mice with the pro-methylating agent, betaine, which exhibits strong anti-oxidant properties. Based on this study, we hypothesize that FAT10 targets oxidatively modified proteins for proteasomal degradation, and that the reduction in FAT10 levels along with decreased proteasome activity may contribute to stabilization of these altered proteins in hepatocytes. In conclusion, IFNα induced FAT10 expression, which is suppressed by ethanol feeding in both HCV(+) and HCV(-) mice. Betaine treatment reverses HCV-ethanol induced dysregulation of protein methylation and oxidative stress, thereby restoring the FAT10 expression on liver cells.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Joseph Hindman
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Brittany Tillman
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lee Jaramillo
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa I Poluektova
- Department of Pharmacology and Experimental Neuroscience, Omaha, NE 68105, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Barbara A French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
26
|
Nasheri N, Ning Z, Figeys D, Yao S, Goto NK, Pezacki JP. Activity-based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics 2015; 15:3815-25. [PMID: 26314548 DOI: 10.1002/pmic.201500169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.
Collapse
Affiliation(s)
- Neda Nasheri
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Shao Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Natalie K Goto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
Luo H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol 2015; 17:1-10. [PMID: 26426962 PMCID: PMC7102833 DOI: 10.1016/j.coviro.2015.09.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/24/2023]
Abstract
Many viruses have evolved to utilize the host UPS for their own benefit. Viruses subvert the UPS to maintain optimal level/function of viral proteins. Viruses exploit the UPS to degrade host proteins which impede viral growth. The UPS serves as an important host anti-viral defense mechanism. The UPS is inhibited by some viruses to prevent viral clearance.
The ubiquitin–proteasome system (UPS) plays a central role in a wide range of fundamental cellular functions by ensuring protein quality control and through maintaining a critical level of important regulatory proteins. Viruses subvert or manipulate this cellular machinery to favor viral propagation and to evade host immune response. The UPS serves as a double-edged sword in viral pathogenesis: on the one hand, the UPS is utilized by many viruses to maintain proper function and level of viral proteins; while on the other hand, the UPS constitutes a host defense mechanism to eliminate viral components. To combat this host anti-viral machinery, viruses have evolved to employ the UPS to degrade or inactivate cellular proteins that limit viral growth. This review will highlight our current knowledge pertaining to the different roles for the UPS in viral pathogenesis.
Collapse
Affiliation(s)
- Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Y-Box Binding Protein 1 Stabilizes Hepatitis C Virus NS5A via Phosphorylation-Mediated Interaction with NS5A To Regulate Viral Propagation. J Virol 2015; 89:11584-602. [PMID: 26355086 DOI: 10.1128/jvi.01513-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Replication of hepatitis C virus (HCV) is dependent on virus-encoded proteins and numerous cellular factors. DDX3 is a well-known host cofactor of HCV replication. In this study, we investigated the role of a DDX3-interacting protein, Y-box binding protein 1 (YB-1), in the HCV life cycle. Both YB-1 and DDX3 interacted with the viral nonstructural protein NS5A. During HCV infection, YB-1 partially colocalized with NS5A and the HCV replication intermediate double-stranded RNA (dsRNA) in HCV-infected Huh-7.5.1 cells. Despite sharing the same interacting partners, YB-1 participated in HCV RNA replication but was dispensable in steady-state HCV RNA replication, different from the action of DDX3. Moreover, knockdown of YB-1 in HCV-infected cells prevented infectious virus production and reduced the ratio of hyperphosphorylated (p58) to hypophosphorylated (p56) forms of NS5A, whereas DDX3 silencing did not affect the ratio of the p58 and p56 phosphoforms of NS5A. Interestingly, silencing of YB-1 severely reduced NS5A protein stability in NS5A-ectopically expressing, replicon-containing, and HCV-infected cells. Furthermore, mutations of serine 102 of YB-1 affected both YB-1-NS5A interaction and NS5A-stabilizing activity of YB-1, indicating that this Akt phosphorylation site of YB-1 plays an important role in stabilizing NS5A. Collectively, our results support a model in which the event of YB-1 phosphorylation-mediated interaction with NS5A results in stabilizing NS5A to sustain HCV RNA replication and infectious HCV production. Overall, our study may reveal a new aspect for the development of novel anti-HCV drugs. IMPORTANCE Chronic hepatitis C virus (HCV) infection induces liver cirrhosis and hepatocellular carcinoma. The viral nonstructural protein NS5A co-opting various cellular signaling pathways and cofactors to support viral genome replication and virion assembly is a new strategy for anti-HCV drug development. NS5A phosphorylation is believed to modulate switches between different stages of the HCV life cycle. In this study, we identified the cellular protein YB-1 as a novel NS5A-interacting protein. YB-1 is a multifunctional protein participating in oncogenesis and is an oncomarker of hepatocellular carcinoma (HCC). We found that YB-1 protects NS5A from degradation and likely regulates NS5A phosphorylation through its phosphorylation-dependent interaction with NS5A, which might be controlled by HCV-induced signaling pathways. Our observations suggest a model in which HCV modulates NS5A level and the ratio of the p58 and p56 phosphoforms for efficient viral propagation via regulation of cellular signaling inducing YB-1 phosphorylation. Our finding may provide new aspects for developing novel anti-HCV drugs.
Collapse
|
29
|
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen rests upon its ability to grow intracellularly in macrophages. Interferon-gamma (IFN-γ) is critical in host defense against Mtb and stimulates macrophage clearance of Mtb through an autophagy pathway. Here we show that the host protein ubiquilin 1 (UBQLN1) promotes IFN-γ-mediated autophagic clearance of Mtb. Ubiquilin family members have previously been shown to recognize proteins that aggregate in neurodegenerative disorders. We find that UBQLN1 can interact with Mtb surface proteins and associates with the bacilli in vitro. In IFN-γ activated macrophages, UBQLN1 co-localizes with Mtb and promotes the anti-mycobacterial activity of IFN-γ. The association of UBQLN1 with Mtb depends upon the secreted bacterial protein, EsxA, which is involved in permeabilizing host phagosomes. In autophagy-deficient macrophages, UBQLN1 accumulates around Mtb, consistent with the idea that it marks bacilli that traffic through the autophagy pathway. Moreover, UBQLN1 promotes ubiquitin, p62, and LC3 accumulation around Mtb, acting independently of the E3 ligase parkin. In summary, we propose a model in which UBQLN1 recognizes Mtb and in turn recruits the autophagy machinery thereby promoting intracellular control of Mtb. Thus, polymorphisms in ubiquilins, which are known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb. More people die from Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), than any other bacterial pathogen. It has long been appreciated that Mtb can survive and divide within macrophages, white blood cells that normally kill bacteria. Macrophages are able to partially control Mtb through a degradative process called autophagy. Autophagy is activated by the cytokine interferon-gamma (IFN-γ), which promotes control of Mtb infection. How the tubercle bacilli are targeted to the autophagy pathway remains unclear. Here we show that the human protein ubiquilin 1 can interact with Mtb surface proteins and associate with Mtb that are present in the host cell cytosol. We propose a model in which activating autophagy with IFN-γ promotes UBQLN1 recruitment to Mtb, which in turn leads to recruitment of the autophagy machinery, autophagy-mediated degradation of the bacteria, and activation of effector T cells. Since IFN-γ is critical in human control of Mtb, our study suggests that polymorphisms in ubiquilins, known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb.
Collapse
|
30
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
31
|
Osna NA, Ganesan M, Donohue TM. Proteasome- and ethanol-dependent regulation of HCV-infection pathogenesis. Biomolecules 2014; 4:885-896. [PMID: 25268065 PMCID: PMC4279161 DOI: 10.3390/biom4040885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
32
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
33
|
Chen L, Li S, Li Y, Duan X, Liu B, McGilvray I. Ubiquitin-like protein modifiers and their potential for antiviral and anti-HCV therapy. Expert Rev Proteomics 2014; 10:275-87. [PMID: 23777217 DOI: 10.1586/epr.13.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
All viral infections subvert the host immune response. Targeting the host mechanisms that are modulated by viral infection offers new avenues for antiviral drug development. Host ubiquitin and multiple ubiquitin-like modifiers (Ubls) are commonly altered by, or important for, viral infection. Protein modification by ubiquitin or Ubls contributes to numerous cellular processes, such as protein degradation, signal transduction, protein relocalization and pathogen-host interactions. This post-translational modification plays an essential role for viral life cycles and host antiviral mechanisms. Some Ubls, such as ISG15 and SUMO, have been shown to modulate virus infections and are potential targets for therapeutic manipulation. Hepatitis C virus (HCV) is a positive-stranded RNA virus that predominantly infects hepatocytes. Recent data suggest that ISG15 might be a potential drug target for anti-HCV therapy. Inhibition of ISG15 expression and/or ISG15 conjugation (ISGylation) provides a rationale for the design of new anti-HCV drugs.
Collapse
Affiliation(s)
- Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| | | | | | | | | | | |
Collapse
|
34
|
The p7 protein of hepatitis C virus is degraded via the proteasome-dependent pathway. Virus Res 2013; 176:211-5. [DOI: 10.1016/j.virusres.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/16/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
|
35
|
Orebaugh CD, Fye JM, Harvey S, Hollis T, Wilkinson JC, Perrino FW. The TREX1 C-terminal region controls cellular localization through ubiquitination. J Biol Chem 2013; 288:28881-92. [PMID: 23979357 DOI: 10.1074/jbc.m113.503391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- From the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | |
Collapse
|
36
|
Takalo M, Haapasalo A, Natunen T, Viswanathan J, Kurkinen KM, Tanzi RE, Soininen H, Hiltunen M. Targeting ubiquilin-1 in Alzheimer's disease. Expert Opin Ther Targets 2013; 17:795-810. [PMID: 23600477 DOI: 10.1517/14728222.2013.791284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a common neurodegenerative disorder affecting an increasing number of people worldwide as the population ages. Currently, there are no drugs available that could prevent AD pathogenesis or slow down its progression. Increasing evidence links ubiquilin-1, an ubiquitin-like protein, into the pathogenic mechanisms of AD and other neurodegenerative diseases. Ubiquilin-1 has been shown to play a key role in the regulation of the levels, subcellular targeting, aggregation and degradation of various neurodegenerative disease-associated proteins. These include the amyloid precursor protein and presenilins that are intimately involved in the mechanisms of AD. AREAS COVERED Here, the properties and diverse functions of ubiquilin-1 protein in the context of the pathogenesis of AD and other neurodegenerative disorders are discussed. This review recapitulates the available knowledge on the involvement of ubiquilin-1 in the genetic and molecular mechanisms in AD. Furthermore, the association of ubiquilin-1 with specific proteins and mechanisms involved in the pathogenesis of neurodegenerative diseases is described and the known ubiquilin-1-interacting proteins summarized. EXPERT OPINION The variety of ubiquilin-1-interacting proteins and its central role in the regulation of protein levels and degradation provides a number of novel candidates and approaches for future research and drug discovery.
Collapse
Affiliation(s)
- Mari Takalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
38
|
Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688. Proc Natl Acad Sci U S A 2012; 109:13416-21. [PMID: 22847417 DOI: 10.1073/pnas.1206786109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is associated with proteolytic processing of the amyloid precursor protein (APP) to an amyloidogenic peptide termed Aβ. Although mutations in APP and the secretase enzymes that mediate its processing are known to result in familial forms of AD, the mechanisms underlying the more common sporadic forms of the disease are still unclear. Evidence suggests that the susceptibility of APP to amyloidogenic processing is related to its intracellular localization, and that secretase-independent degradation may prevent the formation of cytotoxic peptide fragments. Recently, single nucleotide polymorphisms in the UBQLN1 gene have been linked to late-onset AD, and its protein product, ubiquilin-1, may regulate the maturation of full-length APP. Here we show that ubiquilin-1 inhibits the maturation of APP by sequestering it in the early secretory pathway, primarily within the Golgi apparatus. This sequestration significantly delayed the proteolytic processing of APP by secretases and the proteasome. These effects were mediated by ubiquilin-1-stimulated K63-linked polyubiquitination of lysine 688 in the APP intracellular domain. Our results reveal the mechanistic basis by which ubiquilin-1 regulates APP maturation, with important consequences for the pathogenesis of late-onset AD.
Collapse
|
39
|
Choi AG, Wong J, Marchant D, Luo H. The ubiquitin-proteasome system in positive-strand RNA virus infection. Rev Med Virol 2012; 23:85-96. [PMID: 22782620 PMCID: PMC7169083 DOI: 10.1002/rmv.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses. The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein degradation may also constitute a host defense process against some positive-stranded RNA viral infections. This issue will also be discussed in the current review.
Collapse
Affiliation(s)
- Alex GoEun Choi
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
40
|
Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J Virol 2012; 1:44-50. [PMID: 24175210 PMCID: PMC3782266 DOI: 10.5501/wjv.v1.i2.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The development of a HCV cell culture system enabled us to investigate its whole HCV life cycle and develop a better understanding of the pathogenesis of this virus. Post-translational modification plays a crucial role in HCV replication and in the maturation of viral particles. There is growing evidence also suggesting that the ubiquitin-proteasome pathway and the ubiquitin-independent proteasome pathway are involved in the stability control of HCV proteins. Many viruses are known to manipulate the proteasome pathways to modulate the cell cycle, inhibit apoptosis, evade the immune system, and activate cell signaling, thereby contributing to persistent infection and viral carcinogenesis. The identification of functional interactions between HCV and the proteasome pathways will therefore shed new light on the life cycle and pathogenesis of HCV. This review summarizes the current knowledge on the involvement of the ubiquitin-dependent and -independent proteasome pathways in HCV infection and discusses the roles of these two distinct mechanisms in HCV pathogenesis.
Collapse
Affiliation(s)
- Ikuo Shoji
- Ikuo Shoji, Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
41
|
The ubiquitin-like protein PLIC-1 or ubiquilin 1 inhibits TLR3-Trif signaling. PLoS One 2011; 6:e21153. [PMID: 21695056 PMCID: PMC3117881 DOI: 10.1371/journal.pone.0021153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/21/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. METHODOLOGY/PRINCIPAL FINDINGS Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-β promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. CONCLUSIONS Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif.
Collapse
|
42
|
Viswanathan J, Haapasalo A, Böttcher C, Miettinen R, Kurkinen KM, Lu A, Thomas A, Maynard CJ, Romano D, Hyman BT, Berezovska O, Bertram L, Soininen H, Dantuma NP, Tanzi RE, Hiltunen M. Alzheimer's disease-associated ubiquilin-1 regulates presenilin-1 accumulation and aggresome formation. Traffic 2011; 12:330-48. [PMID: 21143716 PMCID: PMC3050036 DOI: 10.1111/j.1600-0854.2010.01149.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Alzheimer's disease (AD)-associated ubiquilin-1 regulates proteasomal degradation of proteins, including presenilin (PS). PS-dependent γ-secretase generates β-amyloid (Aβ) peptides, which excessively accumulate in AD brain. Here, we have characterized the effects of naturally occurring ubiquilin-1 transcript variants (TVs) on the levels and subcellular localization of PS1 and other γ-secretase complex components and subsequent γ-secretase function in human embryonic kidney 293, human neuroblastoma SH-SY5Y and mouse primary cortical cells. Full-length ubiquilin-1 TV1 and TV3 that lacks the proteasome-interaction domain increased full-length PS1 levels as well as induced accumulation of high-molecular-weight PS1 and aggresome formation. Accumulated PS1 colocalized with TV1 or TV3 in the aggresomes. Electron microscopy indicated that aggresomes containing TV1 or TV3 were targeted to autophagosomes. TV1- and TV3-expressing cells did not accumulate other unrelated proteasome substrates, suggesting that the increase in PS1 levels was not because of a general impairment of the ubiquitin-proteasome system. Furthermore, PS1 accumulation and aggresome formation coincided with alterations in Aβ levels, particularly in cells overexpressing TV3. These effects were not related to altered γ-secretase activity or PS1 binding to TV3. Collectively, our results indicate that specific ubiquilin-1 TVs can cause PS1 accumulation and aggresome formation, which may impact AD pathogenesis or susceptibility.
Collapse
Affiliation(s)
- Jayashree Viswanathan
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Claudia Böttcher
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Riitta Miettinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- CNServices Ltd, Kuopio, Finland
| | - Kaisa M.A. Kurkinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Alice Lu
- Genetics and Aging Research Unit, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Anne Thomas
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown
| | - Christa J. Maynard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Donna Romano
- Genetics and Aging Research Unit, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradley T. Hyman
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown
| | - Oksana Berezovska
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown
| | - Lars Bertram
- Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Nico P. Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
43
|
Pezacki JP, Singaravelu R, Lyn RK. Host-virus interactions during hepatitis C virus infection: a complex and dynamic molecular biosystem. MOLECULAR BIOSYSTEMS 2010; 6:1131-42. [PMID: 20549003 DOI: 10.1039/b924668c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hepatitis C virus (HCV) is a global health issue with no vaccine available and limited clinical treatment options. Like other obligate parasites, HCV requires host cellular components of an infected individual to propagate. These host-virus interactions during HCV infection are complex and dynamic and involve the hijacking of host cell environments, enzymes and pathways. Understanding this unique molecular biosystem has the potential to yield new and exciting strategies for therapeutic intervention. Advances in genomics and proteomics have opened up new possibilities for the rapid measurement of global changes at the transcriptional and translational levels during infection. However, these techniques only yield snapshots of host-virus interactions during HCV infection. Other new methods that involve the imaging of biomolecular interactions during HCV infection are required to identify key interactions that may be transient and dynamic. Herein we highlight systems biology based strategies that have helped to identify key host-virus interactions during HCV replication and infection. Novel biophysical tools are also highlighted for identification and visualization of activities and interactions between HCV and its host hepatocyte. As some of these methods mature, we expect them to pave the way forward for further exploration of this complex biosystem and elucidation of mechanisms for HCV pathogenesis and carcinogenesis.
Collapse
Affiliation(s)
- John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
44
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that involves the deterioration of dopaminergic neurons in the substantia nigra pars compacta. Although the etiology of PD remains poorly understood, recent genetic, postmortem, and experimental evidence shows that abnormal protein accumulation and subsequent aggregate formation are prominent features of both sporadic and familial PD. While proteasome dysfunction is observed in PD, diverse mutations in the parkin gene are linked to early-onset autosomal-recessive forms of familial PD. We demonstrate that parkin, an E3 ubiquitin ligase, activates the 26S proteasome in an E3 ligase activity-independent manner. Furthermore, an N-terminal ubiquitin-like domain within parkin is critical for the activation of the 26S proteasome through enhancing the interaction between 19S proteasomal subunits, whereas the PD-linked R42P mutant abolishes this action. The current findings point to a novel role for parkin for 26S proteasome assembly and suggest that parkin mutations contribute to the proteasomal dysfunction in PD.
Collapse
|
45
|
Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G, Lacassagne E, Pflieger S, Chenon M, Jupin I. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. THE PLANT CELL 2010; 22:3142-52. [PMID: 20823192 PMCID: PMC2965540 DOI: 10.1105/tpc.109.072090] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 08/01/2010] [Accepted: 08/22/2010] [Indexed: 05/19/2023]
Abstract
Replication of positive-strand RNA viruses, the largest group of plant viruses, is initiated by viral RNA-dependent RNA polymerase (RdRp). Given its essential function in viral replication, understanding the regulation of RdRp is of great importance. Here, we show that Turnip yellow mosaic virus (TYMV) RdRp (termed 66K) is degraded by the proteasome at late time points during viral infection and that the accumulation level of 66K affects viral RNA replication in infected Arabidopsis thaliana cells. We mapped the cis-determinants responsible for 66K degradation within its N-terminal noncatalytic domain, but we conclude that 66K is not a natural N-end rule substrate. Instead, we show that a proposed PEST sequence within 66K functions as a transferable degradation motif. In addition, several Lys residues that constitute target sites for ubiquitylation were mapped; mutation of these Lys residues leads to stabilization of 66K. Altogether, these results demonstrate that TYMV RdRp is a target of the ubiquitin-proteasome system in plant cells and support the idea that proteasomal degradation may constitute yet another fundamental level of regulation of viral replication.
Collapse
|
46
|
Hou W, Tian Q, Zheng J, Bonkovsky HL. Zinc mesoporphyrin induces rapid proteasomal degradation of hepatitis C nonstructural 5A protein in human hepatoma cells. Gastroenterology 2010; 138:1909-19. [PMID: 19909748 PMCID: PMC2860067 DOI: 10.1053/j.gastro.2009.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 10/29/2009] [Accepted: 11/04/2009] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) plays a critical role in HCV replication and is an attractive target for the therapy of HCV infection. So far, little is known about the posttranslational regulation of NS5A protein and its precise role in HCV RNA replication. Our objectives were to elucidate the down-regulation of NS5A protein and HCV RNA replication by zinc mesoporphyrin (ZnMP) and the mechanism by which this process occurs. METHODS Human hepatoma cells expressing HCV proteins were used to investigate the posttranslational regulation of ZnMP on NS5A protein by Western blots and immunoprecipitation. Real-time quantitative reverse transcription polymerase chain reaction was used to determine the effects of ZnMP on HCV RNA replication. RESULTS ZnMP selectively and markedly down-regulated NS5A protein levels by increasing degradation of NS5A protein (half-life fell from 18.7 hours to 2.7 hours). The proteasome inhibitors epoxomicin and MG132 significantly abrogated degradation of NS5A protein by ZnMP without affecting levels of NS5A in the absence of ZnMP. Analysis of immunoprecipitates with an antiubiquitin antibody revealed polyubiquitination of NS5A, suggesting that ZnMP induces ubiquitination of NS5A protein. In addition, 10 micromol/L of ZnMP reduced HCV replication by approximately 63% in the Con1 replicon cells, approximately 70% in J6/Japanese fulminant hepatitis 1 HCV-transfected cells, and approximately 90% in J6/Japanese fulminant hepatitis 1 HCV-infected cells without affecting cell viability. CONCLUSIONS ZnMP produces a rapid and profound down-regulation of the NS5A protein by enhancing its polyubiquitination and proteasome-dependent catabolism. ZnMP may hold promise as a novel agent to treat HCV infection.
Collapse
Affiliation(s)
- Weihong Hou
- Liver-Biliary-Pancreatic Center and the Liver, Digestive Disease and Metabolism Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232-2861, USA.
| | | | | | | |
Collapse
|
47
|
Ishibashi M, Wakita T, Esumi M. 2',5'-Oligoadenylate synthetase-like gene highly induced by hepatitis C virus infection in human liver is inhibitory to viral replication in vitro. Biochem Biophys Res Commun 2010; 392:397-402. [PMID: 20074559 DOI: 10.1016/j.bbrc.2010.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 10/20/2022]
Abstract
We found the 2',5'-oligoadenylate synthetase-like (OASL) gene to be significantly elevated by high virus loads in human liver infected with hepatitis C virus (HCV). Here, we determined whether OASL inhibited HCV replication using an in vitro system. We constructed three expression vectors of OASL to produce isoform a (OASLa), isoform b (OASLb), and the C-terminal ubiquitin-like domain of isoform a (Ub). When Huh7 JFH-1 HCV replicon cells were separately transfected with these three vectors, colony formation of HCV-replicating cells was inhibited by 95%, 94%, and 65%, respectively. Both OASLa and OASLb were also inhibitory for cells as well as the virus because colony formation of OASL-producing cells was reduced to 41% and 8%, respectively. Stable Huh7 clones producing each of the three OASLs were established and assessed for their inhibition of HCV replication using luciferase reporter gene-containing JFH-1 replicon RNA. HCV replication was inhibited by 50-90% in several stable OASL clones. Association analysis in six Ub clones expressing different levels of Ub mRNA showed that the degree of inhibition of HCV replication was significantly associated with the amount of Ub present. In conclusion, OASL possesses two domains with HCV inhibitory activity. The N-terminal OAS-homology domain without OAS activity is inhibitory for cell growth as well as HCV replication, whereas C-terminal Ub is inhibitory only for HCV replication. Therefore, OASLa, a major isoform of this molecule induced in human liver, may mediate anti-HCV activity through two different domains.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Pathology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | |
Collapse
|
48
|
Barajas D, Nagy PD. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology 2009; 397:358-68. [PMID: 20004458 DOI: 10.1016/j.virol.2009.11.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 10/19/2009] [Accepted: 11/06/2009] [Indexed: 12/27/2022]
Abstract
Post-translational modifications of viral replication proteins could be widespread phenomena during the replication of plus-stranded RNA viruses. In this article, we identify two lysines in the tombusvirus p33 replication co-factor involved in ubiquitination and show that the same lysines are also important for the p33 to interact with the host Vps23p ESCRT-I factor. We find that the interaction of p33 with Vps23p is also affected by a "late-domain"-like sequence in p33. The combined mutations of the two lysines and the late-domain-like sequences in p33 reduced replication of a replicon RNA of Tomato bushy stunt virus in yeast model host, in plant protoplasts, and plant leaves, suggesting that p33-Vps23p ESCRT protein interaction affects tombusvirus replication. Using ubiquitin-mimicking p33 chimeras, we demonstrate that high level of p33 ubiquitination is inhibitory for TBSV replication. These findings argue that optimal level of p33 ubiquitination plays a regulatory role during tombusvirus infections.
Collapse
Affiliation(s)
- Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
49
|
Huang C, Chen H, Cassidy W, Howell CD. Peripheral blood gene expression profile associated with sustained virologic response after peginterferon plus ribavirin therapy for chronic hepatitis-C genotype 1. J Natl Med Assoc 2009; 100:1425-33. [PMID: 19110910 DOI: 10.1016/s0027-9684(15)31542-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the relationship between global gene expression in peripheral blood mononuclear cells (PBMCs) during the first 4 weeks of peginterferon alfa and ribavirin therapy and long-term eradication of hepatitis-C genotype 1 infections in 23 patients. A sustained virologic response (SVR), defined as an undetected serum HCV ribonucleic acid (RNA) at week 72, was the virologic response endpoint. PBMC RNA was prepared at week 0 and week 4 from 23 patients (17 black and 6 white Americans), and hybridized to Affymetrix GeneChip HG-U133 plus 2.0 arrays. Compared to week 0, 269 genes were differentially expressed at week 4 of treatment, including many genes regulated by alpha interferons and associated with host immunity (p<0.0001), cell signal transduction (p<0.001) and cellular protein metabolism (p<0.001). Expression of these 269 genes at week 0 and week 4 did not differ significantly between patients with and without a SVR. In contrast, SVR was associated with differential expression of 98 genes at week 4 (false discovery rate <0.01). Many of the genes have been implicated in control of HCV lifecycle and thus may play important roles in HCV clearance during peginterferon and ribavirin therapy.
Collapse
Affiliation(s)
- Chao Huang
- Department of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
50
|
Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S. Characterization of the wheat endosperm transfer cell-specific protein TaPR60. PLANT MOLECULAR BIOLOGY 2009; 71:81-98. [PMID: 19513805 DOI: 10.1007/s11103-009-9510-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/25/2009] [Indexed: 05/20/2023]
Abstract
The TaPR60 gene from bread wheat encodes a small cysteine-rich protein with a hydrophobic signal peptide, predicted to direct the TaPR60 protein to a secretory pathway. It was demonstrated by heterologous expression of recombinant TaPR60 protein that the signal peptide is recognized and cleaved in yeast cells. The full-length gene including promoter sequence of a TaPR60 orthologue was cloned from a BAC library of Triticum durum. A transcriptional promoter-GUS fusion was stably transformed into wheat, barley and rice. The strongest GUS expression in wheat and barley was found in the endosperm transfer cells, while in rice the promoter was active inside the starchy endosperm during the early stages of grain filling. The TaPR60 gene was also used as bait in a yeast two-hybrid screen. Five proteins were identified in the screen, and for some of these prey proteins, the interaction was confirmed by co-immunoprecipitation. The signal peptide binding proteins, TaUbiL1 and TaUbiL2, are homologues of animal proteins, which belong to proteolytic complexes, and therefore may be responsible for TaPR60 processing or degradation of the signal peptide. Other proteins that interact with TaPR60 may have a function in TaPR60 secretion or regulation of this process. Examination of a three dimensional model of TaPR60 suggested that this protein could be involved in binding of lipidic molecules.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|