1
|
Yang Q, Barbachano-Guerrero A, Fairchild LM, Rowland TJ, Dowell RD, Allen MA, Warren CJ, Sawyer SL. Macrophages derived from human induced pluripotent stem cells (iPSCs) serve as a high-fidelity cellular model for investigating HIV-1, dengue, and influenza viruses. J Virol 2024; 98:e0156323. [PMID: 38323811 PMCID: PMC10949493 DOI: 10.1128/jvi.01563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.
Collapse
Affiliation(s)
- Qing Yang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Laurence M. Fairchild
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
| | - Cody J. Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Anasir MI, Poh CL. Discovery of B-cell epitopes for development of dengue vaccines and antibody therapeutics. Med Microbiol Immunol 2022; 211:1-18. [PMID: 35059822 DOI: 10.1007/s00430-021-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Dengue is one of the most frequently transmitted viral infections globally which creates a serious burden to the healthcare system in many countries in the tropical and subtropical regions. To date, no vaccine has demonstrated balanced protection against the four dengue serotypes. Dengvaxia as the only vaccine that has been licensed for use in endemic areas has shown an increased risk in dengue-naïve vaccines to develop severe dengue. A crucial element in protection from dengue infection is the neutralizing antibody responses. Therefore, the identification of protective linear B-cell epitopes can guide vaccine design and facilitate the development of monoclonal antibodies as dengue therapeutics. This review summarizes the identification of dengue B-cell epitopes within the envelope (E) protein of dengue that can be incorporated into peptide vaccine constructs. These epitopes have been identified through approaches such as bioinformatics, three-dimensional structure analysis of antibody-dengue complexes, mutagenesis/alanine scanning and escape mutant studies. Additionally, the therapeutic potential of monoclonal antibodies targeting the E protein of dengue is reviewed. This can provide a basis for the design of future dengue therapies.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam, Selangor, Malaysia
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
4
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
5
|
Dussupt V, Modjarrad K, Krebs SJ. Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Front Immunol 2021; 11:621043. [PMID: 33664734 PMCID: PMC7921836 DOI: 10.3389/fimmu.2020.621043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
The unprecedented 2015-2016 Zika outbreak in the Americas sparked global concern and drove the rapid deployment of vaccine and therapeutic countermeasures against this re-emerging pathogen. Alongside vaccine development, a number of potent neutralizing antibodies against Zika and related flaviviruses have been identified in recent years. High-throughput antibody isolation approaches have contributed to a better understanding of the B cell responses elicited following infection and/or vaccination. Structure-based approaches have illuminated species-specific and cross-protective epitopes of therapeutic value. This review will highlight previously described monoclonal antibodies with the best therapeutic potential against ZIKV and related flaviviruses, and discuss their implications for the rational design of better vaccine strategies.
Collapse
Affiliation(s)
- Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shelly J. Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
6
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
7
|
Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat Med 2020; 26:228-235. [PMID: 32015557 PMCID: PMC7018608 DOI: 10.1038/s41591-019-0746-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023]
Abstract
Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs. 1-3). Despite advances in vaccine development, it remains unclear how ZIKV vaccination affects immune responses in humans with prior flavivirus immunity. Here we show that a single-dose immunization of ZIKV purified inactivated vaccine (ZPIV)4-7 in a dengue virus (DENV)-experienced human elicited potent cross-neutralizing antibodies to both ZIKV and DENV. Using a unique ZIKV virion-based sorting strategy, we isolated and characterized multiple antibodies, including one termed MZ4, which targets a novel site of vulnerability centered on the Envelope (E) domain I/III linker region and protects mice from viremia and viral dissemination following ZIKV or DENV-2 challenge. These data demonstrate that Zika vaccination in a DENV-experienced individual can boost pre-existing flavivirus immunity and elicit protective responses against both ZIKV and DENV. ZPIV vaccination in Puerto Rican individuals with prior flavivirus experience yielded similar cross-neutralizing potency after a single vaccination, highlighting the potential benefit of ZIKV vaccination in flavivirus-endemic areas.
Collapse
|
8
|
Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR, Peterson GJ, Higgs S, Huang YJS. Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral Res 2019; 174:104675. [PMID: 31825852 DOI: 10.1016/j.antiviral.2019.104675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus endemic in the Asia Pacific region. Despite use of several highly effective vaccines, it is estimated that up to 44,000 new cases of Japanese encephalitis (JE) occur every year including 14,000 deaths and 24,000 survivors with permanent sequelae. Humoral immunity induced by vaccination is critical for effective protection. Potently neutralizing antibodies reactive with the JEV envelope (E) protein are important since protective immune responses induced by both live-attenuated and inactivated JE vaccines target the E protein. Our understanding of how vaccine-induced humoral immunity protects vaccinees from morbidity and mortality is, however, limited and largely obtained from in vitro studies. With the exception of neurovirulence mouse models, very few platforms are available for evaluating the protective efficacy of neutralizing antibodies against JEV in vivo. Swine are a major amplifying host in the natural JEV transmission cycle and develop multiple pathological outcomes similar to humans infected with JEV. In this study, prophylactic passive immunization was performed in a miniature swine model, using two vaccination-induced monoclonal antibodies (mAb), JEV-31 and JEV-169. These were selected as representatives for antibodies reactive with the major antigenic structures in the E protein of JEV and related flaviviruses. JEV-31 recognizes the lateral ridge of E protein domain III (EDIII) whilst JEV-169 has a broad footprint of binding involving residues throughout domains I (EDI) and II (EDII) of the E protein. Detection of neutralizing antibodies in the serum of immunized animals mimics the presence of neutralizing antibodies in vaccinated individuals. Passive immunization with both mAbs significantly reduced the severity of diseases that resemble the symptoms of human JE including fever, viremia, viral shedding, systemic infection, and neuroinvasion. In contrast to the uniformed decrease of viral loads in lymphoid and central nervous systems, distinct kinetics in the onset of fever and viremia between animals receiving JEV-31 and JEV-169 suggest potential differences in immune protection mechanisms between anti-EDI and anti-EDIII neutralizing antibodies elicited by vaccination. Our data demonstrate the feasibility of using swine models in characterizing the protective humoral immunity against JEV and increase our understanding of how clonal populations of anti-E mAbs derived from JE vaccination protect against infection in vivo.
Collapse
Affiliation(s)
- Christian L Young
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Susan M Hettenbach
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley M Zelenka
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Konner R Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Gregory J Peterson
- University Research Compliance Office, Kansas State University, Manhattan, KS, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
9
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Xu L, Li B, Huang M, Xie K, Li D, Li Y, Gu H, Fang J. Critical Role of Kupffer Cell CD89 Expression in Experimental IgA Nephropathy. PLoS One 2016; 11:e0159426. [PMID: 27437939 PMCID: PMC4954728 DOI: 10.1371/journal.pone.0159426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/01/2016] [Indexed: 02/05/2023] Open
Abstract
Although IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, its etiology remains only partly understood. It is clear that the pathogenesis of IgAN involves the formation of macromolecular IgA1 complexes and increased levels of serum IgA1 and IgA1-immune complexes(IC), due to defective IgA1 clearance. Previous studies suggest that the blood and tissue myeloid cell-expressed IgA Fc receptor (FcαR/CD89) mediates IgA-IC clearance and its dysfunction, via decreased activity or excessive levels of soluble FcαR/sCD89 induces IgAN. Such a mechanism requires robust stimulation of IgAN levels via forced expression of CD89. In the absence of unequivocal evidence supporting such a mechanism to date, we attempted to test the extent of CD89-evoked IgAN by generating a transgenic mouse strain expressing human CD89 under the control of murine CD14 promotor. No deposition of IgA-CD89 complexes or glomerulonephritis was detected, however. Further studies showed that elimination of murine IgA was mediated by Kupffer cells. In patients, however, CD89/IgA complexes were detected, and injection of patient IgA induced IgAN-like features in CD89 Tg mice. In transgenic mice, IgAN pathogenesis involves impaired clearance of abnormal IgA via CD89, primarily by the Kupffer cells. Conditional IgAN progression in CD89 transgenic mice thus reveals important aspects of IgAN pathogenesis.
Collapse
Affiliation(s)
- Lijun Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengwen Huang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kun Xie
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dong Li
- Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - You Li
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hua Gu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail: (JF); (HG)
| | - Jianmin Fang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Tongji Hospital, Tongji University, Shanghai, China
- Tongji University Suzhou Institute, Suzhou, Jiangsu, China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (JF); (HG)
| |
Collapse
|
11
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
12
|
Böldicke T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M. Generation of Recombinant Antibodies Against Toxins and Viruses by Phage Display for Diagnostics and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:55-76. [PMID: 27236552 PMCID: PMC7121732 DOI: 10.1007/978-3-319-32805-8_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibody phage display is an in vitro technology to generate recombinant antibodies. In particular for pathogens like viruses or toxins, antibody phage display is an alternative to hybridoma technology, since it circumvents the limitations of the immune system. Phage display allows the generation of human antibodies from naive antibody gene libraries when either immunized patients are not available or immunization is not ethically feasible. This technology also allows the construction of immune libraries to select in vivo affinity matured antibodies if immunized patients or animals are available.In this review, we describe the generation of human and human-like antibodies from naive antibody gene libraries and antibodies from immune antibody gene libraries. Furthermore, we give an overview about phage display derived recombinant antibodies against viruses and toxins for diagnostics and therapy.
Collapse
Affiliation(s)
- Thomas Böldicke
- grid.7490.aRecombinant protein exprsn/Intrabdy unit, Helmholtz-Centre for Infection Rese, Braunschweig, Germany
| | - Sebastian Miethe
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
13
|
The development of therapeutic antibodies against dengue virus. Antiviral Res 2016; 128:7-19. [PMID: 26794397 DOI: 10.1016/j.antiviral.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Dengue virus, a positive-sense RNA virus, is one of the major human pathogens transmitted by mosquitoes. However, no fully effective licensed dengue vaccines or therapeutics are currently available. Several potent neutralizing antibodies against DENV have been isolated from mice and humans, and the characterization of their properties by biochemical and biophysical methods have revealed important insights for development of therapeutic antibodies. In this review, we summarize recently reported antibody-antigen complex structures, their likely neutralization mechanisms and enhancement propensities, as well as their prophylactic and therapeutic capabilities in mouse models. This article forms part of a symposium on flavivirus drug discovery in the journal Antiviral Research.
Collapse
|
14
|
Mores CN, Christofferson RC, Davidson SA. The role of the mosquito in a dengue human infection model. J Infect Dis 2014; 209 Suppl 2:S71-8. [PMID: 24872400 DOI: 10.1093/infdis/jiu110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent efforts to combat the growing global threat of dengue disease, including deployment of phase IIb vaccine trials, has continued to be hindered by uncertainty surrounding equitable immune responses of serotypes, relative viral fitness of vaccine vs naturally occurring strains, and the importance of altered immune environments due to natural delivery routes. Human infection models can significantly improve our understanding of the importance of certain phenotypic characteristics of viral strains, and inform strain selection and trial design. With human models, we can further assess the importance of the natural delivery route of DENV and/or the accompanying mosquito salivary milieu. Accordingly, we discuss the use of mosquitoes in such a human infection model with DENV, identify important considerations, and make preliminary recommendations for deployment of such a mosquito improved DENV human infection model (miDHIM).
Collapse
Affiliation(s)
- Christopher N Mores
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Rebecca C Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Silas A Davidson
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
15
|
Luo YY, Feng JJ, Zhou JM, Yu ZZ, Fang DY, Yan HJ, Zeng GC, Jiang LF. Identification of a novel infection-enhancing epitope on dengue prM using a dengue cross-reacting monoclonal antibody. BMC Microbiol 2013; 13:194. [PMID: 23987307 PMCID: PMC3765915 DOI: 10.1186/1471-2180-13-194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/26/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is the most important arthropod- borne viral disease in human, but antiviral therapy and approved vaccines remain unavailable due to antibody-dependent enhancement (ADE) phenomenon. Many studies showed that pre-membrane (prM)-specific antibodies do not efficiently neutralize DENV infection but potently promote ADE infection. However, most of the binding epitopes of these antibodies remain unknown. RESULTS In the present study, we characterized a DENV cross-reactive monoclonal antibody (mAb), 4D10, that neutralized poorly but potently enhanced infection of four standard DENV serotypes and immature DENV (imDENV) over a broad range of concentration. In addition, the epitope of 4D10 was successfully mapped to amino acid residues 14 to18 of DENV1-4 prM protein using a phage-displayed peptide library and comprehensive bioinformatics analysis. We found that the epitope was DENV serocomplex cross-reactive and showed to be highly immunogenic in Balb/c mice. Furthermore, antibody against epitope peptide PL10, like 4D10, showed broad cross-reactivity and weak neutralizing activtity with four standard DENV serotypes and imDENV but significantly promoted ADE infection. These results suggested 4D10 and anti-PL10 sera were infection-enhancing antibodies and PL10 was infection-enhancing epitope. CONCLUSIONS We mapped the epitope of 4D10 to amino acid residues 14 to18 of DENV1-4 prM and found that this epitope was infection-enhancing. These findings may provide significant implications for future vaccine design and facilitate understanding the pathogenesis of DENV infection.
Collapse
Affiliation(s)
- Ya-Yan Luo
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Jie Feng
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Mei Zhou
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Zhun Yu
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan-Yun Fang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Jun Yan
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Gu-Cheng Zeng
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Fang Jiang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 2013; 87:8826-42. [PMID: 23785205 DOI: 10.1128/jvi.01314-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.
Collapse
|
17
|
Cockburn JJB, Navarro Sanchez ME, Goncalvez AP, Zaitseva E, Stura EA, Kikuti CM, Duquerroy S, Dussart P, Chernomordik LV, Lai CJ, Rey FA. Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J 2011; 31:767-79. [PMID: 22139356 DOI: 10.1038/emboj.2011.439] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/31/2011] [Indexed: 11/09/2022] Open
Abstract
The four serotypes of dengue virus (DENV-1 to -4) cause the most important emerging viral disease. Protein E, the principal viral envelope glycoprotein, mediates fusion of the viral and endosomal membranes during virus entry and is the target of neutralizing antibodies. However, the epitopes of strongly neutralizing human antibodies have not been described despite their importance to vaccine development. The chimpanzee Mab 5H2 potently neutralizes DENV-4 by binding to domain I of E. The crystal structure of Fab 5H2 bound to E from DENV-4 shows that antibody binding prevents formation of the fusogenic hairpin conformation of E, which together with in-vitro assays, demonstrates that 5H2 neutralizes by blocking membrane fusion in the endosome. Furthermore, we show that human sera from patients recovering from DENV-4 infection contain antibodies that bind to the 5H2 epitope region on domain I. This study, thus, provides new information and tools for effective vaccine design to prevent dengue disease.
Collapse
Affiliation(s)
- Joseph J B Cockburn
- Département de Virologie, Institut Pasteur, Unité de Virologie Structurale, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NTH, Sukupolvi-Petty S, Navarro-Sanchez E, Young PR, de Silva AM, Rey FA, Varani L, Whitehead SS, Diamond MS, Harris E, Lanzavecchia A, Sallusto F. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 2010; 8:271-83. [PMID: 20833378 PMCID: PMC3884547 DOI: 10.1016/j.chom.2010.08.007] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/29/2010] [Accepted: 07/27/2010] [Indexed: 01/05/2023]
Abstract
Antibodies protect against homologous Dengue virus (DENV) infection but can precipitate severe dengue by promoting heterotypic virus entry via Fcγ receptors (FcγR). We immortalized memory B cells from individuals after primary or secondary infection and analyzed anti-DENV monoclonal antibodies (mAbs) thus generated. MAbs to envelope (E) protein domain III (DIII) were either serotype specific or cross-reactive and potently neutralized DENV infection. DI/DII- or viral membrane protein prM-reactive mAbs neutralized poorly and showed broad cross-reactivity with the four DENV serotypes. All mAbs enhanced infection at subneutralizing concentrations. Three mAbs targeting distinct epitopes on the four DENV serotypes and engineered to prevent FcγR binding did not enhance infection and neutralized DENV in vitro and in vivo as postexposure therapy in a mouse model of lethal DENV infection. Our findings reveal an unexpected degree of cross-reactivity in human antibodies against DENV and illustrate the potential for an antibody-based therapy to control severe dengue.
Collapse
Affiliation(s)
| | - Katherine L. Williams
- Division of Infectious Diseases, University of California, Berkeley, CA 94720-7354, USA
| | - Cameron P. Simmons
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City Viet Nam
| | - Annalisa Macagno
- Institute for Research in Biomedicine, Bellinzona, 6500, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Bellinzona, 6500, Switzerland
| | - Nguyen Than Ha Quyen
- Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City Viet Nam
| | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Paul R. Young
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Félix A. Rey
- Department of Virology, Institute Pasteur, Paris, 75724, France
| | - Luca Varani
- Institute for Research in Biomedicine, Bellinzona, 6500, Switzerland
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892-8133, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eva Harris
- Division of Infectious Diseases, University of California, Berkeley, CA 94720-7354, USA
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Bellinzona, 6500, Switzerland
| |
Collapse
|
19
|
The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739. [PMID: 20644615 PMCID: PMC2903468 DOI: 10.1371/journal.pntd.0000739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/02/2023] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo. Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.
Collapse
|
20
|
Cassetti MC, Durbin A, Harris E, Rico-Hesse R, Roehrig J, Rothman A, Whitehead S, Natarajan R, Laughlin C. Report of an NIAID workshop on dengue animal models. Vaccine 2010; 28:4229-34. [PMID: 20434551 DOI: 10.1016/j.vaccine.2010.04.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/07/2010] [Accepted: 04/14/2010] [Indexed: 12/20/2022]
Abstract
Dengue is a mosquito-borne viral disease of humans that has re-emerged in many parts of the world and has become an important international public health threat. Dengue incidence and geographical spread has dramatically increased in the last few decades and is now affecting most tropical and sub-tropical regions of the world. Despite extensive research efforts for several decades, no vaccines or therapeutics are currently available to prevent and treat dengue infections. One of the main obstacles to the development of countermeasures has been the lack of good animal models that recapitulate dengue pathogenesis in humans and reliably predict the safety and efficacy of countermeasures against dengue. In September 2008, the National Institute of Allergy and Infectious Diseases (NIAID) held a workshop to consider the current state-of-the-art developments in animal models for dengue and discuss strategies to accelerate progress in this field. This report summarizes the main discussions and recommendations that resulted from the meeting.
Collapse
Affiliation(s)
- M Cristina Cassetti
- National Institute of Allergy and Infectious Diseases, 6610 Rockledge Drive, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Duan T, Ferguson M, Yuan L, Xu F, Li G. Human Monoclonal Fab Antibodies Against West Nile Virus and its Neutralizing Activity Analyzed in Vitro and in Vivo. JOURNAL OF ANTIVIRALS & ANTIRETROVIRALS 2009; 1:36-42. [PMID: 20505850 PMCID: PMC2875541 DOI: 10.4172/jaa.1000005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The disease progression with West Nile virus (WNV) infection in humans leads to meningitis or encephalitis and may cause death, particularly among elderly and immunocompromised individuals. Passive immunity using immunoglobulins has shown efficacy in treating some patients with WNV infection, which makes the development of human anti-WNV antibodies significant. The goal of this study was to construct a Fab-specific phage display library against WNV, and to identify and select clones with neutralizing activities. Total RNA was extracted from peripheral blood lymphocytes (PBLs) of two immunized individuals, and RT-PCR was used to amplify the Fab fragments containing the heavy (V(H)) and light (V(L)) chains. The amplified genes were sequentially cloned into the recombinant antibody expression vector pComb3-H, and the Fab-specific phage display library was packaged with helper phage VCS-M13. Five rounds of panning were carried out with WNV E protein domain III, and then binding antibodies were selected by ELISA. Antigen binding specificity, complementarity determining region (CDR) sequence of V(H) and V(L), and neutralizing activity against WNV were analyzed in vitro and in vivo. Eight Fab monoclonal antibodies recognized E protein domain III from a library of 7×10(7) clones/ml. Of the eight, one (Fab 1), exhibited significant neutralizing activity, and completely blocked 100 pfu WNV infection in Vero cells at a concentration 160 μg/ml. In contrast, Fab 13 and Fab 25, showed weaker neutralizing activities, and modestly blocked 100 pfu WNV infections at concentrations of 320 μg/ml and 160 μg/ml, respectively. However, animal studies showed that Fab 1 failed to protect mice from death at the concentration of 160μg/ml indicating that the neutralizing potential of an antibody in vivo is determined by the strength of binding and the abundance of its epitope for the virion.
Collapse
Affiliation(s)
- Tao Duan
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA 77555-0435
| | - Monique Ferguson
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA 77555-0435
| | - Lintian Yuan
- Department of Pediatric Dentistry, College of Stomatology, Fourth Military Medical University, Xi’an, China 710032
| | - Fangling Xu
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA 77555-0435
| | - Guangyu Li
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA 77555-0435
| |
Collapse
|
22
|
Duan T, Wang XF, Xiao SY, Gu SY, Liang MF. Recombinant human IgG antibodies against human cytomegalovirus. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:372-380. [PMID: 19133610 DOI: 10.1016/s0895-3988(08)60057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To study the passive immunization with human monoclonal antibodies as for prophylaxis of human cytomegalovirus (HCMV) infection. METHODS Fab monoclonal antibodies to HCMV were recovered by repertoire cloning of mRNA from a HCMV infected individual. Antigen binding specificity, CDR sequence of V(H) and V(L) and neutralizing activity on HCMV AD169 stain were analyzed in vitro. The light and heavy chain Fd fragment genes of Fab antibodies were further cloned into a recombinant baculovirus expression vector pAC-kappa-Fc to express intact IgG. Secreted products were purified with affinity chromatography using protein G. RESULTS SDS-PAGE and Western blot confirmed the expression of the intact IgG. Immuno-blotting and -precipitation were used to identify HCMV proteins. One Fab monoclonal antibody recognized a conformational HCMV protein. CONCLUSION IgG antibodies can neutralize the HCMV AD169 strain efficiently at a titer of 2.5 microg/mL and may prove valuable for passive immunoprophylaxis against HCMV infection in humans.
Collapse
Affiliation(s)
- Tao Duan
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | | | | | | | | |
Collapse
|
23
|
Shibuya T, Yamashiro T, Masaike Y, Ohuchi M, Uechi GI, Nishizono A. Identification of a human monoclonal Fab with neutralizing activity against H3N2 influenza A strain from a newly constructed human Fab library. Microbiol Immunol 2008; 52:162-70. [PMID: 18402598 DOI: 10.1111/j.1348-0421.2008.00025.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A combinatorial Fab library was constructed in pComb3H phagemid vectors, using RNA from peripheral blood lymphocytes of a healthy volunteer who had recovered from an influenza A virus infection. The library contained approximately 1.3 x 10(8)E. coli transformants. Bio-panning was carried out against an influenza vaccine containing components of influenza A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shandong/7/97 for the enrichment of phages displaying human Fab specific to the viral proteins. E. coli transformed with IF1A11, 1 of 94 randomly selected clones, displayed a human Fab antibody molecule (FabIF1A11) with efficient neutralizing activity against H3N2 influenza A virus strains. The purified FabIF1A11 demonstrated neutralizing activity against A/Okayama/6/01 (H3N2) and A/Kitakyushu/159/93 (H3N2) with 50% plaque reduction neutralization titers of 0.11 microg/ml (2.2 nM) and 1.4 microg/ml (28 nM) respectively. However, FabIF1A11 did not show neutralizing activity against the influenza A virus strain A/USSR/77 (H1N1) or the influenza B virus strain B/Kanagawa/73, even at a concentration of 20 microg/ml (400 nM). The Kd of FabIF1A11 was calculated as 3.6 x 10(-9) M. FabIF1A11 was estimated to recognize a conformational epitope on the hemagglutinin of A/Okayama/6/01 (H3N2). The human monoclonal Fab product FabIF1A11 may have potential as a therapeutic or short-term prophylactic molecule for humans with influenza A H3N2 infection.
Collapse
Affiliation(s)
- Tadamasa Shibuya
- Department of Infectious Diseases, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.4.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dengue fever is gaining increased attention as a major global health problem. It occurs annually in 50–100 million people in more than 100 countries, and places half a million people at risk of life-threatening diseases: dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The pathogenic mechanisms causing DHF/DSS are not clearly understood. This article reviews cellular and molecular mechanisms that might be responsible for the initiation of the pathogenic processes, including hypotheses for DHF/DSS, dengue-permissive target cells, putative dengue receptors, neutralizing and enhancing antibodies to dengue virus, mechanisms of vascular plasma leakage, innate immune response in dengue infection and antibody-dependent enhancement of dengue infection. While reviewing the literature, the article also gives the author’s opinion on perceived areas of importance for future research in human dengue pathogenesis.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, 601 Elmwood Avenue, Box 689, Room 3-5103, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Humanized monoclonal antibodies derived from chimpanzee Fabs protect against Japanese encephalitis virus in vitro and in vivo. J Virol 2008; 82:7009-21. [PMID: 18480437 DOI: 10.1128/jvi.00291-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Japanese encephalitis virus (JEV)-specific Fab antibodies were recovered by repertoire cloning from chimpanzees initially immunized with inactivated JE-VAX and then boosted with attenuated JEV SA14-14-2. From a panel of 11 Fabs recovered by different panning strategies, three highly potent neutralizing antibodies, termed Fabs A3, B2, and E3, which recognized spatially separated regions on the virion, were identified. These antibodies reacted with epitopes in different domains: the major determinant for Fab A3 was Lys(179) (domain I), that for Fab B2 was Ile(126) (domain II), and that for Fab E3 was Gly(302) (domain III) in the envelope protein, suggesting that these antibodies neutralize the virus by different mechanisms. Potent neutralizing antibodies reacted with a low number of binding sites available on the virion. These three Fabs and derived humanized monoclonal antibodies (MAbs) exhibited high neutralizing activities against a broad spectrum of JEV genotype strains. Demonstration of antibody-mediated protection of JEV infection in vivo is provided using the mouse encephalitis model. MAb B2 was most potent, with a 50% protective dose (ED(50)) of 0.84 microg, followed by MAb A3 (ED(50) of 5.8 microg) and then MAb E3 (ED(50) of 24.7 microg) for a 4-week-old mouse. Administration of 200 microg/mouse of MAb B2 1 day after otherwise lethal JEV infection protected 50% of mice and significantly prolonged the average survival time compared to that of mice in the unprotected group, suggesting a therapeutic potential for use of MAb B2 in humans.
Collapse
|
26
|
Cabezas S, Rojas G, Pavon A, Alvarez M, Pupo M, Guillen G, Guzman MG. Selection of phage-displayed human antibody fragments on Dengue virus particles captured by a monoclonal antibody: Application to the four serotypes. J Virol Methods 2008; 147:235-43. [DOI: 10.1016/j.jviromet.2007.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/01/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
27
|
Arakawa M, Yamashiro T, Uechi GI, Tadano M, Nishizono A. Construction of human Fab (gamma1/kappa) library and identification of human monoclonal Fab possessing neutralizing potency against Japanese encephalitis virus. Microbiol Immunol 2007; 51:617-25. [PMID: 17579273 DOI: 10.1111/j.1348-0421.2007.tb03948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combinatorial human Fab library was constructed using RNAs from peripheral blood lymphocytes obtained from Japanese encephalitis virus hyper-immune volunteers on pComb3H phagemid vector. The size of the constructed Fab library was 3.3x10(8) Escherichia coli transformants. The library was panned 3 times on the purified Japanese encephalitis virus (JEV) virion, and phage clones displaying JEV antigen-specific Fab were enriched. The enriched phage pool was then screened for clones producing Fab molecule with JEV neutralizing activity by the focus reduction-neutralizing test. Among 188 randomly selected clones, 9 Fab preparations revealed neutralizing activities against JEV strain Nakayama. An E. coli transformed with TJE12B02 clone, which produced human monoclonal Fab with the highest neutralizing activity was cultured in a large scale, and the Fab molecule was purified using affinity chromatography. The purified FabTJE12B02 showed the 50% focus reduction endpoint at the concentration of 50.2 microg/ml (ca. 1,000 nM) when JEV strain Nakayama was used. The FabTJE12B02 recognized E protein of JEV strain Nakayama, and the dissociation equilibrium constant (Kd) of the FabTJE12B02 against purified JEV antigen was calculated as 1.21x10(-8) M. Sequence analysis demonstrated that TJE12B02 used a VH sequence homologous to the VH3 family showing 88.8% homology to germline VH3-23, and used a Vkappa sequence homologous to the VkappaII subgroup showing 92.8% homology to germline A17.
Collapse
Affiliation(s)
- Mitsue Arakawa
- Department of Infectious Diseases, Faculty of Medicine, Oita University, Japan
| | | | | | | | | |
Collapse
|
28
|
Lai CJ, Goncalvez AP, Men R, Wernly C, Donau O, Engle RE, Purcell RH. Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody. J Virol 2007; 81:12766-74. [PMID: 17881450 PMCID: PMC2169078 DOI: 10.1128/jvi.01420-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The chimpanzee monoclonal antibody (MAb) 5H2 is specific for dengue virus type 4 (DENV-4) and neutralizes the virus at a high titer in vitro. The epitope detected by the antibody was mapped by sequencing neutralization escape variants of the virus. One variant contained a Lys174-Glu substitution and another contained a Pro176-Leu substitution in domain I of the DENV-4 envelope protein (E). These mutations reduced binding affinity for the antibody 18- to >100-fold. Humanized immunoglobulin G (IgG) 5H2, originally produced from an expression vector, has been shown to be a variant containing a nine-amino-acid deletion in the Fc region which completely ablates antibody-dependent enhancement of DENV replication in vitro. The variant MAb, termed IgG 5H2 deltaD, is particularly attractive for exploring its protective capacity in vivo. Passive transfer of IgG 5H2 deltaD at 20 microg/mouse afforded 50% protection of suckling mice against challenge with 25 50% lethal doses of mouse neurovirulent DENV-4 strain H241. Passive transfer of antibody to monkeys was conducted to demonstrate proof of concept for protection against DENV challenge. Monkeys that received 2 mg/kg of body weight of IgG 5H2 deltaD were completely protected against 100 50% monkey infectious doses (MID50) of DENV-4, as indicated by the absence of viremia and seroconversion. A DENV-4 escape mutant that contained a Lys174-Glu substitution identical to that found in vitro was isolated from monkeys challenged with 10(6) MID50 of DENV-4. This substitution was also present in all naturally occurring isolates belonging to DENV-4 genotype III. These studies have important implications for possible antibody-mediated prevention of DENV infection.
Collapse
Affiliation(s)
- Ching-Juh Lai
- Laboratory of Infectious Diseases, National Institutes of Health, 50 South Drive MSC 8005, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Goncalvez AP, Engle RE, St. Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A 2007; 104:9422-7. [PMID: 17517625 PMCID: PMC1868655 DOI: 10.1073/pnas.0703498104] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Infection with dengue virus (DENV) or any other flavivirus induces cross-reactive, but weakly neutralizing or nonneutralizing, antibodies that recognize epitopes involving the fusion peptide in the envelope glycoprotein. Humanized mAb IgG 1A5, derived from a chimpanzee, shares properties of cross-reactive antibodies. mAb IgG 1A5 up-regulated DENV infection by a mechanism of antibody-dependent enhancement (ADE) in a variety of Fc receptor-bearing cells in vitro. A 10- to 1,000-fold increase of viral yield in K562 cells, dependent on the DENV serotype, was observed over a range of subneutralizing concentrations of IgG 1A5. A significant increase of DENV-4 viremia titers (up to 100-fold) was also demonstrated in juvenile rhesus monkeys immunized with passively transferred dilutions of IgG 1A5. These results, together with earlier findings of ADE of DENV-2 infection by a polyclonal serum, establish the primate model for analysis of ADE. Considering the abundance of these cross-reactive antibodies, our observations confirm that significant viral amplification could occur during DENV infections in humans with prior infection or with maternally transferred immunity, possibly leading to severe dengue. Strategies to eliminate ADE were explored by altering the antibody Fc structures responsible for binding to Fc receptors. IgG 1A5 variants, containing amino acid substitutions from the Fc region of IgG2 or IgG4 antibodies, reduced but did not eliminate DENV-4-enhancing activity in K562 cells. Importantly, a 9-aa deletion at the N terminus of the CH(2) domain in the Fc region abrogated the enhancing activity.
Collapse
Affiliation(s)
- Ana P. Goncalvez
- *Molecular Viral Biology Section and
- To whom correspondence may be addressed. E-mail: , , or
| | - Ronald E. Engle
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Robert H. Purcell
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Ching-Juh Lai
- *Molecular Viral Biology Section and
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
30
|
Hong WWL, Yen YH, Wu SC. Enhanced antibody affinity to Japanese encephalitis virus E protein by phage display. Biochem Biophys Res Commun 2007; 356:124-8. [PMID: 17350601 DOI: 10.1016/j.bbrc.2007.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Obtaining antibodies with high affinity and specificity against antigens are required for the development of therapeutic and diagnostic antibodies. In this study, the contributions to binding affinity in the CDR2 and CDR3 regions of two monoclonal antibodies E3.3 and 2H2 were investigated by random mutagenesis in a phage-display synthetic oligonucleotide library. One high-affinity clone (CDR3-30) was obtained with a 3-fold increase of the dissociation constant, resulting from the changes in amino acids at residues 95, 97, and 98 in the CDRH3 region. Analysis of the predicted structure by modeling suggested that the contributions of mutated residues in the CDR3 region to the binding affinity involved not only complementarity between antigen and CDR3, but also interaction between heavy and light chains. The information gained from this study may benefit the design of vaccines and therapeutic antibodies against Japanese encephalitis virus infection.
Collapse
Affiliation(s)
- Willy W L Hong
- Institute of Biotechnology, Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | | | | |
Collapse
|
31
|
Yamashiro T, Uechi GI. The synthesis of a panel of human monoclonal antibodies with neutralizing activities against viral infectious diseases. Trop Med Health 2007. [DOI: 10.2149/tmh.35.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Hunt AR, Frederickson S, Hinkel C, Bowdish KS, Roehrig JT. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. J Gen Virol 2006; 87:2467-2476. [PMID: 16894184 DOI: 10.1099/vir.0.81925-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A humanized monoclonal antibody (mAb) has been developed and its potential to protect from or cure a Venezuelan equine encephalomyelitis virus (VEEV) infection was evaluated. The VEEV-neutralizing, protective murine mAb 3B4C-4 was humanized using combinatorial antibody libraries and phage-display technology. Humanized VEEV-binding Fabs were evaluated for virus-neutralizing capacity, then selected Fabs were converted to whole immunoglobulin (Ig) G1, and stable cell lines were generated. The humanized mAb Hy4-26C, designated Hy4 IgG, had virus-neutralizing capacity similar to that of 3B4C-4. Passive antibody protection studies with purified Hy4 IgG were performed in adult Swiss Webster mice. As little as 100 ng Hy4 IgG protected 90 % of mice challenged with 100 intraperitoneal (i.p.) mean morbidity (MD(50)) doses of virulent VEEV (Trinidad donkey) 24 h after antibody transfer; also, 500 mug Hy4 IgG protected 80 % of mice inoculated with 100 intranasal MD(50) doses of VEEV. Moreover, 10 mug passive Hy4 IgG protected 70 % of mice from a VEEV challenge dose as great as 10(7) i.p. MD(50). Hy4 IgG also protected mice from challenge with another epizootic VEEV variety, 1C (P676). Importantly, therapeutic administration of the humanized mAb to mice already infected with VEEV cured 90 % of mice treated with Hy4 IgG within 1 h of VEEV inoculation and 75 % of mice treated 24 h after virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/therapeutic use
- Base Sequence
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/therapy
- Genes, Immunoglobulin
- Humans
- Immunization, Passive
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/genetics
- Immunoglobulin G/therapeutic use
- Mice
- Molecular Sequence Data
- Neutralization Tests
- Oligodeoxyribonucleotides/genetics
Collapse
Affiliation(s)
- Ann R Hunt
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA
| | | | | | | | - John T Roehrig
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA
| |
Collapse
|
33
|
Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 2006; 80:11000-8. [PMID: 16943291 PMCID: PMC1642136 DOI: 10.1128/jvi.01735-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.
Collapse
Affiliation(s)
- Ryuta Kanai
- 266Department of Molecular Biophysics and Biochemistry, The Bass Center for Structural Biology, Yale University, 266 Whitney Ave., New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Throsby M, Geuijen C, Goudsmit J, Bakker AQ, Korimbocus J, Kramer RA, Clijsters-van der Horst M, de Jong M, Jongeneelen M, Thijsse S, Smit R, Visser TJ, Bijl N, Marissen WE, Loeb M, Kelvin DJ, Preiser W, ter Meulen J, de Kruif J. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol 2006; 80:6982-92. [PMID: 16809304 PMCID: PMC1489037 DOI: 10.1128/jvi.00551-06] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 mug/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.
Collapse
Affiliation(s)
- Mark Throsby
- Crucell Holland B.V., P.O. Box 2048, 2301 CA, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ando T, Yamashiro T, Takita-Sonoda Y, Mannen K, Nishizono A. Construction of human Fab library and isolation of monoclonal Fabs with rabies virus-neutralizing ability. Microbiol Immunol 2005; 49:311-22. [PMID: 15840956 DOI: 10.1111/j.1348-0421.2005.tb03735.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combinatorial human Fab library was constructed using RNAs from peripheral blood lymphocytes of 6 rabies vaccine-boosted volunteers using pComb3X phagemid vector. The size of the constructed library was approximately 7.0 x 10(7) Escherichia coli transformants. The library was selected against purified rabies virus (RV) virion or purified RV glycoprotein for isolation of phages displaying RVneutralizing human Fab antibody. Among 132 selected clones, two Fab preparations revealed neutralizing activities against RV strain CVS when assayed in the rapid fluorescent focus inhibition test (RFFIT). The Fab preparation EP5G3 exhibited neutralizing activity with an infected cell count reduction of 76% at a dilution of 1: 2, and of 20% at a dilution of 1: 4. The Fab preparation GD2D12 also exhibited neutralizing activity with a 57% reduction at 1: 2 and 41% reduction at 1: 4. In the co-immunoprecipitation using strain CVS, the RV glycoprotein was precipitated in reactions with both Fab preparations. The RV neutralizing ability of the Fab preparations described in the study were not directly correlated with their binding specificity for RV antigens detected by ELISA.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Cloning, Molecular
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Lymphocytes/immunology
- Molecular Sequence Data
- Neutralization Tests
- Peptide Library
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Rabies virus/immunology
- Sequence Analysis, DNA
- Viral Plaque Assay
Collapse
Affiliation(s)
- Tadasuke Ando
- Department of Infectious Diseases, Faculty of Medicine, Oita University, Oita, Japan
| | | | | | | | | |
Collapse
|
36
|
Goncalvez AP, Men R, Wernly C, Purcell RH, Lai CJ. Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses. J Virol 2004; 78:12910-8. [PMID: 15542643 PMCID: PMC525007 DOI: 10.1128/jvi.78.23.12910-12918.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative to vaccines for prevention of illness caused by dengue viruses (DENV) and other flaviviruses, including the West Nile virus. In a previous study, repertoire cloning to recover Fab fragments from bone marrow mRNA of chimpanzees infected with all four DENV serotypes (dengue virus serotype 1 [DENV-1] to DENV-4) was described. In that study, a humanized immunoglobulin G1 (IgG1) antibody that efficiently neutralized DENV-4 was recovered and characterized. In this study, the phage library constructed from the chimpanzees was used to recover Fab antibodies against the other three DENV serotypes. Serotype-specific neutralizing Fabs were not identified. Instead, we recovered DENV-neutralizing Fabs that specifically precipitated the envelope protein and were cross-reactive with all four DENV serotypes. Three of the Fabs competed with each other for binding to DENV-1 and DENV-2, although each of these Fabs contained a distinct complementarity determining region 3 (CDR3)-H sequence. Fabs that shared an identical or nearly identical CDR3-H sequences cross-neutralized DENV-1 and DENV-2 at a similar high 50% plaque reduction neutralization test (PRNT(50)) titer, ranging from 0.26 to 1.33 microg/ml, and neutralized DENV-3 and DENV-4 but at a titer 10- to 20-fold lower. One of these Fabs, 1A5, also neutralized the West Nile virus most efficiently among other flaviviruses tested. Fab 1A5 was converted to a full-length antibody in combination with human sequences for production in mammalian CHO cells. Humanized IgG1 1A5 proved to be as efficient as Fab 1A5 for cross-neutralization of DENV-1 and DENV-2 at a titer of 0.48 and 0.95 microg/ml, respectively. IgG1 1A5 also neutralized DENV-3, DENV-4, and the West Nile virus at a PRNT(50) titer of approximately 3.2 to 4.2 microg/ml. This humanized antibody represents an attractive candidate for further development of immunoprophylaxis against DENV and perhaps other flavivirus-associated diseases.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Molecular Viral Biology Section, Laboratory of Infectious Diseases, NIAID, NIH, Building 50, Room 6349, 50 South Dr., MSC 8009, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Goncalvez AP, Purcell RH, Lai CJ. Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 2004; 78:12919-28. [PMID: 15542644 PMCID: PMC525008 DOI: 10.1128/jvi.78.23.12919-12928.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epitope determinants of chimpanzee Fab antibody 1A5, which have been shown to be broadly reactive to flaviviruses and efficient for cross-neutralization of dengue virus type 1 and type 2 (DENV-1 and DENV-2), were studied by analysis of DENV-2 antigenic variants. Sequence analysis showed that one antigenic variant contained a Gly-to-Val substitution at position 106 within the flavivirus-conserved fusion peptide loop of the envelope protein (E), and another variant contained a His-to-Gln substitution at position 317 in E. Substitution of Gly(106)Val in DENV-2 E reduced the binding affinity of Fab 1A5 by approximately 80-fold, whereas substitution of His(317)Gln had little or no effect on antibody binding compared to the parental virus. Treatment of DENV-2 with beta-mercaptoethanol abolished binding of Fab 1A5, indicating that disulfide bridges were required for the structural integrity of the Fab 1A5 epitope. Binding of Fab 1A5 to DENV-2 was competed by an oligopeptide containing the fusion peptide sequence as shown by competition enzyme-linked immunosorbent assay. Both DENV-2 antigenic variants were shown to be attenuated, or at least similar to the parental virus, when evaluated for growth in cultured cells or for neurovirulence in mice. Fab 1A5 inhibited low pH-induced membrane fusion of mosquito C6/36 cells infected with DENV-1 or DENV-2, as detected by reduced syncytium formation. Both substitutions in DENV-2 E lowered the pH threshold for membrane fusion, as measured in a fusion-from-within assay. In the three-dimensional structure of E, Gly(106) in domain II and His(317) in domain III of the opposite E monomer were spatially close. From the locations of these amino acids, Fab 1A5 appears to recognize a novel epitope that has not been mapped before with a flavivirus monoclonal antibody.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Molecular Viral Biology Section, Laboratory of Infectious Diseases, NIAID, NIH, Building 50, Room 6349, 50 South Dr., MSC 8009, Bethesda, MD 20892, USA
| | | | | |
Collapse
|