1
|
Abstract
Natural Killer (NK) cells are key effectors of the innate immune system which represent the first line of defense against viral infections. NK cell activation depends on the engagement of a complex receptor repertoire expressed on their surface, consisting of both activating and inhibitory receptors. Among the known NK cell receptors, the family of killer Ig-like receptors (KIRs) consists in activating/inhibitory receptors that interact with specific human leukocyte antigen (HLA) molecules expressed on target cells. In particular, the expression of peculiar KIRs have been reported to be associated to viral infection susceptibility. Interestingly, a significant association between the development and onset of different human pathologies, such as tumors, neurodegeneration and infertility, and a clonal KIRs expression on NK cells has been described in presence of viral infections, supporting the crucial role of KIRs in defining the effect of viral infections in different tissues and organs. This review aims to report the state of art about the role of KIRs receptors in NK cell activation and viral infection control.
Collapse
|
2
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
3
|
Milligan C, Slyker JA, Overbaugh J. The Role of Immune Responses in HIV Mother-to-Child Transmission. Adv Virus Res 2017; 100:19-40. [PMID: 29551137 DOI: 10.1016/bs.aivir.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIV mother-to-child transmission (MTCT) represents a success story in the HIV/AIDS field given the significant reduction in number of transmission events with the scale-up of antiretroviral treatment and other prevention methods. Nevertheless, MTCT still occurs and better understanding of the basic biology and immunology of transmission will aid in future prevention and treatment efforts. MTCT is a unique setting given that the transmission pair is known and the infant receives passively transferred HIV-specific antibodies from the mother while in utero. Thus, infant exposure to HIV occurs in the face of HIV-specific antibodies, especially during delivery and breastfeeding. This review highlights the immune correlates of protection in HIV MTCT including humoral (neutralizing antibodies, antibody-dependent cellular cytotoxicity, and binding epitopes), cellular, and innate immune factors. We further discuss the future implications of this research as it pertains to opportunities for passive and active vaccination with the ultimate goal of eliminating HIV MTCT.
Collapse
Affiliation(s)
- Caitlin Milligan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, United States.
| | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
4
|
León-Juárez M, Martínez–Castillo M, González-García LD, Helguera-Repetto AC, Zaga-Clavellina V, García-Cordero J, Flores-Pliego A, Herrera-Salazar A, Vázquez-Martínez ER, Reyes-Muñoz E. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis 2017; 75:4056146. [PMID: 28903546 PMCID: PMC7108519 DOI: 10.1093/femspd/ftx093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.
Collapse
Affiliation(s)
- Moises León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Macario Martínez–Castillo
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Luis Didier González-García
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. Av. I.P.N 2508 Col. San Pedro Zacatenco, CP 07360 Ciudad de México, México
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Alma Herrera-Salazar
- Departamento de Infectología e Inmunología Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química UNAM, Ciudad de México, México
| | - Enrique Reyes-Muñoz
- Coordinación de Endocrinología, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”, Montes Urales #800, Col. Lomas Virreyes, CP 11000. Ciudad de México. México
| |
Collapse
|
5
|
Dorsamy V, Vallen C, Haffejee F, Moodley J, Naicker T. The role of trophoblast cell receptor expression in HIV-1 passage across the placenta in pre-eclampsia: an observational study. BJOG 2016; 124:920-928. [PMID: 27700010 DOI: 10.1111/1471-0528.14311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To compare expression of markers of HIV and associated receptors (p24, CD4, CCR5 and ICAM-2) in placentae and umbilical cords of HIV-associated and pre-eclamptic pregnancies to elucidate any association between these conditions in mother-to-child transmission. DESIGN Cross-sectional immunohistochemical analysis of target receptor expression. SETTING Laboratory-based study of primigravidae attending a district hospital in South Africa. POPULATION OR SAMPLE Retrospectively collected placental tissue (stratified into four groups according to HIV status of normotensive and pre-eclamptic participants (n = 20/group). METHOD Immunohistochemistry utilising CD4 (1:1), p24 (1:10), CCR5 (1:80) and ICAM-2 (1:100) antibodies was performed using light microscopy for image acquisition and analysis. MAIN OUTCOME MEASURES Evaluate the expression of receptors on syncytiotrophoblast involved in in utero transmission of HIV. RESULTS Syncytiotrophoblast was immunopositive for CD4 and CCR5 antibody with greater expression of CCR5 in HIV-positive versus HIV-negative groups (F1,159 = 6.979, P = 0.009) and normotensive versus pre-eclamptic groups (F1,159 = 8.803, P = 0.003). p24 was present in both placentae and umbilical cords of babies that were HIV-negative at 6 weeks. ICAM-2 immunostaining was observed in the syncytiotrophoblast across study groups and was significantly higher in the HIV-negative pre-eclamptic group (χ2 (3) = 45.3; P < 0.001). CONCLUSION Concurrent CD4 and CCR5 receptor expression demonstrates possible in utero viral entry routes across the placental barrier. ICAM-2 expression may influence HIV passage across the placenta or restoration of risk of pre-eclampsia in HAART-treated mothers. HIV was found in fetal circulation regardless of antiretroviral treatment. Further confirmatory ultrastructural and molecular work is warranted. TWEETABLE ABSTRACT CD4, CCR5 and ICAM-2 on syncytiotrophoblast may facilitate HIV infection of passage across the placenta.
Collapse
Affiliation(s)
- V Dorsamy
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Vallen
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - F Haffejee
- Department of Basic Medical Sciences, Durban University of Technology, Durban, South Africa
| | - J Moodley
- Women's Health and HIV Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - T Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells. PLoS Pathog 2015; 11:e1004772. [PMID: 25807494 PMCID: PMC4373872 DOI: 10.1371/journal.ppat.1004772] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo. A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral envelope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are flexible and change shape once the virus has attached to its host cell. To date, it has been difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral activities of certain antibodies indirectly suggest that there must be unique sites on cell-bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells. We find that the virus exposes a remarkable array of these sites, including ones previously believed hidden. These exposure patterns explain the antiviral activities of various anti-HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune system. Our study also provides insights for how to target HIV-1 with antiviral antibodies, vaccines, or antiviral agents.
Collapse
Affiliation(s)
- Meron Mengistu
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| |
Collapse
|
7
|
Milligan C, Overbaugh J. The role of cell-associated virus in mother-to-child HIV transmission. J Infect Dis 2015; 210 Suppl 3:S631-40. [PMID: 25414417 DOI: 10.1093/infdis/jiu344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) continues to contribute to the global burden of disease despite great advances in antiretroviral (ARV) treatment and prophylaxis. In this review, we discuss the proposed mechanisms of MTCT, evidence for cell-free and cell-associated transmission in different routes of MTCT, and the impact of ARVs on virus levels and transmission. Many population-based studies support a role for cell-associated virus in transmission and in vitro studies also provide some support for this mode of transmission. However, animal model studies provide proof-of-principle that cell-free virus can establish infection in infants, and studies of ARVs in HIV-infected pregnant women show a strong correlation with reduction in cell-free virus levels and protection. ARV treatment in MTCT potentially provides opportunities to better define the infectious form of virus, but these studies will require better tools to measure the infectious cell reservoir.
Collapse
Affiliation(s)
- Caitlin Milligan
- Division of Human Biology, Fred Hutchinson Cancer Research Center Medical Scientist Training Program, University of Washington School of Medicine Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center Medical Scientist Training Program, University of Washington School of Medicine
| |
Collapse
|
8
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection. Commun Integr Biol 2014. [DOI: 10.4161/cib.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
9
|
Tang Y, George A, Nouvet F, Sweet S, Emeagwali N, Taylor HE, Simmons G, Hildreth JEK. Infection of female primary lower genital tract epithelial cells after natural pseudotyping of HIV-1: possible implications for sexual transmission of HIV-1. PLoS One 2014; 9:e101367. [PMID: 25010677 PMCID: PMC4092063 DOI: 10.1371/journal.pone.0101367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call “natural pseudotyping,” expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus.
Collapse
Affiliation(s)
- Yuyang Tang
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Alvin George
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Franklin Nouvet
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Stephanie Sweet
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
| | - Nkiruka Emeagwali
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Harry E. Taylor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Glenn Simmons
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - James E. K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
HIV-1 autologous antibody neutralization associates with mother to child transmission. PLoS One 2013; 8:e69274. [PMID: 23874931 PMCID: PMC3714266 DOI: 10.1371/journal.pone.0069274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri-partum (PP) or via breastfeeding (BF) (P = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.
Collapse
|
11
|
Macropinocytosis-like HIV-1 internalization in macrophages is CCR5 dependent and leads to efficient but delayed degradation in endosomal compartments. J Virol 2012; 87:735-45. [PMID: 23115275 DOI: 10.1128/jvi.01802-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HIV-1 endocytosis by a macropinocytosis-like mechanism has been shown to lead to productive infection in macrophages. However, little is known of this pathway. In this study, we examined HIV-1 endocytosis using biochemical approaches and imaging techniques in order to better understand the mechanisms that allow for productive infection of these cells via the endosomal pathway. We show here that this macropinocytosis-like mechanism is not the sole pathway involved in HIV-1 endocytosis in macrophages. However, this pathway specifically requires CCR5 engagement at the cell surface, which in turn suggests that the virus and its coreceptor are present in the endosomal environment simultaneously. Furthermore, although we observed efficient viral degradation following endocytosis, analyses of HIV-1 transport through the endolysosomal pathway revealed that viral degradation is delayed following endosomal internalization, possibly allowing the virus to complete its fusion.
Collapse
|
12
|
Walton JR, Frey HA, Vandre DD, Kwiek JJ, Ishikawa T, Takizawa T, Robinson JM, Ackerman WE. Expression of flotillins in the human placenta: potential implications for placental transcytosis. Histochem Cell Biol 2012; 139:487-500. [PMID: 23064789 DOI: 10.1007/s00418-012-1040-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2012] [Indexed: 02/07/2023]
Abstract
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.
Collapse
Affiliation(s)
- Janelle R Walton
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rosario FJ, Sadovsky Y, Jansson T. Gene targeting in primary human trophoblasts. Placenta 2012; 33:754-62. [PMID: 22831880 DOI: 10.1016/j.placenta.2012.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts.
Collapse
Affiliation(s)
- F J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
14
|
Differential HIV-1 endocytosis and susceptibility to virus infection in human macrophages correlate with cell activation status. J Virol 2012; 86:10399-407. [PMID: 22787228 DOI: 10.1128/jvi.01051-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is an enveloped virus that enters target cells by fusion either directly at the plasma membrane or at the endosomal membrane. The latter mechanism follows a rapid engulfment of HIV-1 after its receptor engagement at the cell surface, and its scale depends on cellular endocytosis/degradation rates and virus fusion kinetics. HIV-1 has recently been shown to exploit a novel Pak1-dependent macropinocytosis mechanism as a way to productively infect macrophages. However, macrophages are highly heterogeneous cells that can adapt functionally to their changing environment, and their endosomal/lysosomal pathway is highly regulated upon cell activation. These changes might impact the ability of HIV-1 to exploit endocytosis as a way to productively infect macrophages. In this study, we compared HIV-1 endocytosis/degradation rates in nonactivated, M1-activated, and M2a-activated monocyte-derived macrophages (MDMs). We found that the rate of HIV-1 endocytosis was increased in M1-activated but decreased in M2a-activated MDMs. However, both M1 and M2a activations of MDMs led specifically to a greater clathrin-mediated endocytosis of HIV-1, which was independent of CD4 and CCR5 binding. Furthermore, clathrin-mediated endocytosis is unlikely to result in productive HIV-1 infection, given that it leads to increased viral degradation. Therefore, we suggest that viral fusion following endocytosis is restricted in activated macrophages.
Collapse
|
15
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection: Moving through complex and dynamic cell-membrane structures. Commun Integr Biol 2011; 4:398-408. [PMID: 21966556 DOI: 10.4161/cib.4.4.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/19/2023] Open
Abstract
Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist.
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Isabel Puigdomènech
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Julià Blanco
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| |
Collapse
|
16
|
Mikulak J, Teichberg S, Arora S, Kumar D, Yadav A, Salhan D, Pullagura S, Mathieson PW, Saleem MA, Singhal PC. DC-specific ICAM-3-grabbing nonintegrin mediates internalization of HIV-1 into human podocytes. Am J Physiol Renal Physiol 2010; 299:F664-73. [PMID: 20630938 DOI: 10.1152/ajprenal.00629.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 has been demonstrated to contribute to the pathogenesis of HIV-associated nephropathy. In renal biopsy studies, podocytes have been reported to be infected by HIV-1. However, the mechanism involved in HIV-1 internalization into podocytes is not clear. In the present study, we evaluated the occurrence of HIV-1 internalization into conditionally immortalized human podocytes and the mechanism involved. Human podocytes rapidly internalized R5 and X4 HIV-1 primary strains via an endocytosis-dependent pathway, without establishing a productive infection. The HIV-1 internalization was dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) receptor mediated. The role of DC-SIGN was confirmed by using specific blocking antibodies and transfection with small interfering (si) RNA/DC-SIGN. Since podocyte HIV-1 trafficking was not altered by pH-modulating agents, it appeared that HIV-1 routing occurred through nonacid vesicular compartments. Interestingly, transfection of podocytes with neither siRNA/caveolin-1 nor siRNA/clathrin heavy chain inhibited podocyte viral accumulation. Thus it appears that clathrin-coated vesicles and caveosomes may not be contributing to HIV-1-associated membrane traffic.
Collapse
Affiliation(s)
- J Mikulak
- Departments of Medicine and Pathology, North Shore University Hospital and Long Island Jewish Medical Center, New Hyde Park, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tornatore M, Gonçalves CV, Mendoza-Sassi RA, Silveira JM, D'ávila NE, Maas CG, Bianchi MS, Pinheiro EM, Machado ES, Soares MA, Martinez AMB. HIV-1 vertical transmission in Rio Grande, Southern Brazil. Int J STD AIDS 2010; 21:351-5. [DOI: 10.1258/ijsa.2009.009033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the rate and risk factors of HIV-1 mother-to-child transmission (MTCT), the timing of transmission and the transmitted subtype in a population where subtypes B and C co-circulate. One hundred and forty-four babies born to HIV-1-infected mothers were studied. Subtype and timing of transmission were determined by a nested polymerase chain reaction of the gp41 gene. Seven children were infected (4.9%): four were infected intrautero and one intrapartum. The higher frequency of intrautero transmission was statistically significant ( P = 0.001). Use of antiretrovirals (ARVs) in the three stages of gestation was a protective risk factor for MTCT (PR = 0.42; CI: 0.21–0.83; P = 0.013). A higher HIV viral load at delivery was the only independent risk factor for MTCT. Early and universal access to ARVs during pregnancy are the most important measures to decrease vertical HIV-1 transmission even in areas where HIV clade distribution differs.
Collapse
Affiliation(s)
- M Tornatore
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - C V Gonçalves
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | | | - J M Silveira
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - N E D'ávila
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - C G Maas
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - M S Bianchi
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - E M Pinheiro
- Universidade Federal do Rio Grande, Rio Grande do Sul
| | - E S Machado
- Departamento de Genética, Universidade Federal do Rio de Janeiro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro
| | - M A Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro
- Divisão de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
18
|
Heterogeneous pathways of maternal-fetal transmission of human viruses (review). Pathol Oncol Res 2010; 15:451-65. [PMID: 19350418 DOI: 10.1007/s12253-009-9166-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
Several viruses can pass the maternal-fetal barrier, and cause diseases of the fetus or the newborn. Recently, however, it became obvious, that viruses may invade fetal cells and organs through different routes without acute consequences. Spermatozoa, seminal fluid and lymphocytes in the sperm may transfer viruses into the human zygotes. Viruses were shown to be integrated into human chromosomes and transferred into fetal tissues. The regular maternal-fetal transport of maternal cells has also been discovered. This transport might implicate that lymphotropic viruses can be released into the fetal organs following cellular invasion. It has been shown that many viruses may replicate in human trophoblasts and syncytiotrophoblast cells thus passing the barrier of the maternal-fetal interface. The transport of viral immunocomplexes had also been suggested, and the possibility has been put forward that even anti-idiotypes mimicking viral epitopes might be transferred by natural mechanisms into the fetal plasma, in spite of the selective mechanisms of apical to basolateral transcytosis in syncytiotrophoblast and basolateral to apical transcytosis in fetal capillary endothelium. The mechanisms of maternal-fetal transcytosis seem to be different of those observed in differentiated cells and tissue cultures. Membrane fusion and lipid rafts of high cholesterol content are probably the main requirements of fetal transcytosis. The long term presence of viruses in fetal tissues and their interactions with the fetal immune system might result in post partum consequences as far as increased risk of the development of malignancies and chronic pathologic conditions are discussed.
Collapse
|
19
|
Saunders M. Transplacental transport of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:671-84. [DOI: 10.1002/wnan.53] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Ross AL, Cannou C, Barré-Sinoussi F, Menu E. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells. Retrovirology 2009; 6:46. [PMID: 19445667 PMCID: PMC2689159 DOI: 10.1186/1742-4690-6-46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/15/2009] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. RESULTS Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+) and BeWo-CD4+ (CD4+, CCR5+, CXCR4+) cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. CONCLUSION Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.
Collapse
Affiliation(s)
- Anna Laura Ross
- Institut Pasteur, Unit of Regulation of Retroviral Infections, Department of Virology, 25 rue du Docteur Roux, Paris, France.
| | | | | | | |
Collapse
|
21
|
HIV-1 harboring renal tubular epithelial cell interaction with T cells results in T cell trans-infection. Virology 2009; 385:105-14. [DOI: 10.1016/j.virol.2008.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/12/2008] [Accepted: 11/10/2008] [Indexed: 11/22/2022]
|
22
|
Wingard JB, Anderson B, Weissman D. Induction of HIV-specific T and B cell responses with a replicating and conditionally infectious lentiviral vaccine. Eur J Immunol 2008; 38:1310-20. [PMID: 18412164 DOI: 10.1002/eji.200738069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of an HIV vaccine that induces broad and potent immunity is critically needed. Viruses, including lentiviruses, have been used as vectors for ex vivo transduction of antigens into dendritic cells (DC). We hypothesized that DC transduced with a vector that allows selective infection of DC could induce potent immunity by continually priming DC. A lentiviral vector encoding HIV gag-pol without env would form viral cores in transduced DC, but would release non-infectious particles by budding into endosomes and releasing apoptotic bodies or exosomes containing viral cores. DC function by endocytosing DC-derived apoptotic bodies, and they are specialized in their ability to move endocytic contents into the cytoplasm. We postulated that endocytosis of vector cores could lead to transduction of a second round of DC. In this report, we demonstrate accumulation of viral cores inside transduced DC and show second-round transduction of immature DC that endocytose transduced DC in vitro. The effectiveness of immunization of mice with transduced DC to induce specific lymphocyte activation was assessed. Mice developed antigen-specific T cell responses and specific antibodies after immunization. Transduction of DC with a replication-competent but conditionally infectious lentivirus could be a novel vaccine strategy for HIV.
Collapse
|
23
|
Bhat P, Anderson DA. Hepatitis B virus translocates across a trophoblastic barrier. J Virol 2007; 81:7200-7. [PMID: 17442714 PMCID: PMC1933314 DOI: 10.1128/jvi.02371-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 04/08/2007] [Indexed: 12/20/2022] Open
Abstract
Mother-infant transmission of hepatitis B virus (HBV) accounts for up to 30% of worldwide chronic infections. The mechanism and high-risk period of HBV transmission from mother to infant are unknown. Although largely prevented by neonatal vaccination, significant transmission continues to occur in high-risk populations. It is unclear whether HBV can traverse an intact epithelial barrier to infect a new host. Transplacental transmission of a number of viruses relies on transcytotic pathways across placental cells. We wished to determine whether infectious HBV can traverse a polarized trophoblast monolayer. We used a human placenta-derived cell line, BeWo, cultured on membranes as polarized monolayers, to model the maternal-fetal barrier. We assessed the effects of placental maturity and maternal immunoglobulin on viral transport. Intracellular viral trafficking pathways were investigated by confocal microscopy. Free HBV (and infectious duck hepatitis B virus) transcytosed across trophoblastic cells at a rate of 5% in 30 min. Viral transport occurred in microtubule-dependent endosomal vesicles. Additionally, confocal microscopy showed that the internalized virus traverses a monensin-sensitive endosomal compartment. Differentiation of the cytotrophoblasts to syncytiotrophoblasts resulted in a 25% reduction in viral transcytosis, suggesting that placental maturity may protect the fetus. Virus translocation was also reduced in the presence of HBV immunoglobulin. We show for the first time that transcytosis of infectious hepadnavirus can occur across a trophoblastic barrier early in gestation, with the risk of transmission being reduced by placental maturity and specific maternal antibody. This study suggests a mechanism by which mother-infant transmission may occur.
Collapse
Affiliation(s)
- Purnima Bhat
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia.
| | | |
Collapse
|
24
|
Vidricaire G, Tremblay MJ. A Clathrin, Caveolae, and Dynamin-independent Endocytic Pathway Requiring Free Membrane Cholesterol Drives HIV-1 Internalization and Infection in Polarized Trophoblastic Cells. J Mol Biol 2007; 368:1267-83. [PMID: 17395200 DOI: 10.1016/j.jmb.2007.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 02/06/2023]
Abstract
In human trophoblastic cells, a correlation between early endosomal trafficking of HIV-1 and virus infection was previously documented. However, if HIV-1 is massively internalized in these cells, the endocytic pathway(s) responsible for viral uptake is still undefined. Here we address this vital question. Amongst all the putative endocytic pathways present in polarized trophoblastic cells, we demonstrate that HIV-1 infection of these cells is independent of clathrin-mediated endocytosis and macropinocytosis. Importantly, treatment with the cholesterol-sequestering drug filipin severely impairs virus internalization, whereas the cholesterol-depleting compound methyl-beta-cyclodextrin has no impact on this pathway. Moreover, viral internalization is unaffected by overexpression of a mutant dynamin 2 or treatment with a kinase or tyrosine phosphatase inhibitor. Thus, HIV-1 infection in polarized trophoblastic cells occurs primarily via a clathrin, caveolae, and dynamin-independent pathway requiring free cholesterol. Notably, even though HIV-1 did not initially co-localize with transferrin, some virions migrate at later time points to transferrin-enriched endosomes, suggesting an unusual transit from the non-classical pathway to early endosomes. Finally, virus internalization in these cells does not involve the participation of microtubules but relies partly on actin filaments. Collectively these findings provide unprecedented information on the route of HIV-1 internalization in polarized human trophoblasts.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, CHUL Research Center, and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | | |
Collapse
|
25
|
Maurin T, Fenard D, Lambeau G, Doglio A. An Envelope-determined Endocytic Route of Viral Entry Allows HIV-1 to Escape from Secreted Phospholipase A2 Entry Blockade. J Mol Biol 2007; 367:702-14. [PMID: 17292399 DOI: 10.1016/j.jmb.2007.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) represent a new class of human immunodeficiency virus (HIV) inhibitors that block the early steps of virus entry into cells. Here, we applied an in vitro evolution/selection procedure to select, from primary HIV isolates, an emerging variant (HIV(RBV-3)) able to actively infect cells in the presence of sPLA(2)s. HIV(RBV-3) represents a very atypical HIV-1 isolate because, in contrast to others, this virus requires a functional endocytic machinery to infect cells. Indeed, endocytosis inhibitors that affect endosome acidification (bafilomycin A(1), monensin) and/or endosomal trafficking (nocodazole, latrunculin A) drastically reduced HIV(RBV-3) replication. Using a standardized PCR-assay, we showed that endocytosis inhibitors block HIV(RBV-3) entry just before the reverse transcription step. Concurrently, to identify the viral proteins responsible for the HIV(RBV-3) atypical behaviour, we constructed a HIV-1 molecular chimera bearing different HIV(RBV-3) proteins. We demonstrated that the sole presence of the HIV(RBV-3) envelope glycoprotein is enough, not only to confer the resistance to sPLA(2)s, but also to direct HIV(RBV-3) to the endosomal-dependent entry pathway. Interestingly, HIV(RBV-3) envelope glycoprotein sequencing revealed an unusual structural pattern with the presence of rare mutations in the N-terminal region and V1-V2 envelope loop sequence extensions. Taken together, we conclude that HIV-1 may escape from entry inhibitors, such as sPLA2s, through the selection of a particular HIV-1 envelope glycoprotein that allows HIV to infect cells via an alternative entry route that relies on endosome trafficking.
Collapse
Affiliation(s)
- Thomas Maurin
- Inserm U526, Laboratoire de Virologie, Faculté de Médecine, Avenue de Valombrose, 06107 Nice cedex 2, France
| | | | | | | |
Collapse
|
26
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
27
|
Abstract
Productive viral infection is dependent upon post-entry migration of viruses/viral components to sites within a host cell that complement viral deficiencies. Delivery of virions or component proteins to appropriate sites within an infected cell is critical for completing successive stages in viral replication, including release into the cytoplasm, uncoating, genome replication, viral gene expression, assembly and budding. Vesicular transport is essential for steady-state cellular trafficking of membrane-associated proteins. Rab GTPases and their associated effectors are key regulators of vesicular transport pathways. In recent years, Rab proteins have been implicated in the endocytic or exocytic sorting of component viral proteins or intact viruses, most of which are known to be membrane-encapsulated and enveloped. This review will discuss the current understanding of how Rab GTPases and their effectors may regulate individual vesicular transport steps, and detail emerging discoveries examining how specific Rabs and effectors support viral replication.
Collapse
Affiliation(s)
- Thomas W Hodge
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA 30602, USA, and, Hudson–Alpha Institute for Biotechnology Investigator, Huntsville, AL, USA
| | - James L Murray
- University of Georgia, Animal Health Research Center, 111 Carlton Street, Room 113, Athens, GA 30602, USA
| |
Collapse
|
28
|
Parry S, Zhang J, Koi H, Arechavaleta-Velasco F, Elovitz MA. Transcytosis of Human immunodeficiency virus 1 across the placenta is enhanced by treatment with tumour necrosis factor alpha. J Gen Virol 2006; 87:2269-2278. [PMID: 16847123 DOI: 10.1099/vir.0.81071-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human placenta is relatively resistant to Human immunodeficiency virus 1 (HIV-1), but obstetric complications associated with inflammatory processes, including chorioamnionitis and spontaneous preterm delivery, are associated with increased rates of vertical transmission. It was hypothesized that the pro-inflammatory mediator tumour necrosis factor alpha (TNF-alpha), which promotes HIV-1 transmission across endothelial membranes, increases HIV-1 transmission across the placenta. Flow cytometry and immunostaining studies were performed, which demonstrated that the HIV-1 receptors CD4, CCR5 and CXCR4 were not expressed by villous trophoblast cells. Consequently, primary villous trophoblast cells were not infected with cell-free HIV-1 isolates, as measured by in situ PCR and quantitative PCR, but villous trophoblast cells were infected by HIV-1-infected peripheral blood mononuclear cells (PBMC). HIV-1 from infected PBMC was rapidly transported across confluent transformed trophoblast cell monolayers by transcytosis, and TNF-alpha significantly upregulated transcytosis of HIV-1 across the trophoblast layer without disrupting cell viability or confluency. Inhibitors of TNF-alpha (antibodies against TNF-alpha and TNF-alpha receptors) and an anti-inflammatory drug (tenidap) significantly reduced transcytosis rates. It was concluded that the villous trophoblast is resistant to infection by cell-free HIV-1 but susceptible to transcytosis of HIV-1 from infected PBMC, and inflammatory mediators such as TNF-alpha may play a critical role in promoting maternal-fetal transmission of HIV-1.
Collapse
Affiliation(s)
- Samuel Parry
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 1352 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | - Jian Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 1352 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | - Hideki Koi
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113, Japan
| | - Fabian Arechavaleta-Velasco
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 1352 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | - Michal A Elovitz
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 1352 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| |
Collapse
|
29
|
Fackler OT, Kräusslich HG. Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 2006; 9:409-15. [PMID: 16820319 DOI: 10.1016/j.mib.2006.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/20/2006] [Indexed: 12/23/2022]
Abstract
As obligate cell parasites, viruses have evolved into professional manipulators of host cell functions. Accordingly, viruses often remodel the cytoskeleton of target cells in order to convert one of the cell's barriers to viral replication into a vehicle for the virus that facilitates the generation of infectious progeny. Surprisingly little is known about the mechanisms employed by two major human pathogens, HIV and human T-cell leukaemia virus (HTLV), to exploit host cell cytoskeletal dynamics. New studies have begun to unravel how these retroviruses remodel cytoskeletal structures to facilitate entry into, transport within and egress from target cells. Exciting progress has been made in understanding how HIV and HTLV polarize actin and also control microtubule organization to spread from donor to target cells in close cell-contacts termed virological synapses.
Collapse
Affiliation(s)
- Oliver T Fackler
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 2006; 7:495-504. [PMID: 16773132 DOI: 10.1038/nrm1959] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several pathogens - bacteria, viruses and parasites - must enter mammalian cells for survival, replication and immune-system evasion. These pathogens generally make use of existing cellular pathways that are designed for nutrient uptake, receptor downregulation and signalling. Because most of these pathways end in lysosomes, an organelle that is capable of killing microorganisms, pathogens have developed remarkable means to avoid interactions with this lytic organelle.
Collapse
Affiliation(s)
- Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland.
| | | |
Collapse
|
31
|
Vidricaire G, Tremblay MJ. Rab5 and Rab7, but Not ARF6, Govern the Early Events of HIV-1 Infection in Polarized Human Placental Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:6517-30. [PMID: 16272306 DOI: 10.4049/jimmunol.175.10.6517] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblasts, the structural cells of the placenta, are thought to play a determinant role in in utero HIV type 1 (HIV-1) transmission. We have accumulated evidence suggesting that HIV-1 infection of these cells is associated with uptake by an unusual clathrin/caveolae-independent endocytic pathway and that endocytosis is followed by trafficking through multiple organelles. Furthermore, part of this trafficking involves the transit of HIV-1 from transferrin-negative to EEA1 and transferrin-positive endosomes, suggesting a merger from nonclassical to classical endocytic pathways in these cells. In the present article, the relationship between the presence of HIV-1 within specific endosomes and infection was studied. We demonstrate that viral infection is virtually lost when endosome inhibitors are added shortly after exposure to HIV-1. Thus, contrary to what is seen in CD4+ T lymphocytes, the initial presence of HIV-1 within the endosomes is mandatory for infection to take place. Importantly, this process is independent of the viral envelope proteins gp120 and gp41. The Rab family of small GTPases coordinates the vesicular transport between the different endocytic organelles. Experiments performed with various expression vectors indicated that HIV-1 infection in polarized trophoblasts relies on Rab5 and Rab7 without the contribution of Arf6 or Rab11. Furthermore, we conclude that Rab5 drives movements from raft-rich region to early endosomes, and this transit is required for subsequently reaching late endosomes via Rab7. This complex trafficking is mandatory for HIV-1 infection to proceed in human polarized trophoblasts.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, Centre Hospitalier de l'Université Laval Research Center, and Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | |
Collapse
|
32
|
Coats KS. The Feline Immunodeficiency Virus-Infected Cat: A Model for Lentivirus-induced Placental Immunopathology and Reproductive Failure (Mini-Review). Am J Reprod Immunol 2005; 54:169-85. [PMID: 16135008 DOI: 10.1111/j.1600-0897.2005.00296.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Pediatric human immunodeficiency virus (HIV) infection is largely a result of transplacental transmission, and pregnancy perturbation is more frequent in HIV-infected women. Dysregulation of placental immunology may occur during HIV infection, possibly facilitating HIV vertical transfer and miscarriage. The (FIV)-infected cat is a useful small-animal model for HIV pathogenesis because the viruses share common biological and clinical features. Transplacental transmission is readily achieved experimentally, resulting in a high proportion of infected offspring and frequent reproductive failure. METHOD OF STUDY We are using this model to examine lentivirus-induced placental immunopathology to determine the role aberrant immunology plays in intrauterine transmission and pregnancy perturbation. RESULTS Kittens were cesarean delivered from FIV-B-2542-infected and control queens at week 8 gestation (1 week short of term), and placental and fetal specimens were collected. On average, control queens delivered 3.8 kittens/litter, and 1 of 31 kittens (3.2%) was non-viable. FIV-infected queens produced 2.7 kittens/litter with 15 of 25 fetuses (60%) non-viable. The virus was detected in 14 of 15 placentas (93%) and 21 of 22 fetuses (95%) using polymerase chain reaction (PCR). Using a one-step, real time reverse transcriptase (RT)-PCR, we measured expression of representative placental T helper 1 (Th1) cytokines, interleukin (IL)-1beta and interferon (IFN)-gamma, a Th2 cytokine, IL-10, and chemokine receptor CXCR4. A comparison of placental cytokine expression between infected and control queens did not reveal differences between the two groups. However, elevated expression of Th1 cytokines and increased Th1/Th2 ratios (IL-1beta/IL-10) occurred in placentas from resorptions, indicating that increased placental Th1 cytokine expression was associated with pregnancy failure in the FIV-infected cat. CONCLUSION The potential to establish efficient FIV in utero transmission, coupled with the parallels in immunopathology between FIV-infected cats and HIV-infected humans, suggests the usefulness of the FIV-infected cat as a cost-effective, small-animal model to study lentivirus-induced immunopathology, transplacental infection, and reproductive failure.
Collapse
Affiliation(s)
- Karen S Coats
- Department of Biological Sciences and College of Veterinary Medicine, Mississippi State University, PO Box GY, MS 39762, USA.
| |
Collapse
|
33
|
Neil SJD, Aasa-Chapman MMI, Clapham PR, Nibbs RJ, McKnight A, Weiss RA. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 2005; 79:9618-24. [PMID: 16014924 PMCID: PMC1181543 DOI: 10.1128/jvi.79.15.9618-9624.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The role of coreceptors other than CCR5 and CXCR4 in the pathogenesis of human immunodeficiency virus (HIV) disease is controversial. Here we show that a promiscuous CC chemokine receptor, D6, can function as a coreceptor for various primary dual-tropic isolates of HIV type 1 (HIV-1) and HIV-2. Furthermore, D6 usage is common among chimeric HIV-1 constructs bearing the gp120 proteins of isolates from early seroconverting patients. D6 mRNA and immunoreactivity were demonstrated to be expressed in HIV-1 target cells such as macrophages, peripheral blood mononuclear cells, and primary astrocytes. In primary astrocytes, an RNA interference-mediated knockdown of D6 expression inhibited D6-tropic isolate infection. D6 usage may account for some previous observations of alternative receptor tropism for primary human cells. Thus, D6 may be an important receptor for HIV pathogenesis in the brain and for the early dissemination of virus in the host.
Collapse
Affiliation(s)
- Stuart J D Neil
- Wohl Virion Centre, Division of Infection and Immunity, University College London, UK
| | | | | | | | | | | |
Collapse
|