1
|
Reyes-Pérez P, García-Marín LM, Aman AM, Antar T, Flores-Ocampo V, Mitchell BL, Medina-Rivera A, Rentería ME. Investigating the Shared Genetic Etiology Between Parkinson's Disease and Depression. JOURNAL OF PARKINSON'S DISEASE 2024; 14:483-493. [PMID: 38457145 PMCID: PMC11091633 DOI: 10.3233/jpd-230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Background Depression is a common symptom in Parkinson's disease (PD), resulting from underlying neuropathological processes and psychological factors. However, the extent to which shared genetic risk factors contribute to the relationship between depression and PD is poorly understood. Objective To examine the effects of common genetic variants influencing the etiology of PD and depression risk at the genome-wide and local genomic regional level. Methods We comprehensively investigated the genetic relationship between PD and depression using genome-wide association studies data. First, we estimated the genetic correlation at the genome-wide level using linkage-disequilibrium score regression, followed by local genetic correlation analysis using the GWAS-pairwise method and functional annotation to identify genes that may jointly influence the risk for both traits. Also, we performed Latent Causal Variable, Latent Heritable Confounder Mendelian Randomization, and traditional Mendelian Randomization analyses to investigate the potential causal relationship. Results Although the genetic correlation between PD and depression was not statistically significant at the genome-wide level, GWAS-pairwise analyses identified 16 genomic segments associated with PD and depression, implicating nine genes. Further analyses revealed distinct patterns within individual genes, suggesting an intricate pattern. These genes involve various biological processes, including neurotransmitter regulation, senescence, and nucleo-cytoplasmic transport mechanisms. We did not observe genetic evidence of causality between PD and depression. Conclusions Our findings did not support a genome-wide genetic correlation or a causal association between both conditions. However, we identified genomic segments but identified genomic segments linked to distinct biological pathways influencing their etiology.Further research is needed to understand their functional consequences.
Collapse
Affiliation(s)
- Paula Reyes-Pérez
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Luis M. García-Marín
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Asma M. Aman
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Tarek Antar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Victor Flores-Ocampo
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
- Licenciatura en Ciencias Genómicas, Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Brittany L. Mitchell
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Miguel E. Rentería
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD,Australia
| |
Collapse
|
2
|
Huntzinger E, Sinteff J, Morlet B, Séraphin B. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res 2023; 51:9279-9293. [PMID: 37602378 PMCID: PMC10516660 DOI: 10.1093/nar/gkad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements.
Collapse
Affiliation(s)
- Eric Huntzinger
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Jordan Sinteff
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et cellulaire (IGBMC), Centre National de Recherche scientifique (CNRS) UMR 7104 - Institut National de santé et de Recherche Médicale (Inserm) U1258 - Université de Strasbourg, 1 rue Laurent Fries, Illkirch, France
| |
Collapse
|
3
|
Hess L, Moos V, Lauber AA, Reiter W, Schuster M, Hartl N, Lackner D, Boenke T, Koren A, Guzzardo PM, Gundacker B, Riegler A, Vician P, Miccolo C, Leiter S, Chandrasekharan MB, Vcelkova T, Tanzer A, Jun JQ, Bradner J, Brosch G, Hartl M, Bock C, Bürckstümmer T, Kubicek S, Chiocca S, Bhaskara S, Seiser C. A toolbox for class I HDACs reveals isoform specific roles in gene regulation and protein acetylation. PLoS Genet 2022; 18:e1010376. [PMID: 35994477 PMCID: PMC9436093 DOI: 10.1371/journal.pgen.1010376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023] Open
Abstract
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lena Hess
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Verena Moos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arnel A. Lauber
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Natascha Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Thorina Boenke
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Brigitte Gundacker
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Anna Riegler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Claudia Miccolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Leiter
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Jun Qi Jun
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James Bradner
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gerald Brosch
- Institute of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Srividya Bhaskara
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Reyna-Rosas E, Contreras-Treviño HI, León-Rodríguez R, Rocha-Zavaleta L, Dinkova TD, Padilla-Noriega L. The accumulation of rotavirus NSP3 dimers does not correlate with the extent of host cell translation inhibition. Future Virol 2020. [DOI: 10.2217/fvl-2020-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We aimed to determine the functionality of rotavirus NSP3 dimers. Materials & methods: We expressed rhesus rotavirus NSP3 and determined the kinetics of host cell translation inhibition and the levels of accumulated dimerization intermediates and dimers. Results: We observed a linear kinetics of host cell translation inhibition, which correlated well with the sum of the dimerization intermediates and dimers. Treatment with 17-dimethylaminoethylamino-17-demethoxygeldanamycin reduced the accumulation of NSP3 dimers and potentiated host cell translation inhibition. Conclusion: Our results show that NSP3 dimer formation does not correlate with host cell translation inhibition and suggest that both NSP3 dimers and dimerization intermediates are functional and inhibit host cell translation.
Collapse
Affiliation(s)
- Edgar Reyna-Rosas
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo I Contreras-Treviño
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Renato León-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Padilla-Noriega
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
BCOR is a gene that encodes for an epigenetic regulator involved in the specification of cell differentiation and body structure development and takes part in the noncanonical polycomb repressive complex 1. This review provides a comprehensive summary of BCOR’s involvement in oncology, illustrating that various BCOR aberrations, such as the internal tandem duplications of the PCGF Ub-like fold discriminator domain and different gene fusions (mainly BCOR–CCNB3, BCOR–MAML3 and ZC3H7B–BCOR), represent driver elements of various sarcomas such as clear cell sarcoma of the kidney, primitive mesenchymal myxoid tumor of infancy, small round blue cell sarcoma, endometrial stromal sarcoma and histologically heterogeneous CNS neoplasms group with similar genomic methylation patterns known as CNS-HGNET-BCOR. Furthermore, other BCOR alterations (often loss of function mutations) recur in a large variety of mesenchymal, epithelial, neural and hematological tumors, suggesting a central role in cancer evolution.
Collapse
Affiliation(s)
- Annalisa Astolfi
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Michele Fiore
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Valentina Indio
- 'Giorgio Prodi' Cancer Research Center, University of Bologna, 40138 Bologna, Italy
| | - Salvatore N Bertuccio
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology & Hematology Unit 'Lalla Seràgnoli', S Orsola-Malpighi Hospital, 40138 Bologna, Italy.,Department of Medical & Surgical Sciences, University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| |
Collapse
|
6
|
Kerviel A, Ge P, Lai M, Jih J, Boyce M, Zhang X, Zhou ZH, Roy P. Atomic structure of the translation regulatory protein NS1 of bluetongue virus. Nat Microbiol 2019; 4:837-845. [PMID: 30778144 PMCID: PMC6482088 DOI: 10.1038/s41564-019-0369-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Bluetongue virus (BTV) non-structural protein 1 (NS1) regulates viral protein synthesis and exists as tubular and non-tubular forms in infected cells, but how tubules assemble and how protein synthesis is regulated are unknown. Here, we report near-atomic resolution structures of two NS1 tubular forms determined by cryo-electron microscopy. The two tubular forms are different helical assemblies of the same NS1 monomer, consisting of an amino-terminal foot, a head and body domains connected to an extended carboxy-terminal arm, which wraps atop the head domain of another NS1 subunit through hydrophobic interactions. Deletion of the C terminus prevents tubule formation but not viral replication, suggesting an active non-tubular form. Two zinc-finger-like motifs are present in each NS1 monomer, and tubules are disrupted by divalent cation chelation and restored by cation addition, including Zn2+, suggesting a regulatory role of divalent cations in tubule formation. In vitro luciferase assays show that the NS1 non-tubular form upregulates BTV mRNA translation, whereas zinc-finger disruption decreases viral mRNA translation, tubule formation and virus replication, confirming a functional role for the zinc-fingers. Thus, the non-tubular form of NS1 is sufficient for viral protein synthesis and infectious virus replication, and the regulatory mechanism involved operates through divalent cation-dependent conversion between the non-tubular and tubular forms.
Collapse
Affiliation(s)
- Adeline Kerviel
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Peng Ge
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mason Lai
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Jonathan Jih
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mark Boyce
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Xing Zhang
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Center of Cryo Electron Microscopy, Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, CA, USA.
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
7
|
Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A, Fradet M, Daunesse M, Bertrand E, Pierron G, Mozziconacci J, Kress M, Weil D. P-Body Purification Reveals the Condensation of Repressed mRNA Regulons. Mol Cell 2017; 68:144-157.e5. [PMID: 28965817 DOI: 10.1016/j.molcel.2017.09.003] [Citation(s) in RCA: 487] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/05/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
Abstract
Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs. mRNAs segregating into P-bodies are translationally repressed, but not decayed, and this repression explains part of the poor genome-wide correlation between RNA and protein abundance. P-bodies condense thousands of mRNAs that strikingly encode regulatory processes. Thus, we uncovered how P-bodies, by condensing and segregating repressed mRNAs, provide a physical substrate for the coordinated regulation of posttranscriptional mRNA regulons.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France; Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| | - Maïté Courel
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France
| | - Marianne Bénard
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France
| | - Sylvie Souquere
- CNRS UMR-9196, Institut Gustave Roussy, F-94800 Villejuif, France
| | - Michèle Ernoult-Lange
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France
| | - Racha Chouaib
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France; IGMM, CNRS, University Montpellier, F-34090 Montpellier, France
| | - Zhou Yi
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France
| | | | - Annie Munier
- UPMC Univ Paris 06, LUMIC, UMS30, F-75005 Paris, France
| | | | - Maëlle Daunesse
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Genomic Paris Centre, IBENS, F-75005 Paris, France
| | | | - Gérard Pierron
- CNRS UMR-9196, Institut Gustave Roussy, F-94800 Villejuif, France
| | | | - Michel Kress
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France
| | - Dominique Weil
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 7622, F-75005 Paris, France.
| |
Collapse
|
8
|
Kindrachuk J. Selective inhibition of host cell signaling for rotavirus antivirals: PI3K/Akt/mTOR-mediated rotavirus pathogenesis. Virulence 2017; 9:5-8. [PMID: 28723236 PMCID: PMC5955445 DOI: 10.1080/21505594.2017.1356539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jason Kindrachuk
- a Laboratory of Emerging and Re-Emerging Viruses , Department of Medical Microbiology, University of Manitoba , Winnipeg , MB , Canada
| |
Collapse
|
9
|
Novel High-grade Endometrial Stromal Sarcoma: A Morphologic Mimicker of Myxoid Leiomyosarcoma. Am J Surg Pathol 2017; 41:12-24. [PMID: 27631520 DOI: 10.1097/pas.0000000000000721] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial stromal sarcomas (ESS) are often underpinned by recurrent chromosomal translocations resulting in the fusion of genes involved in epigenetic regulation. To date, only YWHAE-NUTM2 rearrangements are associated with distinctive high-grade morphology and aggressive clinical behavior. We identified 3 ESS morphologically mimicking myxoid leiomyosarcoma of the uterus and sought to describe their unique histopathologic features and identify genetic alterations using next-generation sequencing. All cases displayed predominantly spindled cells associated with abundant myxoid stroma and brisk mitotic activity. Tumors involved the endometrium and demonstrated tongue-like myometrial infiltration. All 3 were associated with an aggressive clinical course, including multisite bony metastases in 1 patient, progressive peritoneal disease after chemotherapy in another, and metastases to the lung and skin in the last patient. All 3 ESS were found to harbor ZC3H7B-BCOR gene fusions by targeted sequencing and fluorescence in situ hybridization. On the basis of the review of these cases, we find that ESS with ZC3H7B-BCOR fusion constitutes a novel type of high-grade ESS and shares significant morphologic overlap with myxoid leiomyosarcoma.
Collapse
|
10
|
Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas. Am J Surg Pathol 2016; 40:433-42. [PMID: 26752546 DOI: 10.1097/pas.0000000000000591] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose because of overlapping morphologic, immunohistochemical, and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4-related fusions, whereas another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44-year-old man, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by reverse transcription polymerase chain reaction and fluorescence in situ hybridization techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC, and BCOR-CCNB3 abnormalities for BCOR break-apart probes by fluorescence in situ hybridization to detect potential recurrent BCOR gene rearrangements outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, whereas no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3-positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared with classic Ewing's sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SBRCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion-positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs, which presented in young adults, with a variable anatomic distribution. Furthermore, BCOR-rearranged tumors often displayed spindle cell areas, either well defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma.
Collapse
|
11
|
Stress Response and Translation Control in Rotavirus Infection. Viruses 2016; 8:v8060162. [PMID: 27338442 PMCID: PMC4926182 DOI: 10.3390/v8060162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.
Collapse
|
12
|
Gratia M, Vende P, Charpilienne A, Baron HC, Laroche C, Sarot E, Pyronnet S, Duarte M, Poncet D. Challenging the Roles of NSP3 and Untranslated Regions in Rotavirus mRNA Translation. PLoS One 2016; 11:e0145998. [PMID: 26727111 PMCID: PMC4699793 DOI: 10.1371/journal.pone.0145998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus NSP3 is a translational surrogate of the PABP-poly(A) complex for rotavirus mRNAs. To further explore the effects of NSP3 and untranslated regions (UTRs) on rotavirus mRNAs translation, we used a quantitative in vivo assay with simultaneous cytoplasmic NSP3 expression (wild-type or deletion mutant) and electroporated rotavirus-like and standard synthetic mRNAs. This assay shows that the last four GACC nucleotides of viral mRNA are essential for efficient translation and that both the NSP3 eIF4G- and RNA-binding domains are required. We also show efficient translation of rotavirus-like mRNAs even with a 5’UTR as short as 5 nucleotides, while more than eleven nucleotides are required for the 3’UTR. Despite the weak requirement for a long 5’UTR, a good AUG environment remains a requirement for rotavirus mRNAs translation.
Collapse
Affiliation(s)
- Matthieu Gratia
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Patrice Vende
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Annie Charpilienne
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Hilma Carolina Baron
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Cécile Laroche
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Emeline Sarot
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Stéphane Pyronnet
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Mariela Duarte
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- Université d’Evry Val d’Essonne, Département de Biologie, Evry, France
| | - Didier Poncet
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
13
|
Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. J Virol 2015; 89:8773-82. [PMID: 26063427 DOI: 10.1128/jvi.01402-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.
Collapse
|
14
|
Yamamoto SP, Kaida A, Ono A, Kubo H, Iritani N. Detection and characterization of a human G9P[4] rotavirus strain in Japan. J Med Virol 2015; 87:1311-8. [DOI: 10.1002/jmv.24121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Seiji P. Yamamoto
- Osaka City Institute of Public Health and Environmental Sciences; Osaka Japan
| | - Atsushi Kaida
- Osaka City Institute of Public Health and Environmental Sciences; Osaka Japan
| | | | - Hideyuki Kubo
- Osaka City Institute of Public Health and Environmental Sciences; Osaka Japan
| | - Nobuhiro Iritani
- Osaka City Institute of Public Health and Environmental Sciences; Osaka Japan
| |
Collapse
|
15
|
How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs. Biochem J 2014; 460:317-29. [PMID: 24870021 DOI: 10.1042/bj20140298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.
Collapse
|
16
|
Park R, El-Guindy A, Heston L, Lin SF, Yu KP, Nagy M, Borah S, Delecluse HJ, Steitz J, Miller G. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins. PLoS One 2014; 9:e92593. [PMID: 24705134 PMCID: PMC3976295 DOI: 10.1371/journal.pone.0092593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.
Collapse
Affiliation(s)
- Richard Park
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Su-Fang Lin
- Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Taiwan
| | - Kuan-Ping Yu
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mate Nagy
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Sumit Borah
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado Biofrontiers Institute, Boulder, Colorado, United States of America
| | | | - Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Leppek K, Stoecklin G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res 2013; 42:e13. [PMID: 24157833 PMCID: PMC3902943 DOI: 10.1093/nar/gkt956] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining the composition of messenger ribonucleoprotein (mRNP) particles is essential for a comprehensive understanding of the complex mechanisms underlying mRNA regulation, but is technically challenging. Here we present an RNA-based method to identify RNP components using a modified streptavidin (SA)-binding RNA aptamer termed S1m. By optimizing the RNA aptamer S1 in structure and repeat conformation, we improved its affinity for SA and found a 4-fold repeat of S1m (4×S1m) to be more efficient than the established MS2 and PP7 systems from bacteriophages. We then attached the AU-rich element (ARE) of tumor necrosis factor alpha (TNFα), a well-known RNA motif that induces mRNA degradation, via 4×S1m to a SA matrix, and used the resulting RNA affinity column to purify ARE-binding proteins (BPs) from cellular extracts. By quantitative mass spectrometry using differential dimethyl labeling, we identified the majority of established ARE-BPs and detected several RNA-BPs that had previously not been associated with AREs. For two of these proteins, Rbms1 and Roxan, we confirmed specific binding to the TNFα ARE. The optimized 4×S1m aptamer, therefore, provides a powerful tool for the discovery of mRNP components in a single affinity purification step.
Collapse
Affiliation(s)
- Kathrin Leppek
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany and DKFZ-ZMBH Alliance
| | | |
Collapse
|
18
|
Wentzel JF, Yuan L, Rao S, van Dijk AA, O'Neill HG. Consensus sequence determination and elucidation of the evolutionary history of a rotavirus Wa variant reveal a close relationship to various Wa variants derived from the original Wa strain. INFECTION GENETICS AND EVOLUTION 2013; 20:276-83. [PMID: 24056015 DOI: 10.1016/j.meegid.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/14/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The consensus nucleotide sequence of a human rotavirus Wa strain, with only a partially known passage history, was determined with sequence-independent amplification and next generation 454® pyrosequencing. This rotavirus Wa strain had the expected genome constellation of G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and was designated RVA/Human-tc/USA/WaCS/1974/G1P[8]. Phylogenetic analyses revealed a close relationship to four human rotavirus Wa variants (Wag5re, Wag7/8re, ParWa and VirWa) derived from the original 1974 human isolate. There were rearrangements in the Wag5re- and Wag7/8re variants in genome segments 5 (Wag5re) and 7 and 8 (Wag7/8re), which were not present in WaCS. Pairwise comparisons and a combined molecular clock for the Wa rotavirus genome indicated a close relationship between WaCS and ParWa and VirWa. These results suggest that WaCS is most probably an early cell culture adapted variant from the initial gnotobiotic pig passaged Wa isolate. Evolutionary pressure analysis identified a possible negative selected amino acid site in VP1 (genome segment 1) and a likely positive selected site in VP4 (genome segment 4). The WaCS may be more appropriate as a rotavirus Wa reference sequence than the current composite Wa reference genome.
Collapse
Affiliation(s)
- Johannes F Wentzel
- Biochemistry Division, North-West University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
19
|
Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, Heim S, Micci F. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013; 52:610-8. [PMID: 23580382 DOI: 10.1002/gcc.22057] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
Endometrial stromal sarcomas (ESS) are genetically heterogeneous uterine tumors in which a JAZF1-SUZ12 chimeric gene resulting from the chromosomal translocation t(7;17)(p15;q21) as well as PHF1 rearrangements (in chromosomal band 6p21) with formation of JAZF1-PHF1, EPC1-PHF1, and MEAF6-PHF1 chimeras have been described. Here, we investigated two ESS characterized cytogenetically by the presence of a der(22)t(X;22)(p11;q13). Whole transcriptome sequencing one of the tumors identified a ZC3H7-BCOR chimeric transcript. Reverse transciptase-PCR with the ZC3H7B forward and BCOR reverse primer combinations confirmed the presence of a ZC3H7-BCOR chimeric transcript in both ESS carrying a der(22)t(X;22) but not in a control ESS with t(1;6) and the MEAF6-PHF1 fusion. Sequencing of the amplified cDNA fragments showed that in both cases ESS exon 10 of ZC3H7B (from 22q13; accession number NM_017590 version 4) was fused to exon 8 of BCOR (from Xp11; accession number NM_001123385 version 1). Reciprocal multiple BCOR-ZC3H7B cDNA fragments were amplified in only one case suggesting that ZC3H7B-BCOR, on the der(22)t(X;22), is the pathogenetically important fusion gene. The putative ZC3H7B-BCOR protein would contain the tetratricopeptide repeats and LD motif from ZC3H7B and the AF9 binding site (1093-1233aa), the 3 ankyrin repeats (1410-1509 aa), and the NSPC1 binding site of BCOR. Although the presence of these motifs suggests various functions of the chimeric protein, it is possible that its most important role may be in epigenetic regulation. Whether or not the (patho)genetic subsets JAZF1-SUZ12, PHF1 rearrangements, and ZC3H7B-BCOR correspond to any phenotypic, let alone clinically important, differences in ESS remain unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 2012; 46:674-90. [PMID: 22681889 DOI: 10.1016/j.molcel.2012.05.021] [Citation(s) in RCA: 923] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 01/17/2023]
Abstract
Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation, and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. To our knowledge, nearly one-third were not previously annotated as RNA binding, and about 15% were not predictable by computational methods to interact with RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of mRNA binders with diverse molecular functions participating in combinatorial posttranscriptional gene-expression networks.
Collapse
|
21
|
Rotavirus-host cell interactions: an arms race. Curr Opin Virol 2012; 2:389-98. [PMID: 22658208 DOI: 10.1016/j.coviro.2012.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
Abstract
As obligate parasites, viruses depend on the synthetic machinery of the cell to translate their proteins and on the cell's energy and building blocks to replicate their genomes. Cells respond to virus invasions by eliciting diverse responses to eliminate the incoming parasitic agents. In turn, to establish a successful infection, viruses have developed different strategies to take over the cellular metabolic machinery and to cope with the defense mechanisms of the cell. The characterization of this battle has allowed the discovery of the different elements that viruses and cells have developed in the attempt to overcome the enemy. Here some of the strategies used by rotaviruses to hijack the protein synthesis apparatus of the cell to ensure the translation of their mRNAs, and to deal with the cellular stress and antiviral responses will be reviewed.
Collapse
|
22
|
Arnold MM, Brownback CS, Taraporewala ZF, Patton JT. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J Gen Virol 2012; 93:1483-1494. [PMID: 22442114 DOI: 10.1099/vir.0.041830-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rotavirus (RV) non-structural protein NSP3 forms a dimer that has binding domains for the translation initiation factor eIF4G and for a conserved 3'-terminal sequence of viral mRNAs. Through these activities, NSP3 has been proposed to promote viral mRNA translation by directing circularization of viral polysomes. In addition, by disrupting interactions between eIF4G and the poly(A)-binding protein (PABP), NSP3 has been suggested to inhibit translation of host polyadenylated mRNAs and to stimulate relocalization of PABP from the cytoplasm to the nucleus. Herein, we report the isolation and characterization of SA11-4Fg7re, an SA11-4F RV derivative that contains a large sequence duplication initiating within the genome segment (gene 7) encoding NSP3. Our analysis showed that mutant NSP3 (NSP3m) encoded by SA11-4Fg7re is almost twice the size of the wild-type protein and retains the capacity to dimerize. However, in comparison to wild-type NSP3, NSP3m has a decreased capacity to interact with eIF4G and to suppress the translation of polyadenylated mRNAs. In addition, NSP3m fails to induce the nuclear accumulation of PABP in infected cells. Despite the defective activities of NSP3m, the levels of viral protein and progeny virus produced in SA11-4Fg7re- and SA11-4F-infected cells were indistinguishable. Collectively, these data are consistent with a role for NSP3 in suppressing host protein synthesis through antagonism of PABP activity, but also suggest that NSP3 functions may have little or no impact on the efficiency of virus replication in widely used RV-permissive cell lines.
Collapse
Affiliation(s)
- Michelle M Arnold
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - Catie Small Brownback
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - Zenobia F Taraporewala
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8026, Room 6314, Bethesda, MD 20892-8026, USA
| |
Collapse
|
23
|
Dutta D, Chattopadhyay S, Bagchi P, Halder UC, Nandi S, Mukherjee A, Kobayashi N, Taniguchi K, Chawla-Sarkar M. Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J Biol Chem 2011; 286:20065-77. [PMID: 21489987 DOI: 10.1074/jbc.m111.231878] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225-258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225-258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225-258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225-258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Keryer-Bibens C, Legagneux V, Namanda-Vanderbeken A, Cosson B, Paillard L, Poncet D, Osborne HB. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain. Biochem Biophys Res Commun 2009; 390:302-6. [PMID: 19800313 DOI: 10.1016/j.bbrc.2009.09.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/24/2009] [Indexed: 11/26/2022]
Abstract
The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.
Collapse
Affiliation(s)
- Cécile Keryer-Bibens
- Université de Rennes 1, IFR 140, Institut de Génétique et Développement de Rennes, 35000 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kimura T, Kaneko Y, Yamada S, Ishihara H, Senda T, Iwamatsu A, Niki I. The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines. J Cell Sci 2008; 121:3092-8. [PMID: 18768935 DOI: 10.1242/jcs.030544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rab27a is involved in the control of membrane traffic, a crucial step in the regulated secretion. Typically, the guanosine triphosphate (GTP)-bound form has been considered to be active and, therefore, searching for proteins binding to the GTP-form has been attempted to look for their effectors. Here, we have identified the actin-bundling protein coronin 3 as a novel Rab27a effector that paradoxically bound guanosine diphosphate (GDP)-Rab27a in the pancreatic beta-cell line MIN6. Coronin 3 directly bound GDP-Rab27a through its beta-propeller structure. The most important insulin secretagogue glucose promptly shifted Rab27a from the GTP- to GDP-bound form. Knockdown of coronin 3 by RNAi resulted in the inhibition of phogrin (an insulin-granule-associated protein) internalization and the uptake of FM4-64 (a marker of endocytosis). Similar results were reproduced by disruption of the coronin-3-GDP-Rab27a interaction with the dominant-negative coronin 3, and coexpression of the GDP-Rab27a mutant rescued these changes. Taken together, our results indicate that interaction of GDP-Rab27a and coronin 3 is important in stimulus-endocytosis coupling, and that GTP- and GDP-Rab27a regulates insulin membrane recycling at the distinct stages.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, Hasama, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J Virol 2008; 82:11283-93. [PMID: 18799579 DOI: 10.1128/jvi.00872-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rotavirus nonstructural protein NSP3 interacts specifically with the 3' end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.
Collapse
|
27
|
Dutta S, Tan YJ. Structural and functional characterization of human SGT and its interaction with Vpu of the human immunodeficiency virus type 1. Biochemistry 2008; 47:10123-31. [PMID: 18759457 DOI: 10.1021/bi800758a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small glutamine-rich tetratricopeptide repeat protein (SGT) belongs to a family of cochaperones that interacts with both Hsp70 and Hsp90 via the so-called TPR domain. Here, we present the crystal structure of the TPR domain of human SGT (SGT-TPR), which shows that it contains typical features found in the structures of other TPR domains. Previous studies show that full-length SGT can bind to both Vpu and Gag of human immunodeficiency virus type 1 (HIV-1) and the overexpression of SGT in cells reduces the efficiency of HIV-1 particle release. We show that SGT-TPR can bind Vpu and reduce the amount of HIV-1 p24, which is the viral capsid, secreted from cells transfected with the HIV-1 proviral construct, albeit at a lower efficiency than full-length SGT. This indicates that the TPR domain of SGT is sufficient for the inhibition of HIV-1 particle release but the N- and/or C-terminus also have some contributions. The SGT binding site in Vpu was also identified by using peptide array and confirmed by GST pull-down assay.
Collapse
Affiliation(s)
- Sujit Dutta
- Collaborative Antiviral Research Group, Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673
| | | |
Collapse
|
28
|
Martínez-Salas E, Pacheco A, Serrano P, Fernandez N. New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol 2008; 89:611-626. [PMID: 18272751 DOI: 10.1099/vir.0.83426-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family Picornaviridae initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5' UTR. IRES elements consist of cis-acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA-RNA contacts between the 5' and 3' ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Almudena Pacheco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Paula Serrano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Noemi Fernandez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
29
|
Abstract
The rotavirus genome is composed of 11 segments of double-stranded RNA (dsRNA). Rotavirus is the leading etiological agent of severe gastroenteritis in infants and young children worldwide. Reverse genetics is the powerful and ideal methodology for the molecular study of virus replication, which enables the virus genome to be artificially manipulated. Very recently, we developed the first reverse genetics system for rotavirus, which enables one to generate an infectious rotavirus containing a novel gene segment derived from cDNA. In this review, we describe each steps of rotavirus replication to understand the background to the establishment of a reverse genetics system for rotavirus, and summarize the reverse genetics systems for segmented dsRNA viruses including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|
30
|
Tagawa K, Marubuchi S, Qi ML, Enokido Y, Tamura T, Inagaki R, Murata M, Kanazawa I, Wanker EE, Okazawa H. The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. J Neurosci 2007; 27:868-80. [PMID: 17251428 PMCID: PMC6672912 DOI: 10.1523/jneurosci.4522-06.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reason why vulnerabilities to mutant polyglutamine (polyQ) proteins are different among neuronal subtypes is mostly unknown. In this study, we compared the gene expression profiles of three types of primary neurons expressing huntingtin (htt) or ataxin-1. We found that heat shock protein 70 (hsp70), a well known chaperone molecule protecting neurons in the polyQ pathology, was dramatically upregulated only by mutant htt and selectively in the granule cells of the cerebellum. Granule cells, which are insensitive to degeneration in the human Huntington's disease (HD) pathology, lost their resistance by suppressing hsp70 with siRNA, whereas cortical neurons, affected in human HD, gained resistance by overexpressing hsp70. This indicates that induction levels of hsp70 are a critical factor for determining vulnerabilities to mutant htt among neuronal subtypes. CAT (chloramphenicol acetyltransferase) assays showed that CBF (CCAAT box binding factor, CCAAT/enhancer binding protein zeta) activated, but p53 repressed transcription of the hsp70 gene in granule cells. Basal and mutant htt-induced expression levels of p53 were remarkably lower in granule cells than in cortical neurons, suggesting that different magnitudes of p53 are linked to distinct induction levels of hsp70. Surprisingly, however, heat shock factor 1 was not activated in granule cells by mutant htt. Collectively, different levels of hsp70 among neuronal subtypes might be involved in selective neuronal death in the HD pathology.
Collapse
Affiliation(s)
- Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shigeki Marubuchi
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Toyama Chemical Company, Toyama 930-8508, Japan
| | - Mei-Ling Qi
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| | - Yasushi Enokido
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Reina Inagaki
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Miho Murata
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| | - Ichiro Kanazawa
- National Center for Neurology and Psychiatry, Kodaira 187-8502, Japan, and
| | - Erich E. Wanker
- Max-Delbrück Center for Molecular Medicine, D-13125 Berlin, Germany
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and 21st Century Center of Excellence Program for Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawagoe 332-0012, Japan
| |
Collapse
|
31
|
Komarova AV, Brocard M, Kean KM. The case for mRNA 5' and 3' end cross talk during translation in a eukaryotic cell. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2007; 81:331-67. [PMID: 16891176 DOI: 10.1016/s0079-6603(06)81009-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Anastassia V Komarova
- Unité Postulante Régulation de la Traduction Eucaryote et Virale, Institut Pasteur, CNRS URA 1966, 75724 Paris cedex 15, France
| | | | | |
Collapse
|
32
|
Komoto S, Taniguchi K. Reverse genetics systems of segmented double-stranded RNA viruses including rotavirus. Future Virol 2006. [DOI: 10.2217/17460794.1.6.833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rotavirus genome is composed of 11 segments of double-stranded (ds)RNA. Recent studies have elucidated the precise mechanisms in transcription and replication of rotavirus RNA mainly by in vitro experiments. However, the ideal methodology for the molecular study of rotavirus replication is reverse genetics, which enables the viral genome to be artifically manipulated. Since the development of the first reverse genetics system for RNA virus in bacteriophage QB in 1978, the methodology has been developed for a variety of RNA viruses with plus-strand, minus-strand or dsRNA as a genome. However, there have been no reports on the reverse genetics of the viruses in the family Reoviridae with a genome of 10–12 segmented dsRNA, except for reovirus. This review describes the replication cycle of rotavirus with the aim of providing a general background to the development of rotavirus reverse genetics, and summarizes the reverse genetics system for dsRNA viruses, including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
33
|
Chaturvedi UC, Shrivastava R. Interaction of viral proteins with metal ions: role in maintaining the structure and functions of viruses. ACTA ACUST UNITED AC 2005; 43:105-14. [PMID: 15681139 PMCID: PMC7110337 DOI: 10.1016/j.femsim.2004.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/17/2004] [Indexed: 01/29/2023]
Abstract
Metal ions are integral part of some viral proteins and play an important role in their survival and pathogenesis. Zinc, magnesium and copper are the commonest metal ion that binds with viral proteins. Metal ions participate in maturation of genomic RNA, activation and catalytic mechanisms, reverse transcription, initial integration process and protection of newly synthesized DNA, inhibition of proton translocation (M2 protein), minus‐ and plus‐strand transfer, enhance nucleic acid annealing, activation of transcription, integration of viral DNA into specific sites and act as a chaperone of nucleic acid. Metal ions are also required for nucleocapsid protein‐transactivation response (TAR)–RNA interactions. In certain situations more than one metal ion is required e.g. RNA cleavage by RNase H. This review underscores the importance of metal ions in the survival and pathogenesis of a large group of viruses and studies on structural basis for metal binding should prove useful in the early design and development of viral inhibitors.
Collapse
Affiliation(s)
- Umesh C Chaturvedi
- Biomembrane Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow 226001, India.
| | | |
Collapse
|
34
|
Perry C, Sastry R, Nasrallah IM, Stover PJ. Mimosine attenuates serine hydroxymethyltransferase transcription by chelating zinc. Implications for inhibition of DNA replication. J Biol Chem 2004; 280:396-400. [PMID: 15531579 DOI: 10.1074/jbc.m410467200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-mimosine is a naturally occurring plant amino acid and iron chelator that arrests the cell cycle in the late G(1) phase, although its mechanism of action is not known. Some studies indicate that mimosine prevents the initiation of DNA replication, whereas other studies indicate that mimosine disrupts elongation of the replication fork by impairing deoxyribonucleotide synthesis by inhibiting the activity of the iron-dependent enzyme ribonucleotide reductase and the transcription of the cytoplasmic serine hydroxymethyltransferase gene (SHMT1). In this study, the mechanism for mimosine-induced inhibition of SHMT1 transcription was elucidated. A mimosine-responsive transcriptional element was localized within the first 50 base pairs of the human SHMT1 promoter by deletion analyses and gel mobility shift assays. The 50-base-pair sequence contains a consensus zinc-sensing metal regulatory element (MRE) at position -44 to -38, and mutation of the MRE attenuated mimosine-induced transcription repression. Mimosine treatment eliminated MRE- and Sp1-binding activity in nuclear extracts from MCF-7 cells but not in nuclear extracts from a mimosine-resistant cell line, MCF-7/2a. MCF-7 cells cultured in zinc-depleted medium for more than 16 days were viable and lacked cytoplasmic serine hydroxymethyltransferase protein, confirming that mimosine inhibits SHMT1 transcription by chelating zinc. The disruption of DNA-protein interactions by zinc chelation provides a general mechanism for the inhibitory effects of mimosine on nuclear processes, including replication and transcription. Furthermore, this study establishes that SHMT1 is a zinc-inducible gene, which provides the first mechanism for the regulation of folate-mediated one-carbon metabolism by zinc.
Collapse
Affiliation(s)
- Cheryll Perry
- Cornell University, Division of Nutritional Sciences, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|