1
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
2
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
3
|
Tranulis MA, Gavier-Widén D, Våge J, Nöremark M, Korpenfelt SL, Hautaniemi M, Pirisinu L, Nonno R, Benestad SL. Chronic wasting disease in Europe: new strains on the horizon. Acta Vet Scand 2021; 63:48. [PMID: 34823556 PMCID: PMC8613970 DOI: 10.1186/s13028-021-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with known natural occurrence in humans and a few other mammalian species. The diseases are experimentally transmissible, and the agent is derived from the host-encoded cellular prion protein (PrPC), which is misfolded into a pathogenic conformer, designated PrPSc (scrapie). Aggregates of PrPSc molecules, constitute proteinaceous infectious particles, known as prions. Classical scrapie in sheep and goats and chronic wasting disease (CWD) in cervids are known to be infectious under natural conditions. In CWD, infected animals can shed prions via bodily excretions, allowing direct host-to-host transmission or indirectly via prion-contaminated environments. The robustness of prions means that transmission via the latter route can be highly successful and has meant that limiting the spread of CWD has proven difficult. In 2016, CWD was diagnosed for the first time in Europe, in reindeer (Rangifer tarandus) and European moose (Alces alces). Both were diagnosed in Norway, and, subsequently, more cases were detected in a semi-isolated wild reindeer population in the Nordfjella area, in which the first case was identified. This population was culled, and all reindeer (approximately 2400) were tested for CWD; 18 positive animals, in addition to the first diagnosed case, were found. After two years and around 25,900 negative tests from reindeer (about 6500 from wild and 19,400 from semi-domesticated) in Norway, a new case was diagnosed in a wild reindeer buck on Hardangervidda, south of the Nordfjella area, in 2020. Further cases of CWD were also identified in moose, with a total of eight in Norway, four in Sweden, and two cases in Finland. The mean age of these cases is 14.7 years, and the pathological features are different from North American CWD and from the Norwegian reindeer cases, resembling atypical prion diseases such as Nor98/atypical scrapie and H- and L-forms of BSE. In this review, these moose cases are referred to as atypical CWD. In addition, two cases were diagnosed in red deer (Cervus elaphus) in Norway. The emergence of CWD in Europe is a threat to European cervid populations, and, potentially, a food-safety challenge, calling for a swift, evidence-based response. Here, we review data on surveillance, epidemiology, and disease characteristics, including prion strain features of the newly identified European CWD agents.
Collapse
|
4
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
5
|
Cassmann ED, Moore SJ, Smith JD, Greenlee JJ. Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy Agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues. Front Vet Sci 2019; 6:430. [PMID: 31850385 PMCID: PMC6895770 DOI: 10.3389/fvets.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Transmissible mink encephalopathy (TME) is a food borne prion disease. Epidemiological and experimental evidence suggests similarities between the agents of TME and L-BSE. This experiment demonstrates the susceptibility of four different genotypes of sheep to the bovine adapted TME agent by intracranial inoculation. The four genotypes of sheep used in this experiment had polymorphisms corresponding to codons 136, 154, and 171 of the prion gene: V136R154Q171/VRQ, VRQ/ARQ, ARQ/ARQ, and ARQ/ARR. All intracranially inoculated sheep without comorbidities (15/15) developed clinical signs and had detectable PrPSc by immunohistochemistry, western blot, and enzyme immunoassay (EIA). The mean incubation periods in sheep with bovine adapted TME correlated with their relative genotypic susceptibility. There was peripheral distribution of PrPSc in the trigeminal ganglion and neuromuscular spindles; however, unlike classical scrapie and C-BSE in sheep, sheep inoculated with the bovine TME agent did not have immunohistochemically detectable PrPSc in the lymphoid tissue. To rule out the presence of infectivity, the lymph nodes of two sheep genotypes, VRQ/VRQ, and ARQ/ARQ, were bioassayed in transgenic mice expressing ovine prion protein. Mice intracranially inoculated with retropharyngeal lymph node from a VRQ/VRQ sheep were EIA positive (3/17) indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays. Western blot analysis demonstrated similarities in the migration patterns between bovine TME in sheep, the bovine adapted TME inoculum, and L-BSE. Overall, these results demonstrate that sheep are susceptible to the bovine adapted TME agent, and the tissue distribution of PrPSc in sheep with bovine TME is distinct from classical scrapie.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| | - Jodi D Smith
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
6
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Yokoyama T, Okada H. Interspecies transmission to bovinized transgenic mice uncovers new features of a CH1641-like scrapie isolate. Vet Res 2018; 49:116. [PMID: 30486902 PMCID: PMC6262972 DOI: 10.1186/s13567-018-0611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
In animal prion diseases, including bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease in cervids, and scrapie in sheep and goats, a disease-associated isoform of prion protein (PrPd) accumulates in the brains of affected animals. Although the CH1641 scrapie isolate was experimentally established in the UK, a few natural CH1641-like scrapie cases have been reported in France and the UK. The molecular mass of the unglycosylated protease-resistant core of PrPd (PrPres) is known to be similar between CH1641-like scrapie and experimental BSE in sheep. We previously established an experimental CH1641-like scrapie isolate (Sh294) from a natural classical scrapie case. Here, we demonstrated that the Sh294 isolate was independent of both classical and atypical BSEs by cross-species transmission to bovine PrP overexpressing (TgBoPrP) mice and wild-type mice. Interestingly, we found that the Sh294 isolate altered its host range by the transmission to TgBoPrP mice, and we succeeded in the first stable reproduction of CH1641-like scrapie specific PrPres banding patterns with the ~12-kDa small C-terminal fragment in wild-type mice. This study provides new insight into the relationship between CH1641-like scrapie isolates and BSEs. In addition, interspecies transmission models such as we have demonstrated here could be a great help to investigate the origin and host range of animal prions.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, NIAH, NARO, Kodaira, Tokyo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Methods for Differentiating Prion Types in Food-Producing Animals. BIOLOGY 2015; 4:785-813. [PMID: 26580664 PMCID: PMC4690018 DOI: 10.3390/biology4040785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/05/2022]
Abstract
Prions are an enigma amongst infectious disease agents as they lack a genome yet confer specific pathologies thought to be dictated mainly, if not solely, by the conformation of the disease form of the prion protein (PrPSc). Prion diseases affect humans and animals, the latter including the food-producing ruminant species cattle, sheep, goats and deer. Importantly, it has been shown that the disease agent of bovine spongiform encephalopathy (BSE) is zoonotic, causing variant Creutzfeldt Jakob disease (vCJD) in humans. Current diagnostic tests can distinguish different prion types and in food-producing animals these focus on the differentiation of BSE from the non-zoonotic agents. Whilst BSE cases are now rare, atypical forms of both scrapie and BSE have been reported, as well as two types of chronic wasting disease (CWD) in cervids. Typing of animal prion isolates remains an important aspect of prion diagnosis and is now becoming more focused on identifying the range of prion types that are present in food-producing animals and also developing tests that can screen for emerging, novel prion diseases. Here, we review prion typing methodologies in light of current and emerging prion types in food-producing animals.
Collapse
|
8
|
Langeveld JPM, Jacobs JG, Erkens JHF, Baron T, Andréoletti O, Yokoyama T, van Keulen LJM, van Zijderveld FG, Davidse A, Hope J, Tang Y, Bossers A. Sheep prions with molecular properties intermediate between classical scrapie, BSE and CH1641-scrapie. Prion 2015; 8:296-305. [PMID: 25522672 PMCID: PMC4601226 DOI: 10.4161/19336896.2014.983396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641–a rare scrapie variant–could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑associated form of prion protein (PrPres) represents a powerful tool for quick discrimination purposes. In this study we examined 7 deviant ovine field cases of scrapie for some typical molecular aspects of PrPres found in CH1641‑scrapie, classical scrapie and BSE. One case was most close to scrapie with respect to molecular mass of its non-glycosylated fraction and N-terminally located 12B2‑epitope content. Two cases were unlike classical scrapie but too weak to differentiate between BSE or CH1641. The other 4 cases appeared intermediate between scrapie and CH1641 with a reduced molecular mass and 12B2‑epitope content, together with the characteristic presence of a second PrPres population. The existence of these 2 PrPres populations was further confirmed through deglycosylation by PNGaseF. The findings indicate that discriminatory diagnosis between classical scrapie, CH1641 and BSE can remain inconclusive with current biochemical methods. Whether such intermediate cases represent mixtures of TSE strains should be further investigated e.g. in bioassays with rodent lines that are varying in their susceptibility or other techniques suitable for strain typing.
Collapse
Key Words
- AVG, average
- BSE, bovine spongiform encephalopathy
- CH1641
- IHC, immunohistochemistry
- PK, proteinase K
- PrPC ,prion protein in cellular form
- PrPSc, prion protein in TSE associated form
- PrPres, proteinase K resistant fragment of PrPSc
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TE, tissue equivalents
- TSE, transmissible spongiform encephalopathy
- VC, variation coefficient.
- Western blot
- ic., intracerebrally
- ip., intraperitoneally
- prion
- sheep
- triplex-WB, triplex Western blotting method
- typing
Collapse
Affiliation(s)
- Jan P M Langeveld
- a Department of Infection Biology ; Central Veterinary Institute part of Wageningen UR ; Lelystad , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Spraker TR, Gidlewski T, Powers JG, Nichols T, Balachandran A, Cummings B, Wild MA, VerCauteren K, O'Rourke KI. Progressive accumulation of the abnormal conformer of the prion protein and spongiform encephalopathy in the obex of nonsymptomatic and symptomatic Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J Vet Diagn Invest 2015; 27:431-41. [PMID: 26185123 DOI: 10.1177/1040638715593368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of our study was to describe the progressive accumulation of the abnormal conformer of the prion protein (PrP(CWD)) and spongiform degeneration in a single section of brain stem in Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease (CWD). A section of obex from 85 CWD-positive elk was scored using the presence and abundance of PrP(CWD) immunoreactivity and spongiform degeneration in 10 nuclear regions and the presence and abundance of PrP(CWD) in 10 axonal tracts, the subependymal area of the fourth ventricle, and the thin subpial astrocytic layer (glial limitans). Data was placed in a formula to generate an overall obex score. Data suggests that PrP(CWD) immunoreactivity and spongiform degeneration has a unique and relatively consistent pattern of progression throughout a section of obex. This scoring technique utilizing a single section of obex may prove useful in future work for estimating the presence and abundance of PrP(CWD) in peripheral tissues and the nervous system in elk with CWD.
Collapse
Affiliation(s)
- Terry R Spraker
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Thomas Gidlewski
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Jenny G Powers
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Tracy Nichols
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Aru Balachandran
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Bruce Cummings
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Margaret A Wild
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Kurt VerCauteren
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Katherine I O'Rourke
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| |
Collapse
|
10
|
Does the Presence of Scrapie Affect the Ability of Current Statutory Discriminatory Tests To Detect the Presence of Bovine Spongiform Encephalopathy? J Clin Microbiol 2015; 53:2593-604. [PMID: 26041899 DOI: 10.1128/jcm.00508-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Current European Commission (EC) surveillance regulations require discriminatory testing of all transmissible spongiform encephalopathy (TSE)-positive small ruminant (SR) samples in order to classify them as bovine spongiform encephalopathy (BSE) or non-BSE. This requires a range of tests, including characterization by bioassay in mouse models. Since 2005, naturally occurring BSE has been identified in two goats. It has also been demonstrated that more than one distinct TSE strain can coinfect a single animal in natural field situations. This study assesses the ability of the statutory methods as listed in the regulation to identify BSE in a blinded series of brain samples, in which ovine BSE and distinct isolates of scrapie are mixed at various ratios ranging from 99% to 1%. Additionally, these current statutory tests were compared with a new in vitro discriminatory method, which uses serial protein misfolding cyclic amplification (sPMCA). Western blotting consistently detected 50% BSE within a mixture, but at higher dilutions it had variable success. The enzyme-linked immunosorbent assay (ELISA) method consistently detected BSE only when it was present as 99% of the mixture, with variable success at higher dilutions. Bioassay and sPMCA reported BSE in all samples where it was present, down to 1%. sPMCA also consistently detected the presence of BSE in mixtures at 0.1%. While bioassay is the only validated method that allows comprehensive phenotypic characterization of an unknown TSE isolate, the sPMCA assay appears to offer a fast and cost-effective alternative for the screening of unknown isolates when the purpose of the investigation was solely to determine the presence or absence of BSE.
Collapse
|
11
|
McCutcheon S, Langeveld JPM, Tan BC, Gill AC, de Wolf C, Martin S, Gonzalez L, Alibhai J, Blanco ARA, Campbell L, Hunter N, Houston EF. Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity. PLoS One 2014; 9:e91143. [PMID: 24608105 PMCID: PMC3946747 DOI: 10.1371/journal.pone.0091143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/07/2014] [Indexed: 01/09/2023] Open
Abstract
This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94-233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays.
Collapse
Affiliation(s)
- Sandra McCutcheon
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | | | - Boon Chin Tan
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Andrew C. Gill
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Christopher de Wolf
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Stuart Martin
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Edinburgh, Scotland, United Kingdom
| | - Lorenzo Gonzalez
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Edinburgh, Scotland, United Kingdom
| | - James Alibhai
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - A. Richard Alejo Blanco
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Lauren Campbell
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Nora Hunter
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - E. Fiona Houston
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
12
|
Taema MM, Maddison BC, Thorne L, Bishop K, Owen J, Hunter N, Baker CA, Terry LA, Gough KC. Differentiating ovine BSE from CH1641 scrapie by serial protein misfolding cyclic amplification. Mol Biotechnol 2012; 51:233-9. [PMID: 21987099 DOI: 10.1007/s12033-011-9460-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whilst ovine BSE displays distinct pathological characteristics to ovine CH1641-like scrapie upon passage in rodents, they have very similar molecular phenotypes. As such, the in vitro differentiation of these strains in routine surveillance programmes presents a significant diagnostic challenge. In this study, using serial protein-misfolding cyclic amplification (sPMCA), ovine BSE was readily amplified in vitro in brain substrates from sheep with V₁₃₆R₁₅₄Q₁₇₁/V₁₃₆R₁₅₄Q₁₇₁ or AHQ/AHQ PRNP genotypes. In contrast, the CH1641 strain was refractory to such amplification. This method allowed for complete and unequivocal differentiation of experimental BSE from CH1641 prion strains within an ovine host.
Collapse
Affiliation(s)
- Maged M Taema
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Migliore S, Esposito E, Pirisinu L, Marcon S, Di Bari M, D'Agostino C, Chiappini B, Conte M, Sezzi E, De Grossi L, Agrimi U, Vaccari G, Nonno R. Effect of PrP genotype and route of inoculation on the ability of discriminatory Western blot to distinguish scrapie from sheep bovine spongiform encephalopathy. J Gen Virol 2011; 93:450-455. [PMID: 21994325 DOI: 10.1099/vir.0.035469-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Procedures for discriminating scrapie from bovine spongiform encephalopathy (BSE) in sheep are relevant to ascertain whether BSE has entered the sheep population. This study was aimed at investigating whether the suitability of an official EU discriminative method is affected by the sheep PrP genotype and route of infection.
Collapse
Affiliation(s)
- Sergio Migliore
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Elena Esposito
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Michele Di Bari
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Michela Conte
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Erminia Sezzi
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Italy
| | - Luigi De Grossi
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Italy
| | - Umberto Agrimi
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Fragkiadaki EG, Vaccari G, Ekateriniadou LV, Agrimi U, Giadinis ND, Chiappini B, Esposito E, Conte M, Nonno R. PRNP genetic variability and molecular typing of natural goat scrapie isolates in a high number of infected flocks. Vet Res 2011; 42:104. [PMID: 21961834 PMCID: PMC3190342 DOI: 10.1186/1297-9716-42-104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022] Open
Abstract
One hundred and four scrapie positive and 77 negative goats from 34 Greek mixed flocks were analysed by prion protein gene sequencing and 17 caprine scrapie isolates from 11 flocks were submitted to molecular isolate typing. For the first time, the protective S146 variant was reported in Greece, while the protective K222 variant was detected in negative but also in five scrapie positive goats from heavily infected flocks. By immunoblotting six isolates, including two goat flockmates carrying the K222 variant, showed molecular features slightly different from all other Greek and Italian isolates co-analysed, possibly suggesting the presence of different scrapie strains in Greece.
Collapse
Affiliation(s)
- Eirini G Fragkiadaki
- National Agricultural Research Foundation, Veterinary Research Institute, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pirisinu L, Migliore S, Di Bari MA, Esposito E, Baron T, D'Agostino C, De Grossi L, Vaccari G, Agrimi U, Nonno R. Molecular discrimination of sheep bovine spongiform encephalopathy from scrapie. Emerg Infect Dis 2011; 17:695-8. [PMID: 21470463 PMCID: PMC3377410 DOI: 10.3201/eid1704.101215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sheep CH1641-like transmissible spongiform encephalopathy isolates have shown molecular similarities to bovine spongiform encephalopathy (BSE) isolates. We report that the prion protein PrPSc from sheep BSE is extremely resistant to denaturation. This feature, combined with the N-terminal PrPSc cleavage, allowed differentiation of classical scrapie, including CH1641-like, from natural goat BSE and experimental sheep BSE.
Collapse
|
16
|
Bencsik A, Baron T. Histopathological studies of "CH1641-like" scrapie sources versus classical scrapie and BSE transmitted to ovine transgenic mice (TgOvPrP4). PLoS One 2011; 6:e22105. [PMID: 21765939 PMCID: PMC3135617 DOI: 10.1371/journal.pone.0022105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/17/2011] [Indexed: 11/29/2022] Open
Abstract
The possibility of the agent causing bovine spongiform encephalopathy (BSE) infecting small ruminants is of serious concern for human health. Among scrapie cases, the CH1641 source in particular appears to have certain biochemical properties similar to the BSE strain. In France, several natural scrapie cases were identified as “CH1641-like” natural scrapie isolates in sheep and goats. The Tg(OvPrP4) mouse line expressing the ovine prion protein is a sensitive model for studying and identifying strains of agents responsible for scrapie and BSE. This model is also very useful when studying specific scrapie source CH1641, known to be not transmissible to wild-type mice despite the similarity of some of its biochemical properties to those of the BSE strain. As it is important to be able to fully distinguish CH1641 from BSE, we herein report the histopathological data from CH1641 scrapie transmission experiments compared to specific cases of “CH1641-like” natural scrapie isolates in sheep, murine scrapie strains and BSE. In addition to the conventional vacuolar lesion profile approach and PrPd brain mappings, an innovative differential PET-blot analysis was introduced to classify the different strains of agent and revealed the first direct concordance between ways of grouping strains on the basis of PrPd biochemical characteristics.
Collapse
Affiliation(s)
- Anna Bencsik
- Unité Maladies Neurodégénératives, French Agency for Food, Environmental and Occupational Health Safety, ANSES, Lyon, France.
| | | |
Collapse
|
17
|
Vulin J, Biacabe AG, Cazeau G, Calavas D, Baron T. Molecular typing of protease-resistant prion protein in transmissible spongiform encephalopathies of small ruminants, France, 2002-2009. Emerg Infect Dis 2011; 17:55-63. [PMID: 21192855 PMCID: PMC3204636 DOI: 10.3201/eid1701.100891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The agent that causes bovine spongiform encephalopathy (BSE) may be infecting small ruminants, which could have serious implications for human health. To distinguish BSE from scrapie and to examine the molecular characteristics of the protease-resistant prion protein (PrPres), we used a specifically designed Western blot method to test isolates from 648 sheep and 53 goats. During 2002–2009, classical non-Nor98 transmissible spongiform encephalopathy had been confirmed among ≈1.7 million small ruminants in France. Five sheep and 2 goats that showed a PrPres pattern consistent with BSE, or with the CH1641 experimental scrapie source, were identified. Later, bioassays confirmed infection by the BSE agent in 1 of the 2 goats. Western blot testing of the 6 other isolates showed an additional C-terminally cleaved PrPres product, with an unglycosylated band at ≈14 kDa, similar to that found in the CH1641 experimental scrapie isolate and different from the BSE isolate.
Collapse
Affiliation(s)
- Johann Vulin
- Agence Nationale de Sécurité Sanitaire, Lyon, France
| | | | | | | | | |
Collapse
|
18
|
Seuberlich T, Heim D, Zurbriggen A. Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control. J Vet Diagn Invest 2011; 22:823-42. [PMID: 21088166 DOI: 10.1177/104063871002200601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since 1987, when bovine spongiform encephalopathy (BSE) emerged as a novel disease in cattle, enormous efforts were undertaken to monitor and control the disease in ruminants worldwide. The driving force was its high economic impact, which resulted from trade restrictions and the loss of consumer confidence in beef products, the latter because BSE turned out to be a fatal zoonosis, causing variant Creutzfeldt-Jakob disease in human beings. The ban on meat and bone meal in livestock feed and the removal of specified risk materials from the food chain were the main measures to successfully prevent infection in cattle and to protect human beings from BSE exposure. However, although BSE is now under control, previously unknown, so-called atypical transmissible spongiform encephalopathies (TSEs) in cattle and small ruminants have been identified by enhanced disease surveillance. This report briefly reviews and summarizes the current level of knowledge on the spectrum of TSEs in cattle and small ruminants and addresses the question of the extent to which such atypical TSEs have an effect on disease surveillance and control strategies.
Collapse
Affiliation(s)
- Torsten Seuberlich
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, DCR-VPH, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland.
| | | | | |
Collapse
|
19
|
Joint Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Lezmi S, Seuberlich T, Oevermann A, Baron T, Bencsik A. Comparison of brain PrPd distribution in ovine BSE and scrapie. Vet Pathol 2011; 48:1101-8. [PMID: 21245284 DOI: 10.1177/0300985810395784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrP(d) in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrP(d) in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrP(d) brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrP(d) type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrP(d) deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrP(d) brain mapping to help in identifying prion strains in small ruminants.
Collapse
Affiliation(s)
- S Lezmi
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Lyon, France
| | | | | | | | | |
Collapse
|
21
|
Yokoyama T, Masujin K, Schmerr MJ, Shu Y, Okada H, Iwamaru Y, Imamura M, Matsuura Y, Murayama Y, Mohri S. Intraspecies prion transmission results in selection of sheep scrapie strains. PLoS One 2010; 5:e15450. [PMID: 21103326 PMCID: PMC2982847 DOI: 10.1371/journal.pone.0015450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/30/2010] [Indexed: 12/03/2022] Open
Abstract
Background Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined. Methodology/Principal Findings In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain. Conclusions/Significance Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jacobs JG, Sauer M, van Keulen LJM, Tang Y, Bossers A, Langeveld JPM. Differentiation of ruminant transmissible spongiform encephalopathy isolate types, including bovine spongiform encephalopathy and CH1641 scrapie. J Gen Virol 2010; 92:222-32. [PMID: 20943889 DOI: 10.1099/vir.0.026153-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With increased awareness of the diversity of transmissible spongiform encephalopathy (TSE) strains in the ruminant population, comes an appreciation of the need for improved methods of differential diagnosis. Exposure to bovine spongiform encephalopathy (BSE) has been associated with the human TSE, variant Creutzfeldt-Jakob disease, emphasizing the necessity in distinguishing low-risk TSE types from BSE. TSE type discrimination in ruminants such as cattle, sheep, goats and deer, requires the application of several prion protein (PrP)-specific antibodies in parallel immunochemical tests on brain homogenates or tissue sections from infected animals. This study uses in a single incubation step, three PrP-specific antibodies and fluorescent Alexa dye-labelled anti-mouse Fabs on a Western blot. The usual amount of brain tissue needed is 0.5 mg. This multiplex application of antibodies directed towards three different PrP epitopes enabled differential diagnosis of all established main features of classical scrapie, BSE and Nor98-like scrapie in sheep and goats, as well as the currently known BSE types C, H and L in cattle. Moreover, due to an antibody-dependent dual PrP-banding pattern, for the first time CH1641 scrapie of sheep can be reliably discriminated from the other TSE isolate types in sheep.
Collapse
Affiliation(s)
- J G Jacobs
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Baron T, Bencsik A, Morignat E. Prions of ruminants show distinct splenotropisms in an ovine transgenic mouse model. PLoS One 2010; 5:e10310. [PMID: 20436680 PMCID: PMC2859945 DOI: 10.1371/journal.pone.0010310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Transmissible agents involved in prion diseases differ in their capacities to target different regions of the central nervous system and lymphoid tissues, which are also host-dependent. Methodology/Principal Findings Protease-resistant prion protein (PrPres) was analysed by Western blot in the spleen of transgenic mice (TgOvPrP4) that express the ovine prion protein under the control of the neuron-specific enolase promoter, after infection by intra-cerebral route with a variety of transmissible spongiform encephalopathies (TSEs) from cattle and small ruminants. Splenic PrPres was consistently detected in classical BSE and in most natural scrapie sources, the electrophoretic pattern showing similar features to that of cerebral PrPres. However splenic PrPres was not detected in L-type BSE and TME-in-cattle, or in the CH1641 experimental scrapie isolate, indicating that some TSE strains showed reduced splenotropism in the ovine transgenic mice. In contrast with CH1641, PrPres was also consistently detected in the spleen of mice infected with six natural “CH1641-like” scrapie isolates, but then showed clearly different molecular features from those identified in the brains (unglycosylated PrPres at ∼18 kDa with removal of the 12B2 epitope) of ovine transgenic mice or of sheep. These features included different cleavage of the main PrPres cleavage product (unglycosylated PrPres at ∼19 kDa with preservation of the 12B2 epitope) and absence of the additional C-terminally cleaved PrPres product (unglycosylated form at ∼14 kDa) that was detected in the brain. Conclusion/Significance Studies in a transgenic mouse model expressing the sheep prion protein revealed different capacities of ruminant prions to propagate in the spleen. They showed unexpected features in “CH1641-like” ovine scrapie suggesting that such isolates contain mixed conformers with distinct capacities to propagate in the brain or lymphoid tissues of these mice.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments - Lyon, Unité ATNC, Lyon, France.
| | | | | |
Collapse
|
24
|
Abstract
Mouse bioassay remains the gold standard for determining proof of infectivity, strain type, and infectious titer estimation in prion disease research. The development of an approach using ex vivo cell-based assays remains an attractive alternative, both in order to reduce the use of mice and to hasten results. The main limitation of a cell-based approach is the scarcity of cell lines permissive to infection with natural transmissible spongiform encephalopathy strains. This study combines two advances in this area, namely, the standard scrapie cell assay (SSCA) and the Rov9 and MovS6 cell lines, which both express the ovine PrP VRQ allele, to assess to what extent natural and experimental ovine scrapie can be detected ex vivo. Despite the Rov9 and MovS6 cell lines being of different biological origin, they were both permissive and resistant to infection with the same isolates of natural sheep scrapie as detected by SSCA. Rov9 subclones that are 20 times more sensitive than Rov9 to SSBP/1-like scrapie infection were isolated, but all the subclones maintained their resistance to isolates that failed to transmit to the parental line. The most sensitive subclone of the Rov9 cell line was used to estimate the infectious titer of a scrapie brain pool (RBP1) and proved to be more sensitive than the mouse bioassay using wild-type mice. Increasing the sensitivity of the Rov9 cell line to SSBP/1 infection did not correlate with broadening susceptibility, as the specificity of permissiveness and resistance to other scrapie isolates was maintained.
Collapse
|
25
|
Transmissibility of atypical scrapie in ovine transgenic mice: major effects of host prion protein expression and donor prion genotype. PLoS One 2009; 4:e7300. [PMID: 19806224 PMCID: PMC2752806 DOI: 10.1371/journal.pone.0007300] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/04/2009] [Indexed: 12/01/2022] Open
Abstract
Atypical scrapie or Nor98 has been identified as a transmissible spongiform encephalopathy (TSE) that is clearly distinguishable from classical scrapie and BSE, notably regarding the biochemical features of the protease-resistant prion protein PrPres and the genetic factors involved in susceptibility to the disease. In this study we transmitted the disease from a series of 12 French atypical scrapie isolates in a transgenic mouse model (TgOvPrP4) overexpressing in the brain ∼0.25, 1.5 or 6× the levels of the PrPARQ ovine prion protein under the control of the neuron-specific enolase promoter. We used an approach based on serum PrPc measurements that appeared to reflect the different PrPc expression levels in the central nervous system. We found that transmission of atypical scrapie, much more than in classical scrapie or BSE, was strongly influenced by the PrPc expression levels of TgOvPrP4 inoculated mice. Whereas TgOvPrP4 mice overexpressing ∼6× the normal PrPc level died after a survival periods of 400 days, those with ∼1.5× the normal PrPc level died at around 700 days. The transmission of atypical scrapie in TgOvPrP4 mouse line was also strongly influenced by the prnp genotypes of the animal source of atypical scrapie. Isolates carrying the AF141RQ or AHQ alleles, associated with increased disease susceptibility in the natural host, showed a higher transmissibility in TgOvPrP4 mice. The biochemical analysis of PrPres in TgOvPrP4 mouse brains showed a fully conserved pattern, compared to that in the natural host, with three distinct PrPres products. Our results throw light on the transmission features of atypical scrapie and suggest that the risk of transmission is intrinsically lower than that of classical scrapie or BSE, especially in relation to the expression level of the prion protein.
Collapse
|
26
|
Maluquer de Motes C, Simon S, Grassi J, Torres J, Pumarola M, Girones R. Assessing the presence of BSE and scrapie in slaughterhouse wastewater. J Appl Microbiol 2008; 105:1649-57. [DOI: 10.1111/j.1365-2672.2008.03916.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Baron T, Bencsik A, Vulin J, Biacabe AG, Morignat E, Verchere J, Betemps D. A C-terminal protease-resistant prion fragment distinguishes ovine "CH1641-like" scrapie from bovine classical and L-Type BSE in ovine transgenic mice. PLoS Pathog 2008; 4:e1000137. [PMID: 18769714 PMCID: PMC2516186 DOI: 10.1371/journal.ppat.1000137] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/31/2008] [Indexed: 11/18/2022] Open
Abstract
The protease-resistant prion protein (PrP(res)) of a few natural scrapie isolates identified in sheep, reminiscent of the experimental isolate CH1641 derived from a British natural scrapie case, showed partial molecular similarities to ovine bovine spongiform encephalopathy (BSE). Recent discovery of an atypical form of BSE in cattle, L-type BSE or BASE, suggests that also this form of BSE might have been transmitted to sheep. We studied by Western blot the molecular features of PrP(res) in four "CH1641-like" natural scrapie isolates after transmission in an ovine transgenic model (TgOvPrP4), to see if "CH1641-like" isolates might be linked to L-type BSE. We found less diglycosylated PrP(res) than in classical BSE, but similar glycoform proportions and apparent molecular masses of the usual PrP(res) form (PrP(res) #1) to L-type BSE. However, the "CH1641-like" isolates differed from both L-type and classical BSE by an abundant, C-terminally cleaved PrP(res) product (PrP(res) #2) specifically recognised by a C-terminal antibody (SAF84). Differential immunoprecipitation of PrP(res) #1 and PrP(res) #2 resulted in enrichment in PrP(res) #2, and demonstrated the presence of mono- and diglycosylated PrP(res) products. PrP(res) #2 could not be obtained from several experimental scrapie sources (SSBP1, 79A, Chandler, C506M3) in TgOvPrP4 mice, but was identified in the 87V scrapie strain and, in lower and variable proportions, in 5 of 5 natural scrapie isolates with different molecular features to CH1641. PrP(res) #2 identification provides an additional method for the molecular discrimination of prion strains, and demonstrates differences between "CH1641-like" ovine scrapie and bovine L-type BSE transmitted in an ovine transgenic mouse model.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments-Lyon, Unité ATNC, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Simon S, Nugier J, Morel N, Boutal H, Créminon C, Benestad SL, Andréoletti O, Lantier F, Bilheude JM, Feyssaguet M, Biacabe AG, Baron T, Grassi J. Rapid typing of transmissible spongiform encephalopathy strains with differential ELISA. Emerg Infect Dis 2008; 14:608-16. [PMID: 18394279 PMCID: PMC2570920 DOI: 10.3201/eid1404.071134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A strain-typing ELISA distinguishes bovine spongiform encephalopathy from other scrapie strains in small ruminants. The bovine spongiform encephalopathy (BSE) agent has been transmitted to humans, leading to variant Creutzfeldt-Jakob disease. Sheep and goats can be experimentally infected by BSE and have been potentially exposed to natural BSE; however, whether BSE can be transmitted to small ruminants is not known. Based on the particular biochemical properties of the abnormal prion protein (PrPsc) associated with BSE, and particularly the increased degradation induced by proteinase K in the N terminal part of PrPsc, we have developed a rapid ELISA designed to distinguish BSE from other scrapie strains. This assay clearly discriminates experimental ovine BSE from other scrapie strains and was used to screen 260 transmissible spongiform encephalopathy (TSE)–infected small ruminant samples identified by the French active surveillance network (2002/2003). In this context, this test has helped to identify the first case of natural BSE in a goat and can be used to classify TSE isolates based on the proteinase K sensitivity of PrPsc.
Collapse
|
29
|
Béringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res 2008; 39:47. [PMID: 18519020 DOI: 10.1051/vetres:2008024] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/30/2008] [Indexed: 11/14/2022] Open
Abstract
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie et Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
30
|
An advantageous method utilizing new homogenizing device BioMasher and a sensitive ELISA to detect bovine spongiform encephalopathy accurately in brain tissue. J Virol Methods 2008; 149:316-25. [DOI: 10.1016/j.jviromet.2008.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/14/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022]
|
31
|
Crozet C, Lehmann S. [Prions: where do we stand 20 years after the appearance of bovine spongiform encephalopathy?]. Med Sci (Paris) 2007; 23:1148-57. [PMID: 18154718 DOI: 10.1051/medsci/200723121148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) identified twenty years ago in the British cattle herds. Creutzfeldt-Jakob disease (CJD) is a TSE that occurs in humans. In 1996, scientists found a possible link between BSE and a new variant of CJD (vCJD). The fact that the non conventional infectious agent of TSE, named prions, could cross the species barrier from cattle to human through meat consumption, raised a tremendous concern for public safety in Europe. This led to the development in the following two decades of substantial and expensive measures to contain BSE and prevent its transmission to humans. In parallel, scientific programs have been funded to progress through the comprehension of the physiopathology of these fatal disorders. In Europe, the BSE epidemics is now ending and the number of cases is decreasing thanks to the strict control of animal foodstuff that was the main source of prion contamination. Only a small number of vCJD have been detected, however, additional concerns have been raised recently for public safety as secondary transmission of CJD through medical procedure and blood transfusion is possible. In addition, the possibility that the BSE was transmitted to other animals including small ruminants is also worrisome. Research efforts are now focussing on decontamination and ante mortem diagnosis of TSE to prevent animal and human transmission. However, needs for fundamental research are still important as many questions remain to be addressed to understand the mechanism of prion transmission, as well as its pathogenesis.
Collapse
Affiliation(s)
- Carole Crozet
- Institut de Génétique Humaine, UPR1142 CNRS, CHU de Montpellier, UM1 Montpellier, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
32
|
Gomez N, Benedicto L, Geijo M, Garrido J, Garcia-Crespo D, Korkostegi J, Hurtado A, Juste R. Use of immunodiagnostic tests on an outbreak of scrapie in Latxa sheep: Pathogenetic and epidemiologic implications. Small Rumin Res 2007. [DOI: 10.1016/j.smallrumres.2006.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Owen JP, Rees HC, Maddison BC, Terry LA, Thorne L, Jackman R, Whitelam GC, Gough KC. Molecular profiling of ovine prion diseases by using thermolysin-resistant PrPSc and endogenous C2 PrP fragments. J Virol 2007; 81:10532-9. [PMID: 17652380 PMCID: PMC2045483 DOI: 10.1128/jvi.00640-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disease-associated PrP fragments produced upon in vitro or in vivo proteolysis can provide significant insight into the causal strain of prion disease. Here we describe a novel molecular strain typing assay that used thermolysin digestion of caudal medulla samples to produce PrPres signatures on Western blots that readily distinguished experimental sheep bovine spongiform encephalopathy (BSE) from classical scrapie. Furthermore, the accumulation of such PrPres species within the cerebellum also appeared to be dependent upon the transmissible spongiform encephalopathy (TSE) strain, allowing discrimination between two experimental strains of scrapie and grouping of natural scrapie isolates into two profiles. The occurrence of endogenously produced PrP fragments, namely, glycosylated and unglycosylated C2, within different central nervous system (CNS) regions is also described; this is the first detailed description of such scrapie-associated fragments within a natural host. The advent of C2 fragments within defined CNS regions, compared between BSE and scrapie cases and also between two experimental scrapie strains, appeared to be largely dependent upon the TSE strain. The combined analyses of C2 fragments and thermolysin-resistant PrP species within caudal medulla, cerebellum, and spinal cord samples allowed natural scrapie isolates to be separated into four distinct molecular profiles: most isolates produced C2 and PrPres in all CNS regions, a second group lacked detectable cerebellar C2 fragments, one isolate lacked both cerebellar PrPres and C2, and a further isolate lacked detectable C2 within all three CNS regions and also lacked cerebellar PrPres. This CNS region-specific deposition of disease-associated PrP species may reflect the natural heterogeneity of scrapie strains in the sheep population in the United Kingdom.
Collapse
Affiliation(s)
- Jonathan P Owen
- ADAS UK, Department of Biology, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, Leicestershire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Baron T, Biacabe AG. Molecular behaviors of "CH1641-like" sheep scrapie isolates in ovine transgenic mice (TgOvPrP4). J Virol 2007; 81:7230-7. [PMID: 17442721 PMCID: PMC1933328 DOI: 10.1128/jvi.02475-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular analyses of the protease-resistant prion protein (PrP(res)) from a few natural scrapie isolates showed by Western blotting some partial similarities with those observed in experimental ovine bovine spongiform encephalopathy (BSE). They showed a low apparent molecular mass of unglycosylated PrP(res), although diglycosylated PrP(res) was less abundant than in ovine BSE. The prototype of such cases is the CH1641 experimental scrapie isolate. We analyzed PrP(res) molecular features from three French natural "CH1641-like" isolates, in comparison with CH1641 and BSE, after transmission of the disease in ovine transgenic mice (TgOvPrP4). One of these isolates (TR316211) behaved like the CH1641 isolate, with PrP(res) features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrP(res) phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrP(res), the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrP(res) from "CH1641-like" isolates showed lower levels of diglycosylated PrP(res). From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrP(res) profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrP(res), and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
Collapse
Affiliation(s)
- Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments-Lyon, Unité ATNC, Lyon, France.
| | | |
Collapse
|
35
|
Seitz R, von Auer F, Blümel J, Burger R, Buschmann A, Dietz K, Heiden M, Hitzler WE, Klamm H, Kreil T, Kretzschmar H, Nübling M, Offergeld R, Pauli G, Schottstedt V, Volkers P, Zerr I. Impact of vCJD on blood supply. Biologicals 2007; 35:79-97. [PMID: 17320412 DOI: 10.1016/j.biologicals.2007.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is an at present inevitably lethal neurodegenerative disease which can only be diagnosed definitely post mortem. The majority of the approximately 200 victims to date have resided in the UK where most contaminated beef materials entered the food chain. Three cases in the UK demonstrated that vCJD can be transmitted by blood transfusion. Since BSE and vCJD have spread to several countries outside the UK, it appears advisable that specific risk assessments be carried out in different countries and geographic areas. This review explains the approach adopted by Germany in assessing the risk and considering precautionary measures. A fundamental premise is that the feeding chain of cattle and the food chain have been successfully and permanently cleared from contaminated material. This raises the question of whether transmissions via blood transfusions could have the potential to perpetuate vCJD in mankind. A model calculation based on actual population data showed, however, that this would not be the case. Moreover, an exclusion of transfusion recipients from blood donation would add very little to the safety of blood transfusions, but would have a considerable impact on blood supply. Therefore, an exclusion of transfusion recipients was not recommended in Germany.
Collapse
Affiliation(s)
- Rainer Seitz
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuczius T, Grassi J, Karch H, Groschup MH. Binding of N- and C-terminal anti-prion protein antibodies generates distinct phenotypes of cellular prion proteins (PrPC) obtained from human, sheep, cattle and mouse. FEBS J 2007; 274:1492-502. [PMID: 17302739 DOI: 10.1111/j.1742-4658.2007.05691.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion diseases are neurodegenerative disorders which cause Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. The infectious agent is a protease resistant isoform (PrP(Sc)) of a host encoded prion protein (PrP(C)). PrP(Sc) proteins are characterized according to size and glycoform pattern. We analyzed the glycoform patterns of PrP(C) obtained from humans, sheep, cattle and mice to find interspecies variability for distinct differentiation among species. To obtain reliable results, the imaging technique was used for measurement of the staining band intensities and reproducible profiles were achieved by many repeated immunoblot analysis. With a set of antibodies, we discovered two distinct patterns which were not species-dependent. One pattern is characterized by high signal intensity for the di-glycosylated isoform using antibodies that bind to the N-terminal region, whereas the other exhibits high intensity for protein bands at the size of the nonglycosylated isoform using antibodies recognizing the C-terminal region. This pattern is the result of an overlap of the nonglycosylated full-length and the glycosylated N-terminal truncated PrP(C) isoforms. Our data demonstrate the importance of antibody selection in characterization of PrP(C).
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, University Hospital Münster, Robert Koch Strasse 41, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
37
|
Béringue V, Bencsik A, Le Dur A, Reine F, Laï TL, Chenais N, Tilly G, Biacabé AG, Baron T, Vilotte JL, Laude H. Isolation from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog 2006; 2:e112. [PMID: 17054396 PMCID: PMC1617128 DOI: 10.1371/journal.ppat.0020112] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022] Open
Abstract
To date, bovine spongiform encephalopathy (BSE) and its human counterpart, variant Creutzfeldt-Jakob disease, have been associated with a single prion strain. This strain is characterised by a unique and remarkably stable biochemical profile of abnormal protease-resistant prion protein (PrP(res)) isolated from brains of affected animals or humans. However, alternate PrP(res) signatures in cattle have recently been discovered through large-scale screening. To test whether these also represent separate prion strains, we inoculated French cattle isolates characterised by a PrP(res) of higher apparent molecular mass--called H-type--into transgenic mice expressing bovine or ovine PrP. All mice developed neurological symptoms and succumbed to these isolates, showing that these represent a novel strain of infectious prions. Importantly, this agent exhibited strain-specific features clearly distinct from that of BSE agent inoculated to the same mice, which were retained on further passage. Moreover, it also differed from all sheep scrapie isolates passaged so far in ovine PrP-expressing mice. Our findings therefore raise the possibility that either various prion strains may exist in cattle, or that the BSE agent has undergone divergent evolution in some animals.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Anna Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Annick Le Dur
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Thanh Lan Laï
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Chenais
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Gaëlle Tilly
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Anne-Gaëlle Biacabé
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, Lyon, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, Génétique Biochimique, et Cytogénétique, Jouy-en-Josas, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Cordier C, Bencsik A, Philippe S, Bétemps D, Ronzon F, Calavas D, Crozet C, Baron T. Transmission and characterization of bovine spongiform encephalopathy sources in two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59). J Gen Virol 2006; 87:3763-3771. [PMID: 17098996 DOI: 10.1099/vir.0.82062-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transgenic mice expressing the prion protein (PrP) of species affected by transmissible spongiform encephalopathies (TSEs) have recently been produced to facilitate experimental transmission of these diseases by comparison with wild-type mice. However, whilst wild-type mice have largely been described for the discrimination of different TSE strains, including differentiation of agents involved in bovine spongiform encephalopathy (BSE) and scrapie, this has been only poorly described in transgenic mice. Here, two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59), expressing the ovine PrP (A136 R154 Q171) under control of the neuron-specific enolase promoter, were studied; they were challenged with brainstem or spinal cord from experimentally BSE-infected sheep (AA136 RR154 QQ171 and AA136 RR154 RR171 genotypes) or brainstem from cattle BSE and natural sheep scrapie. The disease was transmitted successfully from all of these sources, with a mean of approximately 300 days survival following challenge with material from two ARQ-homozygous BSE-infected sheep in TgOvPrP4 mice, whereas the survival period in mice challenged with material from the ARR-homozygous BSE-infected sheep was 423 days on average. It was shown that, in the two ovine transgenic mouse lines, the Western blot characteristics of protease-resistant PrP (PrPres) were similar, whatever the BSE source, with a low apparent molecular mass of the unglycosylated glycoform, a poor labelling by P4 monoclonal antibody and high proportions of the diglycosylated form. With all BSE sources, but not with scrapie, florid plaques were observed in the brains of mice from both transgenic lines. These data reinforce the potential of this recently developed experimental model for the discrimination of BSE from scrapie agents.
Collapse
Affiliation(s)
- C Cordier
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - A Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - S Philippe
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - D Bétemps
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - F Ronzon
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - D Calavas
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - C Crozet
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| | - T Baron
- Agence Française de Sécurité Sanitaire des Aliments, 31 avenue Tony Garnier, 69364 Lyon cedex 07, France
| |
Collapse
|
39
|
Ronzon F, Bencsik A, Lezmi S, Vulin J, Kodjo A, Baron T. BSE inoculation to prion diseases-resistant sheep reveals tricky silent carriers. Biochem Biophys Res Commun 2006; 350:872-7. [PMID: 17049491 DOI: 10.1016/j.bbrc.2006.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/21/2006] [Indexed: 11/28/2022]
Abstract
The possible transmission of bovine spongiform encephalopathy (BSE) agent to sheep contributed to select genetically sheep considered as resistant to prion diseases i.e., with PrP ARR/ARR genotype. Here, we report the infection of two PrP ARR/ARR genotype sheep using the cattle BSE agent inoculated by peripheral routes. Disease-associated prion protein (PrP(d)) was detected in the brain for one case (at 2191 days post-infection (dpi)) and only in the nervous enteric system for the other one (at 673dpi). The electrophoretic pattern of PrP(d) from the obex region in this BSE challenged sheep was shown to be closer from that found in naturally scrapie-affected sheep with regard to the apparent molecular mass of the unglycosylated PrP(d). Importantly, the absence of any clinical symptoms up to 6 years following experimental challenge suggests that silent carriers of the BSE agent may exist among ARR homozygous sheep.
Collapse
Affiliation(s)
- Frédéric Ronzon
- Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Unité ATNC, 31 avenue Tony Garnier, 69364 LYON cedex 07, France
| | | | | | | | | | | |
Collapse
|
40
|
Baron T, Biacabe AG, Arsac JN, Benestad S, Groschup MH. Atypical transmissible spongiform encephalopathies (TSEs) in ruminants. Vaccine 2006; 25:5625-30. [PMID: 17126958 DOI: 10.1016/j.vaccine.2006.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/30/2006] [Indexed: 11/22/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are associated with the accumulation in infected tissues of a disease-associated form of a host-encoded protein, the prion protein (PrP). Contrary to the normal form of the protein, this form of PrP is partially resistant to protease digestion (PrP(res)). Detailed characterisation of PrP(res) has been intensively investigated in recent years to try and decipher the diversity of TSEs in human and animals. This considerably and unexpectedly enlarged our knowledge about such diseases in ruminants. Previously, such a diversity was essentially shown by the demonstration that scrapie from sheep and goats could have different biological behaviours following transmission of the disease in mice, unlike bovine spongiform encephalopathy from cattle (BSE) which showed a distinct and unique behaviour. The properties of the BSE agent were also demonstrated to be very stable, following transmission to a variety of different species. Molecular studies of PrP(res), followed by transmission studies to mice, gave the first evidence for the accidental transmission of the BSE agent to humans where it induced a variant form of the fatal Creutzfeldt-Jakob disease (CJD) and also to different animal species including a goat in France. This last case was found among a few unusual cases of TSEs in small ruminants that showed some molecular similarities with BSE and which are currently under investigation by transmission studies in mice. The application of the molecular methods to characterise PrP(res) has most recently led to the unexpected discovery of deviant BSE forms in a few affected cattle in Europe and in the United States, which raises the question of a possible different origin at least of some cases of BSE in cattle. Finally, considerable numbers of a new TSE form in small ruminants, referred to as "atypical scrapie" or "Nor98", have meanwhile been identified in most European countries by TSE rapid testing using an assay which recognizes also comparatively less PK resistant PrP(res).
Collapse
Affiliation(s)
- T Baron
- AFSSA-Lyon, Unité ATNC, Lyon, France.
| | | | | | | | | |
Collapse
|
41
|
Lezmi S, Bencsik A, Baron T. PET-blot analysis contributes to BSE strain recognition in C57Bl/6 mice. J Histochem Cytochem 2006; 54:1087-94. [PMID: 16735593 PMCID: PMC3957803 DOI: 10.1369/jhc.5a6892.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 05/16/2006] [Indexed: 11/22/2022] Open
Abstract
Identification of the strain of agent responsible for bovine spongiform encephalopathy (BSE) can be made histologically through the analysis of both distribution and intensity of brain vacuolar lesions after BSE transmission to mouse. Another useful way to distinguish the BSE agent from other prion strains is the study of the distribution of the abnormal prion protein (PrP(res)). For that purpose, paraffin-embedded tissue blot (PET-blot) method was applied on brains from C57Bl/6 mice infected with cattle BSE, experimental sheep BSE, or feline spongiform encephalopathy (FSE) from a cheetah. PrP(res) distribution was comparable, whichever of the three BSE agent sources was considered and was distinct from the PrP(res) distribution in C57Bl/6 mice inoculated with a French scrapie isolate or with a mouse-adapted scrapie strain (C506M3). These data confirm a common origin of infectious agent responsible for the British and French cattle BSE. They also indicate that PET-blot method appears as a precise complementary tool in prion strain studies because it offers easy and quick assessment of the PrP(res) mapping. Advantages and limits of the PET-blot method are discussed and compared with other established and validated methods of strain typing.
Collapse
Affiliation(s)
- Stéphane Lezmi
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| | - Anna Bencsik
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| | - Thierry Baron
- Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France
| |
Collapse
|
42
|
Buschmann A, Gretzschel A, Biacabe AG, Schiebel K, Corona C, Hoffmann C, Eiden M, Baron T, Casalone C, Groschup MH. Atypical BSE in Germany--proof of transmissibility and biochemical characterization. Vet Microbiol 2006; 117:103-16. [PMID: 16916588 DOI: 10.1016/j.vetmic.2006.06.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 05/23/2006] [Accepted: 06/02/2006] [Indexed: 11/18/2022]
Abstract
Intensive active surveillance has uncovered two atypical German BSE cases in older cattle which resemble the two different atypical BSE phenotypes that have recently been described in France (designated H-type) and Italy (designated L-type or BASE). The H-type is characterized by a significantly higher molecular size, but a conventional glycopattern of the proteinase K treated abnormal prion protein (PrP(Sc)), while the L-type PrP(Sc) has only a slightly lower molecular size and a distinctly different glycopattern. In this paper we describe the successful transmission of both German atypical BSE cases to transgenic mice overexpressing bovine PrP(C). Upon challenge with the L-type, these mice developed BSE after a substantially shorter incubation period than any classical BSE transmission using these mice to date. In contrast, the incubation period was distinctly prolonged when these mice were challenged with the H-type. PrP(Sc) accumulated in the brains of these mice were of the same atypical BSE type that had been used for the transmission. These atypical cases suggest the possible existence of sporadic BSE cases in bovines. It is thus feasible that the BSE epidemic in the UK could have also been initiated by an intraspecies transmission from a sporadic BSE case.
Collapse
Affiliation(s)
- A Buschmann
- Friedrich-Loeffler-Institut (FLI), Institute for Novel and Emerging Infectious Diseases, Boddenblick 5a, 17493 Greifswald, Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Langeveld JPM, Jacobs JG, Erkens JHF, Bossers A, van Zijderveld FG, van Keulen LJM. Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet Res 2006; 2:19. [PMID: 16764717 PMCID: PMC1544330 DOI: 10.1186/1746-6148-2-19] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/09/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE). With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN) are considered suitable organs for testing. Western blotting (WB) of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE. In this report, WB is developed for rapid diagnosis in RLN and to study biochemical characteristics of PrPres. RESULTS Optimal PrPres detection in RLN by WB was achieved by proper tissue processing, antibody choice and inclusion of a step for PrPresconcentration. The analyses were performed on three different sheep sources. Firstly, in a study with preclinical scrapie cases, WB of RLN from infected sheep of VRQ/VRQ genotype--VRQ represents, respectively, polymorphic PrP amino acids 136, 154, and 171--allowed a diagnosis 14 mo earlier compared to WB of brain stem. Secondly, samples collected from sheep with confirmed scrapie in the course of passive and active surveillance programmes in the period 2002-2003 yielded positive results depending on genotype: all sheep with genotypes ARH/VRQ, VRQ/VRQ, and ARQ/VRQ scored positive for PrPres, but ARQ/ARQ and ARR/VRQ were not all positive. Thirdly, in an experimental BSE study, detection of PrPres in all 11 ARQ/ARQ sheep, including 7 preclinical cases, was possible. In all instances, WB and IHC were almost as sensitive. Moreover, BSE infection could be discriminated from scrapie infection by faster electrophoretic migration of the PrPres bands. Using dual antibody staining with selected monoclonal antibodies like 12B2 and L42, these differences in migration could be employed for an unequivocal differentiation between BSE and scrapie. With respect to glycosylation of PrPres, BSE cases exhibited a greater diglycosylated fraction than scrapie cases. Furthermore, a slight time dependent increase of diglycosylated PrPres was noted between individual sheep, which was remarkable in that it occurred in both scrapie and BSE study. CONCLUSION The present data indicate that, used in conjunction with testing in brain, WB of RLN can be a sensitive tool for improving surveillance of scrapie and BSE, allowing early detection of BSE and scrapie and thereby ensuring safer sheep and goat products.
Collapse
Affiliation(s)
- Jan PM Langeveld
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Jorg G Jacobs
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Jo HF Erkens
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Alex Bossers
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Fred G van Zijderveld
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| | - Lucien JM van Keulen
- Central Institute for Animal Disease Control Lelystad (CIDC-Lelystad), PO Box 2004, 8203 AA, Lelystad, The Netherlands
| |
Collapse
|
44
|
Vaccari G, Bari MAD, Morelli L, Nonno R, Chiappini B, Antonucci G, Marcon S, Esposito E, Fazzi P, Palazzini N, Troiano P, Petrella A, Di Guardo G, Agrimi U. Identification of an allelic variant of the goat PrP gene associated with resistance to scrapie. J Gen Virol 2006; 87:1395-1402. [PMID: 16603543 DOI: 10.1099/vir.0.81485-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association between PrP gene variations and scrapie susceptibility was studied in a single herd of Ionica breed goats. The entire herd comprised 100 animals, 11 of which were clinically affected and showed pathological prion protein (PrPSc) deposition in both their central nervous system (CNS) and lymphoreticular system (LRS). Among asymptomatic goats, nine harboured PrPSc in both CNS and LRS, 19 showed PrPSc only at the LRS level and 61 animals had no PrPSc deposition. Genetic analysis of the PrP gene coding sequence revealed the presence of several polymorphisms, namely G37V, T110P, H143R, R154H, Q222K and P240S. Silent polymorphisms were also found at codons 42, 138, 219 and 232. The effect of PrP polymorphism on scrapie susceptibility was assessed by comparing the genotype distribution at each locus among animals with different pathogenetic and clinical disease stages. Significant differences in the distribution of genotypes were observed for codons 154 and 222, with polymorphism at codon 154 modulating susceptibility to scrapie and lysine at codon 222 being associated with scrapie resistance. The allelic variant encoding lysine at position 222 could be a valuable candidate to select in the framework of appropriate breeding programmes for scrapie resistance in goats.
Collapse
Affiliation(s)
- Gabriele Vaccari
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Michele A Di Bari
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luisella Morelli
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giovanni Antonucci
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Elena Esposito
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Fazzi
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nadia Palazzini
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pasquale Troiano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy
| | - Giovanni Di Guardo
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Umberto Agrimi
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
45
|
Gavier-Widén D, Stack MJ, Baron T, Balachandran A, Simmons M. Diagnosis of transmissible spongiform encephalopathies in animals: a review. J Vet Diagn Invest 2006; 17:509-27. [PMID: 16475509 DOI: 10.1177/104063870501700601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) in animals include, among others, bovine spongiform encephalopathy (BSE), scrapie, chronic wasting disease, and atypical forms of prion diseases. Diagnosis of TSEs is based on identification of characteristic lesions or on detection of the abnormal prion proteins in tissues, often by use of their partial proteinase K resistance property. Correctly sampling of target tissues is of utmost importance as this has a considerable effect on test sensitivity. Most of the rapid or screening tests are based on ELISA or Western immunoblot (WB) analysis, and many are officially approved. Confirmatory testing is normally performed by use of histologic examination, immunohistochemical analysis, certain WB protocols, or detection of prion fibrils by use of electron microscopy (scrapie-associated fibril). The discriminatory methods for diagnostic use are mostly based on WB technology and provide initial identification of the prion strain, particularly for differentiation of BSE from scrapie in small ruminants. Definitive prion strain characterization is performed by use of bioassays, usually in mice. A burgeoning number of transgenic mice have been developed for TSE studies. Development of new tests with higher sensitivity and of more reliable diagnostic applications for live animals tested for food safety reasons is a rapidly developing field. Ultimately, the choice of a test for TSE diagnosis depends on the rationale for the testing.
Collapse
|
46
|
|
47
|
Sharpe A, McElroy M, Langeveld JPM, Bassett H, O'Donoghue AM, Sweeney T. Immunohistochemical studies of scrapie archival material from Irish ARQ/ARQ sheep for evidence of bovine spongiform encephalopathy-derived disease. Res Vet Sci 2005; 79:29-35. [PMID: 15894021 DOI: 10.1016/j.rvsc.2004.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/07/2004] [Accepted: 10/08/2004] [Indexed: 12/01/2022]
Abstract
Since scrapie and bovine spongiform encephalopathy (BSE) in sheep are clinicopathologically indistinguishable, BSE in sheep may have been misdiagnosed as scrapie. Disease-specific prion protein (PrP(d)) patterns in archival tissues of 38 Irish ARQ/ARQ sheep diagnosed as scrapie-affected were compared to those in four Dutch BSE-challenged sheep. When medulla oblongata was immunolabelled with an antibody directed against amino acids 93-99 of ovine prion protein (ovPrP), intraneuronal PrP(d) was apparent in all 38 Irish sheep but was absent in BSE-challenged sheep. When lymphoid follicles were immunolabelled with antibodies directed against amino acids 93-106 of ovPrP, granule clusters of PrP(d) were seen in 34 of the 38 Irish sheep. Follicles of the remaining four archive sheep contained either no PrP(d) or single PrP(d) granules, similar to follicles from BSE-challenged sheep. Based on the medulla results, none of the archival cases had BSE-derived disease. The identification of some scrapie sheep with little or no intrafollicular PrP(d) suggests that this technique may be limited in discriminating between the two diseases.
Collapse
Affiliation(s)
- A Sharpe
- Central Veterinary Research Laboratory (CVRL), Abbotstown, Castleknock, Dublin 15, Ireland.
| | | | | | | | | | | |
Collapse
|
48
|
Gretzschel A, Buschmann A, Eiden M, Ziegler U, Lühken G, Erhardt G, Groschup MH. Strain typing of German transmissible spongiform encephalopathies field cases in small ruminants by biochemical methods. ACTA ACUST UNITED AC 2005; 52:55-63. [PMID: 15752263 DOI: 10.1111/j.1439-0450.2005.00827.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following the implementation of a large scale transmissible spongiform encephalopathies (TSE) surveillance programme of small ruminants, evidence for a natural transmission of bovine spongiform encephalopathy (BSE) to a French goat has been found. During the years 2002-2004, a massive TSE rapid testing programme on >250,000 small ruminants was carried out in Germany. In this national survey, 186 scrapie-affected sheep were found which originated from 78 flocks. The majority of these cases were of the classical TSE type (115 sheep belonging to 14 outbreaks). However, 71 cases coming from 64 flocks were of the novel atypical scrapie type. According to the regulation EU 999/2001, all TSE cases in small ruminants have to be examined by strain typing methods to explore any possibility of the existence of BSE cases in the field sheep population. Here we report on a biochemical typing strategy (termed FLI-test), which includes the determination of molecular masses, antibody binding affinities and glycosylation pattern of the TSE induced abnormal prion protein. Based on this typing approach none of the analysed German classical TSE outbreaks (total number of analysed sheep: 36) displayed biochemical features indicative for a BSE infection. However, in two cases distinct but BSE-unrelated PrP(Sc) types were found, which alludes to the existence of different scrapie strains in the German sheep population.
Collapse
Affiliation(s)
- A Gretzschel
- Friedrich-Loeffler-Institut (FLI), Institute for Novel and Emerging Diseases, Insel Riems, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
González L, Martin S, Houston FE, Hunter N, Reid HW, Bellworthy SJ, Jeffrey M. Phenotype of disease-associated PrP accumulation in the brain of bovine spongiform encephalopathy experimentally infected sheep. J Gen Virol 2005; 86:827-838. [PMID: 15722546 DOI: 10.1099/vir.0.80299-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In view of the established link between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease and of the susceptibility of sheep to experimental BSE, the detection of potential cases of naturally occurring BSE in sheep has become of great importance. In this study, the immunohistochemical (IHC) phenotype of disease-associated prion protein (PrP(d)) accumulation has been determined in the brain of 64 sheep, of various breeds and PrP genotypes, that had developed neurological disease after experimental BSE challenge with different inocula by a range of routes. Sheep BSE was characterized by neuron-associated intra- and extracellular PrP(d) aggregates and by conspicuous and consistent deposits in the cytoplasm of microglia-like cells. The stellate PrP(d) type was also prominent in most brain areas and marked linear deposits in the striatum and midbrain were distinctive. Sheep of the ARR/ARR and ARQ/AHQ genotypes displayed lower levels of PrP(d) than other sheep, and intracerebral BSE challenge resulted in higher levels of PrP(d) accumulating in the brain compared with other routes. The PrP genotype and the route of challenge also appeared to affect the incubation period of the disease, giving rise to complex combinations of magnitude of PrP(d) accumulation and incubation period. Despite these differences, the phenotype of PrP(d) accumulation was found to be very consistent across the different factors tested (notably after subpassage of BSE in sheep), thus highlighting the importance of detailed IHC examination of the brain of clinically affected sheep for the identification of potential naturally occurring ovine BSE.
Collapse
Affiliation(s)
- Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Stuart Martin
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Fiona E Houston
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Nora Hunter
- Institute for Animal Health Neuropathogenesis Unit, Edinburgh EH9 3JF, UK
| | - Hugh W Reid
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | | | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
50
|
Matucci A, Zanusso G, Gelati M, Farinazzo A, Fiorini M, Ferrari S, Andrighetto G, Cestari T, Caramelli M, Negro A, Morbin M, Chiesa R, Monaco S, Tridente G. Analysis of mammalian scrapie protein by novel monoclonal antibodies recognizing distinct prion protein glycoforms: an immunoblot and immunohistochemical study at the light and electron microscopic levels. Brain Res Bull 2005; 65:155-62. [PMID: 15763182 DOI: 10.1016/j.brainresbull.2004.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/24/2004] [Accepted: 12/30/2004] [Indexed: 11/29/2022]
Abstract
The availability of specific monoclonal antibodies (mAbs) recognizing the aberrant form (PrP(Sc)) of the cellular prion protein (PrP(C)) in different mammalian species is important for molecular diagnostics, PrP(Sc) typing and future immunotherapy. We obtained a panel of anti-PrP monoclonal antibodies in PrP(0/0) knock-out mice immunized with recombinant human PrP(23-231). Two mAbs, recognizing PrP epitopes in the alpha-helix 1 (mAb SA65) and alpha-helix 2 (mAb SA21) regions, immunoreacted with PrP(C) and PrP(Sc) and its proteolytic product, PrP27-30, from human, murine, bovine, caprine and ovine brains by Western blot. Remarkably, mAb SA21 recognized unglycosylated and monoglycosylated PrP with the second site occupied by glycan moieties, but not monoglycosylated PrP with the first consensus site occupied or highly glycosylated species. Immunoblots with mAb SA21 disclosed that PrP glycosylated at the second site accounted for the slower migrating form of the customary monoglycosylated PrP doublet. mAb SA65 immunolabelled all PrP glycoforms by Western blot and was highly efficient in detecting tissue PrP by immunohistochemistry in light microscopy and in immunoelectron microscopy. These novel anti-PrP mAbs provide tools to investigate the subcellular site of PrP deposition in mammalian prion diseases and may also contribute to assess the role of different PrP glycoforms in human and animal prion diseases.
Collapse
Affiliation(s)
- Andrea Matucci
- Section of Immunology, Department of Pathology, University of Verona, Policlinico G.B. Rossi, P. le L.A. Scuro 10, 37134 Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|