1
|
Pražák V, Mironova Y, Vasishtan D, Hagen C, Laugks U, Jensen Y, Sanders S, Heumann JM, Bosse JB, Klupp BG, Mettenleiter TC, Grange M, Grünewald K. Molecular plasticity of herpesvirus nuclear egress analysed in situ. Nat Microbiol 2024; 9:1842-1855. [PMID: 38918469 PMCID: PMC7616147 DOI: 10.1038/s41564-024-01716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.
Collapse
Affiliation(s)
- Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yuliia Mironova
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Christoph Hagen
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ulrike Laugks
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Yannick Jensen
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Saskia Sanders
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - John M Heumann
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jens B Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Grange
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Didcot, UK.
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute of Virology, Hamburg, Germany.
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Hamburg, Hamburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Xu M, Wang Y, Liu Y, Chen S, Zhu L, Tong L, Zheng Y, Osterrieder N, Zhang C, Wang J. A Novel Strategy of US3 Codon De-Optimization for Construction of an Attenuated Pseudorabies Virus against High Virulent Chinese Pseudorabies Virus Variant. Vaccines (Basel) 2023; 11:1288. [PMID: 37631856 PMCID: PMC10458909 DOI: 10.3390/vaccines11081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we applied bacterial artificial chromosome (BAC) technology with PRVΔTK/gE/gI as the base material to replace the first, central, and terminal segments of the US3 gene with codon-deoptimized fragments via two-step Red-mediated recombination in E. coli GS1783 cells. The three constructed BACs were co-transfected with gI and part of gE fragments carrying homologous sequences (gI+gE'), respectively, in swine testicular cells. These three recombinant viruses with US3 codon de-optimization ((PRVΔTK&gE-US3deop-1, PRVΔTK&gE-US3deop-2, and PRVΔTK&gE-US3deop-3) were obtained and purified. These three recombinant viruses exhibited similar growth kinetics to the parental AH02LA strain, stably retained the deletion of TK and gE gene fragments, and stably inherited the recoded US3. Mice were inoculated intraperitoneally with the three recombinant viruses or control virus PRVΔTK&gEAH02 at a 107.0 TCID50 dose. Mice immunized with PRVΔTK&gE-US3deop-1 did not develop clinical signs and had a decreased virus load and attenuated pathological changes in the lungs and brain compared to the control group. Moreover, immunized mice were challenged with 100 LD50 of the AH02LA strain, and PRVΔTK&gE-US3deop-1 provided similar protection to that of the control virus PRVΔTK&gEAH02. Finally, PRVΔTK&gE-US3deop-1 was injected intramuscularly into 1-day-old PRV-negative piglets at a dose of 106.0 TCID50. Immunized piglets showed only slight temperature reactions and mild clinical signs. However, high levels of seroneutralizing antibody were produced at 14 and 21 days post-immunization. In addition, the immunization of PRVΔTK&gE-US3deop-1 at a dose of 105.0 TCID50 provided complete clinical protection and prevented virus shedding in piglets challenged by 106.5 TCID50 of the PRV AH02LA variant at 1 week post immunization. Together, these findings suggest that PRVΔTK&gE-US3deop-1 displays great potential as a vaccine candidate.
Collapse
Affiliation(s)
- Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiwei Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Laixu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Tong
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
3
|
Hölper JE, Reiche S, Franzke K, Mettenleiter TC, Klupp BG. Generation and characterization of monoclonal antibodies specific for the Pseudorabies Virus nuclear egress complex. Virus Res 2020; 287:198096. [PMID: 32682818 DOI: 10.1016/j.virusres.2020.198096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-mediated transport, which requires the nuclear egress complex (NEC), composed of the conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus particles into the perinuclear space. The INM-derived primary envelope then fuses with the outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC components are necessary and sufficient for induction of vesicle budding and scission as shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and when the NEC is formed, how membrane curvature is mediated and how it is regulated, remains unclear. While monospecific antisera raised against the different components of the PrV NEC aided in the characterization and intracellular localization of the individual proteins, no NEC specific tools have been described yet for any herpesvirus. To gain more insight into vesicle budding and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, mice were immunized with bacterially expressed soluble PrV NEC, which was previously used for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. Confocal microscopy with those NEC-specific mAbs revealed small puncta (approx. 0.064 μm2) along the nuclear rim in PrV wild type infected cells. In contrast, ca. 5-fold larger speckles (approx. 0.35 μm2) were detectable in cells infected with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were detectable already between 2-4 hours after infection, the NEC-specific mAbs produced significant staining only after 4-6 hours in accordance with timing of nuclear egress. Taken together, the data indicate that these mAbs specifically label the PrV NEC.
Collapse
Affiliation(s)
- Julia E Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
4
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
5
|
Monaghan SJ, Bergmann SM, Thompson KD, Brown L, Herath T, Del-Pozo J, Adams A. Ultrastructural analysis of sequential cyprinid herpesvirus 3 morphogenesis in vitro. JOURNAL OF FISH DISEASES 2017; 40:1041-1054. [PMID: 28025825 DOI: 10.1111/jfd.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is an alloherpesvirus, and it is the aetiological agent of koi herpesvirus disease. Although the complex morphogenic stages of the replication cycle of CyHV-3 were shown to resemble that of other members of the Herpesvirales, detailed analysis of the sequence and timing of these events was not definitively determined. This study describes these features through a time course using cyprinid cell cultures (KF-1 and CCB) infected with CyHV-3 (KHV isolate, H361) and analysed by transmission electron microscopy. Rapid viral entry was noted, with high levels of intracellular virus within 1-4 h post-infection (hpi). Intranuclear capsid assembly, paracrystalline array formation and primary envelopment of capsids occurred within 4 hpi. Between 1 and 3 days post-infection (dpi), intracytoplasmic secondary envelopment occurred, as well as budding of infectious virions at the plasma membrane. At 5-7 dpi, the cytoplasm contained cytopathic vacuoles, enveloped virions within vesicles, and abundant non-enveloped capsids; also there was frequent nuclear deformation. Several morphological features are suggestive of inefficient viral assembly, with production of non-infectious particles, particularly in KF-1 cells. The timing of this alloherpesvirus morphogenesis is similar to other members of the Herpesvirales, but there may be possible implications of using different cell lines for CyHV-3 propagation.
Collapse
Affiliation(s)
- S J Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - S M Bergmann
- Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Midlothian, UK
| | - L Brown
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - T Herath
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - J Del-Pozo
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - A Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
6
|
Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC. The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress. mBio 2017; 8:e00825-17. [PMID: 28611252 PMCID: PMC5472190 DOI: 10.1128/mbio.00825-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/28/2022] Open
Abstract
Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions.IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant that accumulates PEVs in the perinuclear space, we were able to isolate PEVs in sufficient quantity for structural analysis by cryo-electron microscopy and tomography. The findings not only elucidate the maturation pathway of an important human pathogen but also have implications for cellular processes that involve the trafficking of large macromolecular complexes.
Collapse
Affiliation(s)
- William W Newcomb
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Fontana
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dennis C Winkler
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Phosphorylation of Bovine Herpesvirus 1 VP8 Plays a Role in Viral DNA Encapsidation and Is Essential for Its Cytoplasmic Localization and Optimal Virion Incorporation. J Virol 2016; 90:4427-4440. [PMID: 26889039 DOI: 10.1128/jvi.00219-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED VP8 is a major tegument protein of bovine herpesvirus 1 (BoHV-1) and is essential for viral replication in cattle. The protein undergoes phosphorylation after transcription through cellular casein kinase 2 (CK2) and a viral kinase, US3. In this study, a virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) was constructed by homologous recombination in mammalian cells. When BoHV-1-YmVP8-infected cells were observed by transmission electron microscopy, blocking phosphorylation of VP8 was found to impair viral DNA encapsidation, resulting in release of incomplete viral particles to the extracellular environment. Consequently, less infectious virus was produced by the mutant virus than by wild-type (WT) virus. A comparison of mutant and WT VP8 by confocal microscopy revealed that mutant VP8 is nuclear throughout infection while WT VP8 is nuclear early during infection and is associated with the Golgi apparatus at later stages. This, together with the observation that mutant VP8 is present in virions, albeit in smaller amounts, suggests that the incorporation of VP8 may occur at two stages. The first takes place without the need for phosphorylation and before or during nuclear egress of capsids, whereas the second occurs in the Golgi apparatus and requires phosphorylation of VP8. The results indicate that phosphorylated VP8 plays a role in viral DNA encapsidation and in the secondary virion incorporation of VP8. To perform these functions, the cellular localization of VP8 is adjusted based on the phosphorylation status. IMPORTANCE In this study, phosphorylation of VP8 was shown to have a function in BoHV-1 replication. A virus containing a mutated VP8 protein that is not phosphorylated by CK2 and US3 (BoHV-1-YmVP8) produced smaller numbers of infectious virions than wild-type (WT) virus. The maturation and egress of WT and mutant BoHV-1 were studied, showing a process similar to that reported for other alphaherpesviruses. Interestingly, lack of phosphorylation of VP8 by CK2 and US3 resulted in reduced incorporation of viral DNA into capsids during mutant BoHV-1 infection, as well as lower numbers of extracellular virions. Furthermore, mutant VP8 remained nuclear throughout infection, in contrast to WT VP8, which is nuclear at early stages and Golgi apparatus associated late during infection. This correlates with smaller amounts of mutant VP8 in virions and suggests for the first time that VP8 may be assembled into the virions at two stages, with the latter dependent on phosphorylation.
Collapse
|
9
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Li M, Jiang S, Mo C, Zeng Z, Li X, Chen C, Yang Y, Wang J, Huang J, Chen D, Peng T, Cai M. Identification of molecular determinants for the nuclear import of pseudorabies virus UL31. Arch Biochem Biophys 2015; 587:12-7. [PMID: 26450651 DOI: 10.1016/j.abb.2015.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023]
Abstract
Herpes simplex virus 1 (HSV-1) UL31 is a multifunctional protein and important for HSV-1 infection. Pseudorabies virus (PRV) UL31 is a late protein homologous to HSV-1 UL31. Previous studies showed that PRV UL31 is predominantly localized to nucleus, however, the molecular determinants for its nuclear import were unclear to date. Here, by utilizing live cells fluorescent microscopy, UL31 fused with enhanced yellow fluorescent protein was transiently expressed in live cells and confirmed to exclusively target to the nucleus in the absence of other viral proteins. Furthermore, the nuclear import of UL31 was found to be dependent on the Ran-, importin α1-, α3-, α5-, α7-, β1-and transportin-1-mediated pathway. Therefore, these results would open up new avenues for depicting the biological functions of UL31 during PRV infection.
Collapse
Affiliation(s)
- Meili Li
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Si Jiang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Chuncong Mo
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhancheng Zeng
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaowei Li
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Chunke Chen
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yanjia Yang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jinlin Wang
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jinlu Huang
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, PR China
| | - Daixiong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Tao Peng
- Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Mingsheng Cai
- Department of Pathogenic Biology and Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China; Guangzhou Hoffmann Institute of Immunology, School of Basic Science, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
11
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
12
|
Gammaherpesvirus Tegument Protein ORF33 Is Associated With Intranuclear Capsids at an Early Stage of the Tegumentation Process. J Virol 2015; 89:5288-97. [PMID: 25717105 DOI: 10.1128/jvi.00079-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/13/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Herpesvirus nascent capsids, after assembly in the nucleus, must acquire a variety of tegument proteins during maturation. However, little is known about the identity of the tegument proteins that are associated with capsids in the nucleus or the molecular mechanisms involved in the nuclear egress of capsids into the cytoplasm, especially for the two human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), due to a lack of efficient lytic replication systems. Murine gammaherpesvirus 68 (MHV-68) is genetically related to human gammaherpesviruses and serves as an excellent model to study the de novo lytic replication of gammaherpesviruses. We have previously shown that open reading frame 33 (ORF33) of MHV-68 is a tegument protein of mature virions and is essential for virion assembly and egress. However, it remains unclear how ORF33 is incorporated into virions. In this study, we first show that the endogenous ORF33 protein colocalizes with capsid proteins at discrete areas in the nucleus during viral infection. Cosedimentation analysis as well as an immunoprecipitation assay demonstrated that ORF33 is associated with both nuclear and cytoplasmic capsids. An immunogold labeling experiment using an anti-ORF33 monoclonal antibody revealed that ORF33-rich areas in the nucleus are surrounded by immature capsids. Moreover, ORF33 is associated with nucleocapsids prior to primary envelopment as well as with mature virions in the cytoplasm. Finally, we show that ORF33 interacts with two capsid proteins, suggesting that nucleocapsids may interact with ORF33 in a direct manner. In summary, we identified ORF33 to be a tegument protein that is associated with intranuclear capsids prior to primary envelopment, likely through interacting with capsid proteins in a direct manner. IMPORTANCE Morphogenesis is an essential step in virus propagation that leads to the generation of progeny virions. For herpesviruses, this is a complicated process that starts in the nucleus. Although the process of capsid assembly and genome packaging is relatively well understood, how capsids acquire tegument (the layer between the capsid and the envelope in a herpesvirus virion) and whether the initial tegumentation process takes place in the nucleus remain unclear. We previously showed that ORF33 of MHV-68 is a tegument protein and functions in both the nuclear egress of capsids and final virion maturation in the cytoplasm. In the present study, we show that ORF33 is associated with intranuclear capsids prior to primary envelopment and identify novel interactions between ORF33 and two capsid proteins. Our work provides new insights into the association between tegument proteins and nucleocapsids at an early stage of the virion maturation process for herpesviruses.
Collapse
|
13
|
Schulz KS, Klupp BG, Granzow H, Passvogel L, Mettenleiter TC. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway. Virus Res 2015; 209:76-86. [PMID: 25678269 DOI: 10.1016/j.virusres.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions.
Collapse
Affiliation(s)
- Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lars Passvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Wild P, Leisinger S, de Oliveira AP, Schraner EM, Kaech A, Ackermann M, Tobler K. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 2015; 7:52-71. [PMID: 25588052 PMCID: PMC4306828 DOI: 10.3390/v7010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37×10(8) and HSV-1 yields 1.57×10(8) PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Sabine Leisinger
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | | | - Elisabeth M Schraner
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Winterthurerstrasse 190,CH-8057 Zürich, Switzerland.
| | - Mathias Ackermann
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | - Kurt Tobler
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| |
Collapse
|
15
|
Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol 2014; 88:4657-67. [PMID: 24522907 DOI: 10.1128/jvi.00137-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpesviruses have evolved a unique mechanism for nuclear egress of nascent progeny nucleocapsids: the nucleocapsids bud through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes (primary envelopment), and enveloped nucleocapsids then fuse with the outer nuclear membrane to release nucleocapsids into the cytoplasm (de-envelopment). We have shown that the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (or VP13/VP14) is a novel regulator for HSV-1 nuclear egress. In particular, we demonstrated the following: (i) UL47 formed a complex(es) with HSV-1 proteins UL34, UL31, and/or Us3, which have all been reported to be critical for viral nuclear egress, and these viral proteins colocalized at the nuclear membrane in HSV-1-infected cells; (ii) the UL47-null mutation considerably reduced primary enveloped virions in the perinuclear space although capsids accumulated in the nucleus; and (iii) UL47 was detected in primary enveloped virions in the perinuclear space by immunoelectron microscopy. These results suggested that UL47 promoted HSV-1 primary envelopment, probably by interacting with the critical HSV-1 regulators for viral nuclear egress and by modulating their functions. IMPORTANCE Like other herpesviruses, herpes simplex virus 1 (HSV-1) has evolved a vesicle-mediated nucleocytoplasmic transport mechanism for nuclear egress of nascent progeny nucleocapsids. Although previous reports identified and characterized several HSV-1 and cellular proteins involved in viral nuclear egress, complete details of HSV-1 nuclear egress remain to be elucidated. In this study, we have presented data suggesting (i) that the major HSV-1 virion structural protein UL47 (or VP13/VP14) formed a complex with known viral regulatory proteins critical for viral nuclear egress and (ii) that UL47 played a regulatory role in HSV-1 primary envelopment. Thus, we identified UL47 as a novel regulator for HSV-1 nuclear egress.
Collapse
|
16
|
Abstract
Herpes simplex virus type 1 particles are multilayered structures with a DNA genome surrounded by a capsid, tegument, and envelope. While the protein content of mature virions is known, the sequence of addition of the tegument and the intracellular compartments where this occurs are intensely debated. To probe this process during the initial stages of egress, we used two approaches: an in vitro nuclear egress assay, which reconstitutes the exit of nuclear capsids to the cytoplasm, and a classical nuclear capsid sedimentation assay. As anticipated, in vitro cytoplasmic capsids did not harbor UL34, UL31, or viral glycoproteins but contained US3. In agreement with previous findings, both nuclear and in vitro capsids were positive for ICP0 and ICP4. Unexpectedly, nuclear C capsids and cytoplasmic capsids produced in vitro without any cytosolic viral proteins also scored positive for UL36 and UL37. Immunoelectron microscopy confirmed that these tegument proteins were closely associated with nuclear capsids. When cytosolic viral proteins were present in the in vitro assay, no additional tegument proteins were detected on the capsids. As previously reported, the tegument was sensitive to high-salt extraction but, surprisingly, was stabilized by exogenous proteins. Finally, some tegument proteins seemed partially lost during egress, while others possibly were added at multiple steps or modified along the way. Overall, an emerging picture hints at the early coating of capsids with up to 5 tegument proteins at the nuclear stage, the shedding of some viral proteins during nuclear egress, and the acquisition of others tegument proteins during reenvelopment.
Collapse
|
17
|
Abstract
Herpes simplex virus, varicella zoster virus, and pseudorabies virus are neurotropic pathogens of the Alphaherpesvirinae subfamily of the Herpesviridae. These viruses efficiently invade the peripheral nervous system and establish lifelong latency in neurons resident in peripheral ganglia. Primary and recurrent infections cycle virus particles between neurons and the peripheral tissues they innervate. This remarkable cycle of infection is the topic of this review. In addition, some of the distinguishing hallmarks of the infections caused by these viruses are evaluated in terms of their underlying similarities.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
18
|
Kariithi HM, Ince IA, Boeren S, Abd-Alla AMM, Parker AG, Aksoy S, Vlak JM, van Oers MM. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PLoS Negl Trop Dis 2011; 5:e1371. [PMID: 22132244 PMCID: PMC3222630 DOI: 10.1371/journal.pntd.0001371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. METHODOLOGY/PRINCIPAL FINDINGS After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. CONCLUSIONS/SIGNIFICANCE SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Ikbal A. Ince
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
19
|
A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol 2011; 85:11675-84. [PMID: 21880751 DOI: 10.1128/jvi.05614-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following their assembly, herpesvirus capsids exit the nucleus by budding at the inner nuclear membrane. Two highly conserved viral proteins are required for this process, pUL31 and pUL34. In this report, we demonstrate that the pUL31 component of the pseudorabies virus nuclear egress complex is a conditional capsid-binding protein that is unmasked in the absence of pUL34. The interaction between pUL31 and capsids was confirmed through fluorescence microscopy and Western blot analysis of purified intranuclear capsids. Three viral proteins were tested for their abilities to mediate the pUL31-capsid interaction: the minor capsid protein pUL25, the portal protein pUL6, and the terminase subunit pUL33. Despite the requirement for each protein in nuclear egress, none of these viral proteins were required for the pUL31-capsid interaction. These findings provide the first formal evidence that a herpesvirus nuclear egress complex interacts with capsids and have implications for how DNA-containing capsids are selectively targeted for nuclear egress.
Collapse
|
20
|
Bucks MA, Murphy MA, O'Regan KJ, Courtney RJ. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1. Virology 2011; 416:42-53. [PMID: 21601231 DOI: 10.1016/j.virol.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell.
Collapse
Affiliation(s)
- Michelle A Bucks
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Collapse
|
22
|
Guo H, Shen S, Wang L, Deng H. Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 2010; 1:987-98. [PMID: 21153516 DOI: 10.1007/s13238-010-0120-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022] Open
Abstract
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, de-envelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.
Collapse
Affiliation(s)
- Haitao Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
23
|
Abstract
The nuclear envelope of eukaryotic cells is composed of double lipid-bilayer membranes, the membrane-connected nuclear pore complexes and an underlying nuclear lamina network. The nuclear pore complexes serve as gates for regulating the transport of macromolecules between cytoplasm and nucleus. The nuclear lamina not only provides an intact meshwork for maintaining the nuclear stiffness but also presents a natural barrier against most DNA viruses. Herpesviruses are large DNA viruses associated with multiple human and animal diseases. The complex herpesviral virion contains more than 30 viral proteins. After viral DNA replication, the newly synthesised genome is packaged into the pre-assembled intranuclear capsid. The nucleocapsid must then transverse through the nuclear envelope to the cytoplasm for the subsequent maturation process. Information regarding how nucleocapsid breaches the rigid nuclear lamina barrier and accesses the inner nuclear membrane for primary envelopment has emerged recently. From the point of view of both viral components and nuclear structure, this review summarises recent advances in the complicated protein-protein interactions and the phosphorylation regulations involved in the nuclear egress of herpesviral nucleocapsids.
Collapse
Affiliation(s)
- Chung-Pei Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
24
|
Random transposon-mediated mutagenesis of the essential large tegument protein pUL36 of pseudorabies virus. J Virol 2010; 84:8153-62. [PMID: 20534865 DOI: 10.1128/jvi.00953-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologs of the pseudorabies virus (PrV) essential large tegument protein pUL36 are conserved throughout the Herpesviridae. pUL36 functions during transport of the nucleocapsid to and docking at the nuclear pore as well as during virion formation after nuclear egress in the cytoplasm. Deletion analyses revealed several nonessential regions within the 3,084-amino-acid PrV pUL36 (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006; S. Böttcher, H. Granzow, C. Maresch, B. Möhl, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 81:13403-13411, 2007), while the C-terminal 62 amino acids are essential for virus replication (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). To identify additional functional domains, we performed random mutagenesis of PrV pUL36 by transposon-mediated insertion of a 15-bp linker. By this approach, 26 pUL36 insertion mutants were selected and tested in transient transfection assays for their ability to complement one-step growth and/or viral spread of a PrV UL36 null mutant. Ten insertion mutants in the N-terminal half and 10 in the C terminus complemented both, whereas six insertion mutants clustering in the center of the protein did not complement in either assay. Interestingly, several insertions within conserved parts yielded positive complementation, including those located within the essential C-terminal 62 amino acids. For 15 mutants that mediated productive replication, stable virus recombinants were isolated and further characterized by plaque assay, in vitro growth analysis, and electron microscopy. Except for three mutant viruses, most insertion mutants replicated like wild-type PrV. Two insertion mutants, at amino acids (aa) 597 and 689, were impaired in one-step growth and viral spread and exhibited a defect in virion maturation in the cytoplasm. In contrast, one functional insertion (aa 1800) in a region which otherwise yielded only nonfunctional insertion mutants was impaired in viral spread but not in one-step growth without a distinctive ultrastructural phenotype. In summary, these studies extend and refine previous analyses of PrV pUL36 and demonstrate the different sensitivities of different regions of the protein to functional loss by insertion.
Collapse
|
25
|
Brzozowska A, Rychłowski M, Lipińska AD, Bieńkowska-Szewczyk K. Point mutations in BHV-1 Us3 gene abolish its ability to induce cytoskeletal changes in various cell types. Vet Microbiol 2010; 143:8-13. [PMID: 20197221 DOI: 10.1016/j.vetmic.2010.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Us3 gene is conserved among alphaherpesviruses and codes for a protein kinase, a multifunctional protein involved in many phases of virus infection, like nuclear egress, modulation of apoptosis and modification of the cellular cytoskeleton. Bovine herpesvirus (BHV-1), a member of the Alphaherpesvirinae, contains an open reading frame homologous to Us3 of other herpesviruses, which has been identified as a serine/threonine kinase (Takashima, Y., Tamura, H., Xuan, X., Otsuka, H., 1999. Identification of the Us3 gene product of BHV-1 as a protein kinase and characterization of BHV-1 mutants of the Us3 gene. Virus Res. 59, 23-34). To study the activity of BHV-1 Us3, we have cloned its sequence under control of the human cytomegalovirus (HCMV) promoter/enhancer and introduced it into a recombinant baculovirus (Bac Us3). Confocal microscopy analysis showed profound cytoskeletal modifications in various BHV-1-permissive and non-permissive cells transduced with BacUs3. We observed that Us3 expression changed cellular shape and induced formation of long microtubule-containing cell projections, a phenomenon which had also been observed in cells expressing pseudorabies virus Us3. The intracellular localization of Us3 was mostly nuclear but when the protein accumulated it could be detected in the cytoplasm, cell membranes and projections. Mutated forms of BHV-1 Us3 with point mutations near or within the kinase catalytic domain did not affect cell morphology indicating that kinase activity of BHV-1 Us3 is required for its cytoskeleton remodelling function.
Collapse
Affiliation(s)
- Agnieszka Brzozowska
- Department of Molecular Virology, Faculty of Biotechnology, University of Gdańsk, Kladki 24, 80-822 Gdańsk, Poland
| | | | | | | |
Collapse
|
26
|
The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2). J Virol 2009; 84:1397-405. [PMID: 19923173 DOI: 10.1128/jvi.01721-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study a number of herpes simplex virus type 1 (HSV-1) proteins were screened, using a yeast-two-hybrid assay, for interaction with the tegument protein pUL48 (VP16). This approach identified interactions between pUL48 and the capsid proteins pUL19 (VP5), pUL38 (VP19C), and pUL35 (VP26). In addition, the previously identified interaction of pUL48 with the major tegument protein pUL36 (VP1/2) was confirmed. All of these interactions, except that of pUL35 and pUL48, could be confirmed using an in vitro pulldown assay. A subsequent pulldown assay with intact in vitro-assembled capsids, consisting of pUL19, pUL38, and pUL18 (VP23) with or without pUL35, showed no binding of pUL48, suggesting that the capsid/pUL48 interactions initially identified were more then likely not biologically relevant. This was confirmed by using a series of HSV-1 mutants lacking the gene encoding either pUL35, pUL36, or pUL37. For each HSV-1 mutant, analysis of purified deenveloped C capsids indicated that only in the absence of pUL36 was there a complete loss of capsid-bound pUL48, as well as pUL37. Collectively, this study shows for the first time that pUL36 is a major factor for addition of both pUL48 and pUL37, likely through a direct interaction of both with nonoverlapping sites in pUL36, to unenveloped C capsids during assembly of HSV-1.
Collapse
|
27
|
Intracellular localization of the pseudorabies virus large tegument protein pUL36. J Virol 2009; 83:9641-51. [PMID: 19640985 DOI: 10.1128/jvi.01045-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated "inner" tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.
Collapse
|
28
|
Kelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res 2009; 145:173-86. [PMID: 19615419 DOI: 10.1016/j.virusres.2009.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Herpes virions consist of four morphologically distinct structures, a DNA core, capsid, tegument, and envelope. Tegument occupies the space between the nucleocapsid (capsid containing DNA core) and the envelope. A combination of genetic, biochemical and proteomic analysis of alphaherpes virions suggest the tegument contains in the order of 20 viral proteins. Historically the tegument has been described as amorphous but increasing evidence suggests there is an ordered addition of tegument during assembly. This review highlights the diverse roles, in addition to structural, that tegument plays during herpes viral replication using as an example herpes simplex virus type 1. Such diverse roles include: capsid transport during entry and egress; targeting of the capsid to the nucleus; regulation of transcription, translation and apoptosis; DNA replication; immune modulation; cytoskeletal assembly; nuclear egress of capsid; and viral assembly and final egress.
Collapse
Affiliation(s)
- Barbara J Kelly
- Centre for Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
29
|
Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res 2009; 143:222-34. [PMID: 19651457 DOI: 10.1016/j.virusres.2009.03.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/28/2009] [Accepted: 03/28/2009] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales contains viruses infecting animals from molluscs to men with a common virion morphology which have been classified into the families Herpesviridae, Alloherpesviridae and Malacoherpesviridae. Herpes virions are among the most complex virus particles containing a multitude of viral and cellular proteins which assemble into nucleocapsid, envelope and tegument. After autocatalytic assembly of the capsid and packaging of the newly replicated viral genome, a process which occurs in the nucleus and resembles head formation and genome packaging in the tailed double-stranded DNA bacteriophages, the nucleocapsid is translocated to the cytoplasm by budding at the inner nuclear membrane followed by fusion of the primary envelope with the outer nuclear membrane. Viral and cellular proteins are involved in mediating this 'nuclear egress' which entails substantial remodeling of the nuclear architecture. For final maturation within the cytoplasm tegument components associate with the translocated nucleocapsid, with themselves, and with the future envelope containing viral membrane proteins in a complex network of interactions resulting in the formation of an infectious herpes virion. The diverse interactions between the involved proteins exhibit a striking redundancy which is still insufficiently understood. In this review, recent advances in our understanding of the molecular processes resulting in herpes virion maturation will be presented and discussed as an update of a previous contribution [Mettenleiter, T.C., 2004. Budding events in herpesvirus morphogenesis. Virus Res. 106, 167-180].
Collapse
|
30
|
Leege T, Granzow H, Fuchs W, Klupp BG, Mettenleiter TC. Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 2009; 90:1560-1568. [PMID: 19297610 DOI: 10.1099/vir.0.010322-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the absence of the tegument protein pUL37, virion formation of pseudorabies virus (PrV) and herpes simplex virus type 1 (HSV-1) is severely impaired. Non-enveloped nucleocapsids accumulate in clusters in the cytoplasm, whereas only a few enveloped particles can be detected. Although a contribution of pUL37 to nuclear egress of HSV-1 has been suggested, the nuclear stages of morphogenesis are not impaired in PrV-DeltaUL37-infected cells. Moreover, HSV-1 pUL37 has been described as essential for replication, whereas PrV is able to replicate productively without pUL37, although to lower titres than wild-type virus. Thus, there may be functional differences between the respective pUL37 proteins. This study compared the phenotypes of UL37-deleted PrV and HSV-1 in parallel assays, using a novel pUL37 deletion mutant of HSV-1 strain KOS, HSV-1DeltaUL37[86-1035]. Aggregates of seemingly 'naked' nucleocapsids were present in the cytoplasm of African green monkey (Vero) or rabbit kidney (RK13) cells infected with HSV-1DeltaUL37[86-1035] or PrV-DeltaUL37. Nuclear retention of nucleocapsids was not observed in either virus. However, in contrast to PrV-DeltaUL37, HSV-1DeltaUL37[86-1035] was unable to replicate productively in, and to form plaques on, either Vero or RK13 cells. Trans-complementation of respective deletion mutants with the heterologous pUL37 did not ensue. These data demonstrate that the conserved pUL37 in HSV-1 and PrV have similar but distinct functions.
Collapse
Affiliation(s)
- Tobias Leege
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
31
|
Xie W, Cheng A, Wang M, Chang H, Zhu D, Luo Q, Jia R, Chen X. Expression and characterization of the UL31 protein from duck enteritis virus. Virol J 2009; 6:19. [PMID: 19208242 PMCID: PMC2661054 DOI: 10.1186/1743-422x-6-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/10/2009] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies indicate that the UL31 protein and its homology play similar roles in nuclear egress of all herpesviruses. However, there is no report on the UL31 gene product of DEV. In this study, we expressed and presented the basic properties of the DEV UL31 product. Results The entire ORF of the UL31 was cloned into pET 32a (+) prokaryotic expression vector. Escherichia coli BL21(DE3) competent cells were transformed with the construct followed by the induction of protein expression by the addition of IPTG. Band corresponding to the predicted sizes (55 kDa) was produced on the SDS-PAGE. Over expressed 6×His-UL31 fusion protein was purified by nickel affinity chromatography. The DEV UL31 gene product has been identified by using a rabbit polyclonal antiserum raised against the purified protein. A protein of approximate 35 kDa that reacted with the antiserum was detected in immunoblots of DEV-infected cellular lysates, suggesting that the 35 kDa protein was the primary translation product of the UL31 gene. RT-PCR analyses revealed that the UL31 gene was transcribed most abundantly during the late phase of replication. Subsequently, Immunofluorescence analysis revealed that the protein was widespread speckled structures in the nuclei of infected cells. Western blotting of purified virion preparations showed that UL31 was a component of intracellular virions but was absent from mature extracellular virions. Finally, an Immunofluorescence assay was established to study the distribution of the UL31 antigen in tissues of artificially DEV infected ducks. The results showed that the UL31 antigen was primarily located in the cells of digestive organs and immunological organs. Conclusion In this work, we present the basic properties of the DEV UL31 product. The results indicate that DEV UL31 shares many similarities with its HSV or PRV homolog UL31 and suggest that functional cross-complementation is possible between members of the Alphaherpesvirus subfamily. Furthermore, in vivo experiments with ducks infected with UL31-defective isolates of DEV will also be of importance in order to assess the possible role of the UL31 protein in viral pathogenesis. These properties of the UL31 protein provide a prerequisite for further functional analysis of this gene.
Collapse
Affiliation(s)
- Wei Xie
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan, Agricultural University, Ya'an, Sichuan, 625014, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 2008; 83:105-16. [PMID: 18971278 DOI: 10.1128/jvi.01032-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies with herpes simplex virus type 1 (HSV-1) have shown that secondary envelopment and virus release are blocked in mutants deleted for the tegument protein gene UL36 or UL37, leading to the accumulation of DNA-containing capsids in the cytoplasm of infected cells. The failure to assemble infectious virions has meant that the roles of these genes in the initial stages of infection could not be investigated. To circumvent this, cells infected at a low multiplicity were fused to form syncytia, thereby allowing capsids released from infected nuclei access to uninfected nuclei without having to cross a plasma membrane. Visualization of virus DNA replication showed that a UL37-minus mutant was capable of transmitting infection to all the nuclei within a syncytium as efficiently as the wild-type HSV-1 strain 17(+) did, whereas infection by UL36-minus mutants failed to spread. Thus, these inner tegument proteins have differing functions, with pUL36 being essential during both the assembly and uptake stages of infection, while pUL37 is needed for the formation of virions but is not required during the initial stages of infection. Analysis of noninfectious enveloped particles (L-particles) further showed that pUL36 and pUL37 are dependent on each other for incorporation into tegument.
Collapse
|
33
|
Coller KE, Smith GA. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus. Traffic 2008; 9:1458-70. [PMID: 18564370 PMCID: PMC3746517 DOI: 10.1111/j.1600-0854.2008.00782.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axonal transport is essential for the successful establishment of neuroinvasive herpesvirus infections in peripheral ganglia (retrograde transport) and the subsequent spread to exposed body surfaces following reactivation from latency (anterograde transport). We examined two components of pseudorabies virus (US3 and UL13), both of which are protein kinases, as potential regulators of axon transport. Following replication of mutant viruses lacking kinase activity, newly assembled capsids displayed an increase in retrograde motion that prevented efficient delivery of capsids to the distal axon. The aberrant increase in retrograde motion was accompanied by loss of a viral membrane marker from the transported capsids, indicating that the viral kinases allow for efficient anterograde transport by stabilizing membrane-capsid interactions during the long transit from the neuron cell body to the distal axon.
Collapse
Affiliation(s)
- Kelly E. Coller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
34
|
Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection. J Virol 2008; 82:5825-34. [PMID: 18400847 PMCID: PMC2395146 DOI: 10.1128/jvi.00303-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene cluster composed of varicella-zoster virus (VZV) open reading frame 9 (ORF9) to ORF12 encodes four putative tegument proteins and is highly conserved in most alphaherpesviruses. In these experiments, the genes within this cluster were deleted from the VZV parent Oka (POKA) individually or in combination, and the consequences for VZV replication were evaluated with cultured cells in vitro and with human skin xenografts in SCID mice in vivo. As has been reported for ORF10, ORF11 and ORF12 were dispensable for VZV replication in melanoma and human embryonic fibroblast cells. In contrast, deletion of ORF9 was incompatible with the recovery of infectious virus. ORF9 localized to the virion tegument and formed complexes with glycoprotein E, which is an essential protein, in VZV-infected cells. Recombinants lacking ORF10 and ORF11 (POKADelta10/11), ORF11 and ORF12 (POKADelta11/12), or ORF10, ORF11 and ORF12 (POKADelta10/11/12) were viable in cultured cells. Their growth kinetics did not differ from those of POKA, and nucleocapsid formation and virion assembly were not disrupted. In addition, these deletion mutants showed no differences compared to POKA in infectivity levels for primary human tonsil T cells. Deletion of ORF12 had no effect on skin infection, whereas replication of POKADelta11, POKADelta10/11, and POKADelta11/12 was severely reduced, and no virus was recovered from skin xenografts inoculated with POKADelta10/11/12. These results indicate that with the exception of ORF9, the individual genes within the ORF9-to-ORF12 gene cluster are dispensable and can be deleted simultaneously without any apparent effect on VZV replication in vitro but that the ORF10-to-ORF12 cluster is essential for VZV virulence in skin in vivo.
Collapse
|
35
|
Denesvre C, Blondeau C, Lemesle M, Le Vern Y, Vautherot D, Roingeard P, Vautherot JF. Morphogenesis of a highly replicative EGFPVP22 recombinant Marek's disease virus in cell culture. J Virol 2007; 81:12348-59. [PMID: 17855520 PMCID: PMC2168996 DOI: 10.1128/jvi.01177-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus for which infection is strictly cell associated in permissive cell culture systems. In contrast to most other alphaherpesviruses, no comprehensive ultrastructural study has been published to date describing the different stages of MDV morphogenesis. To circumvent problems linked to nonsynchronized infection and low infectivity titers, we generated a recombinant MDV expressing an enhanced green fluorescent protein fused to VP22, a major tegument protein that is not implicated in virion morphogenesis. Growth of this recombinant virus in cell culture was decreased threefold compared to that of the parental Bac20 virus, but this mutant was still highly replicative. The recombinant virus allowed us to select infected cells by cell-sorting cytometry at late stages of infection for subsequent transmission electron microscopy analysis. Under these conditions, all of the stages of assembly and virion morphogenesis could be observed except extracellular enveloped virions, even at the cell surface. We observed 10-fold fewer naked cytoplasmic capsids than nuclear capsids, and intracellular enveloped virions were very rare. The partial envelopment of capsids in the cytoplasm supports the hypothesis of the acquisition of the final envelope in this cellular compartment. We demonstrate for the first time that, compared to other alphaherpesviruses, MDV seems deficient in three crucial steps of viral morphogenesis, i.e., release from the nucleus, secondary envelopment, and the exocytosis process. The discrepancy between the efficiency with which this MDV mutant spreads in cell culture and the relatively inefficient process of its envelopment and virion release raises the question of the MDV cell-to-cell spreading mechanism.
Collapse
Affiliation(s)
- C Denesvre
- Laboratoire Virologie Moléculaire, INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Coller KE, Lee JIH, Ueda A, Smith GA. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 2007; 81:11790-7. [PMID: 17715218 PMCID: PMC2168758 DOI: 10.1128/jvi.01113-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How alphaherpesvirus capsids acquire tegument proteins remains a key question in viral assembly. Using pseudorabies virus (PRV), we have previously shown that the 62 carboxy-terminal amino acids of the VP1/2 large tegument protein are essential for viral propagation and when transiently expressed as a fusion to green fluorescent protein relocalize to nuclear capsid assemblons following viral infection. Here, we show that localization of the VP1/2 capsid-binding domain (VP1/2cbd) into assemblons is conserved in herpes simplex virus type 1 (HSV-1) and that this recruitment is specifically on capsids. Using a mutant virus screen, we find that the protein product of the UL25 gene is essential for VP1/2cbd association with capsids. An interaction between UL25 and VP1/2 was corroborated by coimmunoprecipitation from cells transiently expressing either HSV-1 or PRV proteins. Taken together, these findings suggest that the essential function of the VP1/2 carboxy terminus is to anchor the VP1/2 tegument protein to capsids. Furthermore, UL25 encodes a multifunctional capsid protein involved in not only encapsidation, as previously described, but also tegumentation.
Collapse
Affiliation(s)
- Kelly Elizabeth Coller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
Klupp BG, Granzow H, Fuchs W, Keil GM, Finke S, Mettenleiter TC. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci U S A 2007; 104:7241-6. [PMID: 17426144 PMCID: PMC1855391 DOI: 10.1073/pnas.0701757104] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment.
Collapse
Affiliation(s)
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
38
|
Luxton GWG, Lee JIH, Haverlock-Moyns S, Schober JM, Smith GA. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 2007; 80:201-9. [PMID: 16352544 PMCID: PMC1317523 DOI: 10.1128/jvi.80.1.201-209.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transport of capsids in cells is critical to alphaherpesvirus infection and pathogenesis; however, viral factors required for transport have yet to be identified. Here we provide a detailed examination of capsid dynamics during the egress phase of infection in Vero cells infected with pseudorabies virus. We demonstrate that the VP1/2 tegument protein is required for processive microtubule-based transport of capsids in the cytoplasm. A second tegument protein that binds to VP1/2, UL37, was necessary for wild-type transport but was not essential for this process. Both proteins were also required for efficient nuclear egress of capsids to the cytoplasm.
Collapse
Affiliation(s)
- G W Gant Luxton
- Department of Microbiology-Immunology, Ward Bldg., Rm. 10-105, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
39
|
Michael K, Klupp BG, Karger A, Mettenleiter TC. Efficient incorporation of tegument proteins pUL46, pUL49, and pUS3 into pseudorabies virus particles depends on the presence of pUL21. J Virol 2006; 81:1048-51. [PMID: 17079290 PMCID: PMC1797440 DOI: 10.1128/jvi.01801-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mature virion of the alphaherpesvirus pseudorabies virus (PrV) contains a minimum of 31 structural proteins which are recruited into the virus particle by a network of protein-protein interactions which is only incompletely understood. We show here that deletion of the tegument protein pUL21 resulted in a drastic decrease in the incorporation of the pUL46, pUL49, and pUS3 tegument components into mature virions. Moreover, the attenuated PrV strain Bartha (PrV-Ba), which, among other defects, carries mutations in pUL21, also fails to package pUL46, pUL49, and pUS3 efficiently. By the reconstitution of wild-type pUL21 expression to PrV-Ba and the transfer of mutated PrV-Ba pUL21 into wild-type PrV, we demonstrate that this phenotype is due to the mutated pUL21.
Collapse
Affiliation(s)
- Kathrin Michael
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
40
|
Huang X, Zhang Q. Improvement and observation of immunoelectron microscopic method for the localization of frog Rana grylio virus (RGV) in infected fish cells. Micron 2006; 38:599-606. [PMID: 17095234 DOI: 10.1016/j.micron.2006.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022]
Abstract
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells.
Collapse
Affiliation(s)
- Xiaohong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | |
Collapse
|
41
|
Zhu FX, Li X, Zhou F, Gao SJ, Yuan Y. Functional characterization of Kaposi's sarcoma-associated herpesvirus ORF45 by bacterial artificial chromosome-based mutagenesis. J Virol 2006; 80:12187-96. [PMID: 17035322 PMCID: PMC1676278 DOI: 10.1128/jvi.01275-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an immediate-early protein. This protein is also present in virions as a tegument protein. ORF45 protein interacts with interferon regulatory factor 7 (IRF-7) and inhibits virus-induced type I interferon production by blocking activation of IRF-7. To define further the function of ORF45 and the mechanism underlying its action, we constructed an ORF45-null recombinant virus genome (BAC-stop45) by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BAC-stop45 genomes were generated. When monolayers of 293T BAC36 and 293T BAC-stop45 cells were induced with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, no significant difference was found between them in overall viral gene expression and lytic DNA replication, but induced 293T BAC-stop45 cells released 10-fold fewer virions to the medium than did 293T BAC36 cells. When ORF45-null virus was used to infect cells, lower infectivity was observed than for wild-type BAC36. These results suggest that KSHV ORF45 plays roles in both early and late stages of viral infection, probably in viral ingress and egress.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Olsen LM, Ch'ng TH, Card JP, Enquist LW. Role of pseudorabies virus Us3 protein kinase during neuronal infection. J Virol 2006; 80:6387-98. [PMID: 16775327 PMCID: PMC1488934 DOI: 10.1128/jvi.00352-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pseudorabies virus (PRV) Us3 gene is conserved among the alphaherpesviruses and encodes a serine/threonine protein kinase that is not required for growth in standard cell lines. In this report, we used a compartmented culture system to investigate the role of PRV Us3 in viral replication in neurons, in spread from neurons to PK15 cells, and in axon-mediated spread of infection. We also examined the role of Us3 in neuroinvasion and virulence in rodents. Us3 null mutants produce about 10-fold less infectious virus from neurons than wild-type virus and have no discernible phenotypes for axonal targeting of viral components in cultured peripheral nervous system neurons. After eye infection in rodents, Us3 null mutants were slightly attenuated for virulence, with a delayed onset of symptoms compared to the wild type or a Us3 null revertant. While initially delayed, the symptoms increased in severity until they approximated those of the wild-type virus. Us3 null mutants were neuroinvasive, spreading in both efferent and afferent circuits innervating eye tissues.
Collapse
Affiliation(s)
- L M Olsen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
43
|
Naldinho-Souto R, Browne H, Minson T. Herpes simplex virus tegument protein VP16 is a component of primary enveloped virions. J Virol 2006; 80:2582-4. [PMID: 16474165 PMCID: PMC1395364 DOI: 10.1128/jvi.80.5.2582-2584.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 10/10/2005] [Indexed: 01/17/2023] Open
Abstract
Immunogold electron microscopy was used to determine whether the tegument proteins VP13/14, VP22, and VP16 of herpes simplex virus type 1 (HSV1) are components of primary enveloped virions. Whereas VP13/14 and VP22 were not detected in virus particles in the perinuclear space and were present in only mature extracellular virions, VP16 was acquired prior to primary envelopment of the virus at the inner nuclear membrane. This finding highlights potential similarities and differences between HSV1 and the related alphaherpesvirus, pseudorabies virus, in which the homologues of all three of these tegument proteins are not incorporated into the virion until secondary envelopment.
Collapse
|
44
|
Potel C, Elliott G. Phosphorylation of the herpes simplex virus tegument protein VP22 has no effect on incorporation of VP22 into the virus but is involved in optimal expression and virion packaging of ICP0. J Virol 2006; 79:14057-68. [PMID: 16254340 PMCID: PMC1280190 DOI: 10.1128/jvi.79.22.14057-14068.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus VP22 is a major tegument protein of unknown function. Very recently, we reported that the predominant effect of deleting the VP22 gene was on the expression, localization, and virion incorporation of ICP0. In addition, the Delta22 virus replicated poorly in epithelial MDBK cells. We have also previously shown that VP22 interacts with the tegument protein VP16 and the cellular microtubule network. While the majority of VP22 in infected cells is highly phosphorylated, the nonphosphorylated form of VP22 is the predominant species in the virion, suggesting a differential requirement for phosphorylation through virus replication. Hence, to study the significance of VP22 phosphorylation, we have now constructed two recombinant viruses expressing green fluorescent protein-VP22 (G22) in which the previously identified serine phosphorylation sites have been mutated either to alanine to abolish the phosphorylation status of VP22 (G22P-) or to glutamic acid to mimic permanent phosphorylation (G22P+). Localization studies indicated that the G22P- protein associated tightly with microtubules in some infected cells, suggesting that VP22 phosphorylation may control its interaction with the microtubule network. By contrast, VP22 phosphorylation had no effect on its ability to interact with VP16 and, importantly, had no effect on the relative packaging of VP22. Intriguingly, virion packaging of ICP0 was reduced in the G22P+ virus while ICP0 expression was reduced in the G22P- virus, suggesting that these two ICP0 defects, previously observed in the Delta22 virus, were attributable to different forms of VP22. Furthermore, the Delta22 virus replication defect in MDBK cells correlated with the expression of constitutively charged VP22 in the G22P+ virus. Taken together, these results suggest an important role for VP22 phosphorylation in its relationship with ICP0.
Collapse
Affiliation(s)
- Corinne Potel
- Virus Assembly Group, Marie Curie Research Institute, Oxted, Surrey, United Kingdom
| | | |
Collapse
|
45
|
Bjerke SL, Roller RJ. Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 2006; 347:261-76. [PMID: 16427676 PMCID: PMC2993110 DOI: 10.1016/j.virol.2005.11.053] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/17/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022]
Abstract
Cells infected with wild type HSV-1 showed significant lamin A/C and lamin B rearrangement, while UL34-null virus-infected cells exhibited few changes in lamin localization, indicating that UL34 is necessary for lamin disruption. During HSV infection, US3 limited the development of disruptions in the lamina, since cells infected with a US3-null virus developed large perforations in the lamin layer. US3 regulation of lamin disruption does not correlate with the induction of apoptosis. Expression of either UL34 or US3 proteins alone disrupted lamin A/C and lamin B localization. Expression of UL34 and US3 together had little effect on lamin A/C localization, suggesting a regulatory interaction between the two proteins. The data presented in this paper argue for crucial roles for both UL34 and US3 in regulating the state of the nuclear lamina during viral infection.
Collapse
|
46
|
Mettenleiter TC. Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 2005; 113:163-9. [PMID: 16330166 DOI: 10.1016/j.vetmic.2005.11.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herpes virions are complex particles that consist of more than 30 different virally encoded proteins. The molecular basis of how this complicated structure is assembled is only recently beginning to emerge. After replication in the host cell nucleus viral DNA is incorporated into preformed capsids which leave the nucleus by budding at the inner nuclear membrane resulting in the formation of primary enveloped virions in the perinuclear space. The primary envelope then fuses with the outer leaflet of the nuclear membrane, thereby releasing nucleocapsids into the cytoplasm. Final envelopment including the acquisition of more than 15 tegument and more than 10 envelope (glyco)proteins occurs by budding into Golgi-derived vesicles. Mature virions are released after fusion of the vesicle membrane with the plasma membrane of the cell. Thus, herpesvirus morphogenesis requires a sequence of envelopment--de-envelopment--re-envelopment processes which are distinct not only in the subcellular compartments in which they occur but also in the viral proteins involved. This review summarizes recent advances in our understanding of the complex protein-protein interactions involved in herpesvirus assembly and egress.
Collapse
|
47
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
48
|
Klupp BG, Granzow H, Karger A, Mettenleiter TC. Identification, subviral localization, and functional characterization of the pseudorabies virus UL17 protein. J Virol 2005; 79:13442-53. [PMID: 16227265 PMCID: PMC1262560 DOI: 10.1128/jvi.79.21.13442-13453.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologs of the UL17 gene of the alphaherpesvirus herpes simplex virus 1 (HSV-1) are conserved in all three subfamilies of herpesviruses. However, only the HSV-1 protein has so far been characterized in any detail. To analyze UL17 of pseudorabies virus (PrV) the complete 597-amino-acid protein was expressed in Escherichia coli and used for rabbit immunization. The antiserum recognized a 64-kDa protein in PrV-infected cell lysates and purified virions, identifying PrV UL17 as a structural virion component. In indirect immunofluorescence analyses of PrV-infected cells the protein was predominantly found in the nucleus. In electron microscopic studies after immunogold labeling of negatively stained purified virion preparations, UL17-specific label was detected on single, mostly damaged capsids, whereas complete virions and the majority of capsids were free of label. In ultrathin sections of infected cells, label was primarily found dispersed around scaffold-containing B-capsids, whereas on DNA-filled C-capsids it was located in the center. Empty intranuclear A-capsids were free of label, as were extracellular capsid-less L-particles. Functional characterization of PrV-DeltaUL17F, a deletion mutant lacking codons 23 to 444, demonstrated that cleavage of viral DNA into unit-length genomes was inhibited in the absence of UL17. In electron microscopic analyses of PrV-DeltaUL17F-infected RK13 cells, DNA-containing capsids were not detected, while numerous capsidless L-particles were observed. In summary, our data indicate that the PrV UL17 protein is an internal nucleocapsid protein necessary for DNA cleavage and packaging but suggest that the protein is not a prominent part of the tegument.
Collapse
Affiliation(s)
- Barbara G Klupp
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
49
|
Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P. Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 2005; 79:13047-59. [PMID: 16189007 PMCID: PMC1235821 DOI: 10.1128/jvi.79.20.13047-13059.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.
Collapse
Affiliation(s)
- Helene Leuzinger
- Electron Microscopy, Institutes of Veterinary Anatomy and of Virology, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Favoreel HW, Van Minnebruggen G, Adriaensen D, Nauwynck HJ. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci U S A 2005; 102:8990-5. [PMID: 15951429 PMCID: PMC1157013 DOI: 10.1073/pnas.0409099102] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The US3 protein is a viral kinase that is conserved among the Alphaherpesvirinae. Here, we show that US3 of the swine alphaherpesvirus pseudorabies virus causes dramatic alterations in the cytoskeleton, resulting in the formation of long actin- and microtubule-containing cell projections in infected and transfected cells. Analysis with a GFP-labeled virus showed that multiple virus particles move inside the projections toward the tip. GFP-labeled virus could also be found in the cytoplasm of neighboring cells that were in contact with the projections. In addition, projection formation could be inhibited by using the actin-stabilizing drug jasplakinolide and could be induced by using the Rho kinase inhibitor Y27632. Analyzing the effect of these drugs on intercellular virus spread indicated that the observed US3-induced alterations in the host cytoskeleton are associated with enhanced intercellular virus spread, thereby suggesting a previously undescribed aspect of alphaherpesvirus spread.
Collapse
Affiliation(s)
- Herman W Favoreel
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|