1
|
Filardo F, Nurulita S, Jones L, Gambley C, Bond S, Sharman M, Campbell P. Genomic variation in pepper vein yellows viruses in Australia, including a new putative variant, PeVYV-10. Arch Virol 2024; 169:18. [PMID: 38180533 DOI: 10.1007/s00705-023-05943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
Since the first identification and full sequence of the polerovirus pepper vein yellows virus in Australia in 2016, virus surveys of crops and weeds have sporadically identified PeVYV in different hosts and locations. Genomic comparisons of 14 PeVYV-like isolates using RT-PCR products spanning the 3' end of the RdRp region (ORF 2), the intergenic region, ORF 3a, ORF 4, and ORF 3 (1388 nt) showed that four of the PeVYV isolates might be a new variant or PeVYV-like virus. From six PeVYV-positive plants, eight PeVYV-like sequences were obtained by high-throughput sequencing, as two hosts, 5352 and 5634, contained two slightly different PeVYV-like isolates. Three of the PeVYV-like isolates were most closely related to PeVYV-6 and PeVYV-5, and two isolates were closely related to PeVYV-9 and PeVYV-2. The other three isolates shared only 69-74% nucleotide sequence identity across the whole genome with any of the other PeVYVs, despite sharing 73-98%, 87-91%, and 84-87% amino acid sequence identity in ORF 3a, ORF 3, and the RdRp (ORF 2), respectively, suggesting that this virus is a new PeVYV-like virus, which we have tentatively called PeVYV-10. This is also the first report of a PeVYV-like virus infecting garlic.
Collapse
Affiliation(s)
- Fiona Filardo
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia.
| | - Sari Nurulita
- Queensland Alliance for Agriculture and Food Science, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Lynne Jones
- Department of Agriculture Fisheries and Forestry, Northern Australia Quarantine Strategy, GPO Box 858, Canberra, ACT, 2601, Australia
| | - Cherie Gambley
- Principal Research Fellow, School of Agriculture and Food Science, University of Queensland, Gatton, QLD, 4343, Australia
| | - Samantha Bond
- Northern Territory Department of Industry, Tourism and Trade, Berrimah Farm Science Precinct, GPO Box 3000, Darwin, NT, 0801, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Paul Campbell
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| |
Collapse
|
2
|
Macleod K, Greer SF, Bramham LE, Pimenta RJG, Nellist CF, Hackenburg D, Teakle GR, Barker GC, Walsh JA. A review of sources of resistance to turnip yellows virus (TuYV) in Brassica species. THE ANNALS OF APPLIED BIOLOGY 2023; 183:200-208. [PMID: 38515540 PMCID: PMC10952397 DOI: 10.1111/aab.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/16/2023] [Indexed: 03/23/2024]
Abstract
Turnip yellows virus (TuYV; previously known as beet western yellows virus) causes major diseases of Brassica species worldwide resulting in severe yield-losses in arable and vegetable crops. It has also been shown to reduce the quality of vegetables, particularly cabbage where it causes tip burn. Incidences of 100% have been recorded in commercial crops of winter oilseed rape (Brassica napus) and vegetable crops (particularly Brassica oleracea) in Europe. This review summarises the known sources of resistance to TuYV in B. napus (AACC genome), Brassica rapa (AA genome) and B. oleracea (CC genome). It also proposes names for the quantitative trait loci (QTLs) responsible for the resistances, Turnip Yellows virus Resistance (TuYR), that have been mapped to at least the chromosome level in the different Brassica species. There is currently only one known source of resistance deployed commercially (TuYR1). This resistance is said to have originated in B. rapa and was introgressed into the A genome of oilseed rape via hybridisation with B. oleracea to produce allotetraploid (AACC) plants that were then backcrossed into oilseed rape. It has been utilised in the majority of known TuYV-resistant oilseed rape varieties. This has placed significant selection pressure for resistance-breaking mutations arising in TuYV. Further QTLs for resistance to TuYV (TuYR2-TuYR9) have been mapped in the genomes of B. napus, B. rapa and B. oleracea and are described here. QTLs from the latter two species have been introgressed into allotetraploid plants, providing for the first time, combined resistance from both the A and the C genomes for deployment in oilseed rape. Introgression of these new resistances into commercial oilseed rape and vegetable brassicas can be accelerated using the molecular markers that have been developed. The deployment of these resistances should lessen selection pressure for resistance-breaking isolates of TuYV and thereby prolong the effectiveness of each other and extant resistance.
Collapse
Affiliation(s)
- Kyle Macleod
- School of Life Sciences University of Warwick Warwick UK
- Imperial College London UK
| | | | - Lawrence E Bramham
- School of Life Sciences University of Warwick Warwick UK
- Rothamsted Research, West Common Harpenden UK
| | | | | | - Dieter Hackenburg
- School of Life Sciences University of Warwick Warwick UK
- KWS Einbeck Germany
| | | | - Guy C Barker
- School of Life Sciences University of Warwick Warwick UK
| | - John A Walsh
- School of Life Sciences University of Warwick Warwick UK
| |
Collapse
|
3
|
Puthanveed V, Singh K, Poimenopoulou E, Pettersson J, Siddique AB, Kvarnheden A. Milder Autumns May Increase Risk for Infection of Crops with Turnip Yellows Virus. PHYTOPATHOLOGY 2023; 113:1788-1798. [PMID: 36802872 DOI: 10.1094/phyto-11-22-0446-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Climate change has increased the risk for infection of crops with insect-transmitted viruses. Mild autumns provide prolonged active periods to insects, which may spread viruses to winter crops. In autumn 2018, green peach aphids (Myzus persicae) were found in suction traps in southern Sweden that presented infection risk for winter oilseed rape (OSR; Brassica napus) with turnip yellows virus (TuYV). A survey was carried out in spring 2019 with random leaf samples from 46 OSR fields in southern and central Sweden using DAS-ELISA, and TuYV was detected in all fields except one. In the counties of Skåne, Kalmar, and Östergötland, the average incidence of TuYV-infected plants was 75%, and the incidence reached 100% for nine fields. Sequence analyses of the coat protein gene revealed a close relationship between TuYV isolates from Sweden and other parts of the world. High-throughput sequencing for one of the OSR samples confirmed the presence of TuYV and revealed coinfection with TuYV-associated RNA. Molecular analyses of seven sugar beet (Beta vulgaris) plants with yellowing, collected in 2019, revealed that two of them were infected by TuYV, together with two other poleroviruses: beet mild yellowing virus and beet chlorosis virus. The presence of TuYV in sugar beet suggests a spillover from other hosts. Poleroviruses are prone to recombination, and mixed infection with three poleroviruses in the same plant poses a risk for the emergence of new polerovirus genotypes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Vinitha Puthanveed
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Khushwant Singh
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic
| | - Efstratia Poimenopoulou
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Josefin Pettersson
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Abu Bakar Siddique
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Congdon BS, Baulch JR, Filardo FF, Nancarrow N. Turnip yellows virus variants differ in host range, transmissibility, and virulence. Arch Virol 2023; 168:225. [PMID: 37561217 DOI: 10.1007/s00705-023-05851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
Turnip yellows virus (TuYV; family Solemoviridae, genus Polerovirus, species Turnip yellows virus) is a genetically diverse virus that infects a broad range of plant species across the world. Due to its global economic significance, most attention has been given to the impact of TuYV on canola (syn. oilseed rape; Brassica napus). In Australia, a major canola-exporting country, TuYV isolates are highly diverse, with the most variation concentrated in open reading frame 5 (ORF 5), which encodes the readthrough domain (P5) component of the readthrough protein (P3P5), which plays an important role in host adaptation and aphid transmission. When analysing ORF 5, Australian TuYV isolates form three phylogenetic groups with just 45 to 49% amino acid sequence identity: variants P5-I, P5-II, and P5-III. Despite the possible implications for TuYV epidemiology and management, research examining phenotypic differences between TuYV variants is scarce. This study was designed to test the hypothesis that three TuYV isolates, representing each of the Australian P5 variants, differ phenotypically. In particular, the host range, vector species, transmissibility, and virulence of isolates 5414 (P5-I5414), 5509 (P5-II5509), and 5594 (P5-III5594) were examined in a series of glasshouse experiments. Only P5-I5414 readily infected faba bean (Vicia faba), only P5-II5509 infected chickpea (Cicer arietinum), and only P5-I5414 and P5-III5594 infected lettuce (Lactuca sativa). Myzus persicae transmitted each isolate, but Brevicoryne brassicae and Lipaphis pseudobrassicae did not. When using individual M. persicae to inoculate canola seedlings, P5-I5414 had significantly higher transmission rates (82%) than P5-II5509 (62%) and P5-III5594 (59%). As indicated by enzyme-linked immunosorbent assay absorbance values, P5-I5414 reached higher virus titers in canola than P5-II5509, which, in turn, reached higher titers than P5-III5594. P5-I5414 was also more virulent in canola than P5-II5509 and P5-III5594, inducing more severe foliar symptoms, stunting, and, in one of two experiments, seed yield loss. Results from this study compared to those of previous studies suggest that analysis of ORF 5 alone is insufficient to assign isolates to coherent strain categories, and further sequencing and phenotyping of field isolates is required.
Collapse
Affiliation(s)
- B S Congdon
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kensington, Western Australia, 6151, Australia.
| | - J R Baulch
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kensington, Western Australia, 6151, Australia
| | - F F Filardo
- Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - N Nancarrow
- Department of Energy, Environment and Climate Action, Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, 3400, Australia
| |
Collapse
|
5
|
Yan D, Han K, Chen Y, Ma C, Hu S, Zhao W, Wang F. Complete genome sequence of triticum yellow stripe virus, a new polerovirus infecting wheat (triticum aestivum) in China. Arch Virol 2023; 168:146. [PMID: 37083847 DOI: 10.1007/s00705-023-05758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Wheat plants with yellow stripes on their leaves were collected in the city of Tai'an (Shandong province, China). High-throughput sequencing analysis of the collected plants showed that they were coinfected with wheat leaf yellowing-associated virus (WLYaV) and an unidentified polerovirus. The genome of the unidentified virus, tentatively named "triticum yellow stripe virus" (TriYSV), comprises 5,595 nucleotides and contains seven open reading frames (ORFs), with a typical polerovirus genome structure. Analysis by sequence alignment showed that TriYSV had the highest sequence similarity to wheat yellow dwarf virus (WYDV, a tentative member of the genus Polerovirus), with 87.3% nucleotide sequence identity over the whole genome. Except for P3a and the coat protein (CP), all of the proteins encoded by TriYSV showed < 90% amino acid identity to those of other poleroviruses. Phylogenetic analysis based on RNA-dependent RNA polymerase and CP amino acid sequences and complete genome nucleotide sequences showed that the poleroviruses WYDV, cereal yellow dwarf virus RPS (CYDV-RPS), CYDV-RPV, and barley yellow dwarf virus GPV are the most closely related to TriYSV. Thus, TriYSV is proposed to be a new member of the genus Polerovirus.
Collapse
Affiliation(s)
- Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China
| | - Kelei Han
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China
| | - Ying Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China
| | - Chao Ma
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China
| | - Shuzhen Hu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China.
| | - Fang Wang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui, China.
| |
Collapse
|
6
|
A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023; 11:microorganisms11010156. [PMID: 36677448 PMCID: PMC9865879 DOI: 10.3390/microorganisms11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Co-infection of plants by pathogens is common in nature, and the interaction of the pathogens can affect the infection outcome. There are diverse ways in which viruses and bacteria are transmitted from infected to healthy plants, but insects are common vectors. The present review aims to highlight key findings of studies evaluating the co-transmission of plant pathogens by insects and identify challenges encountered in these studies. In this review, we evaluated whether similar pathogens might compete during co-transmission; whether the changes in the pathogen titer in the host, in particular associated with the co-infection, could influence its transmission; and finally, we discussed the pros and cons of the different approaches used to study co-transmission. At the end of the review, we highlighted areas of study that need to be addressed. This review shows that despite the recent development of techniques and methods to study the interactions between pathogens and their insect vectors, there are still gaps in the knowledge of pathogen transmission. Additional laboratory and field studies using different pathosystems will help elucidate the role of host co-infection and pathogen co-transmission in the ecology and evolution of infectious diseases.
Collapse
|
7
|
Weed Hosts Represent an Important Reservoir of Turnip Yellows Virus and a Possible Source of Virus Introduction into Oilseed Rape Crop. Viruses 2022; 14:v14112511. [PMID: 36423120 PMCID: PMC9696028 DOI: 10.3390/v14112511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Turnip yellows virus (TuYV) is one of the most important pathogens of oilseed rape worldwide. The virus has a large host range including many crop species (e.g., oilseed rape, pea, chickpea) and weeds from more than twenty plant families. Other than oilseed rape, we detected TuYV in many commonly grown weed species that share the fields and vegetation period together with canola crops in Czech and Slovak Republics. TuYV was detected by reverse-transcription polymerase chain reaction (RT-PCR) in at least 26 species including main crop hosts (oilseed rape), intercrops and weeds such as Amaranthus retroflexus, Atriplex patula (Amaranthaceae), Arctium lappa, Lactuca serriola, Taraxacum officinale, Tripleurospermum inodorum (Asteraceae), Phacelia tanacetifolia (Boraginaceae), Brassica napus, Capsella bursa-pastoris, Descurainia Sophia, Raphanus raphanistrum, Sinapis alba, Sisymbrium officinale, Thlaspi arvense (Brassicaceae), Silene alba, Stellaria media (Caryophyllaceae), Euphorbia helioscopia (Euphorbiaceae), Geranium rotundifolium (Geraniaceae), Lamium purpureum (Lamiaceae), Fumaria officinalis, Papaver rhoeas (Papaveraceae), Veronica persica (Plantaginaceae syn. Scrophulariaceae), Fallopia convolvulus (Polygonaceae), Solanum nigrum (Solanaceae), Urtica dioica (Urticaceae) and Viola arvensis (Violaceae). The detection of TuYV was further confirmed by RT-qPCR as well as Sanger sequencing of the PCR fragments. We discovered four new weed species as hosts of TuYV such as T. inodorum, S. alba, G. rotundifolium and E. helioscopia, representing their three respective plant families. The readthrough domain (RTD) gene sequence analysis of the Czech and Slovak TuYV isolates from oilseed rape and weed species showed similar within-group nucleotide divergence (7.1% and 5.6%, respectively) and the absence of geographical- or host-based phylogenetic clustering. The high-throughput sequencing of the P. rhoeas sample enabled the obtention of a nearly complete genome of TuYV and revealed the mixed infection of TuYV with turnip mosaic virus and cucumber mosaic virus. Our results thus show that weed species are an important TuYV reservoir and play a significant role in the spread and incidence of the disease in field crops such as oilseed rape.
Collapse
|
8
|
Chkuaseli T, White KA. Complex and simple translational readthrough signals in pea enation mosaic virus 1 and potato leafroll virus, respectively. PLoS Pathog 2022; 18:e1010888. [PMID: 36174104 PMCID: PMC9553062 DOI: 10.1371/journal.ppat.1010888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Different essential viral proteins are translated via programmed stop codon readthrough. Pea enation mosaic virus 1 (PEMV1) and potato leafroll virus (PLRV) are related positive-sense RNA plant viruses in the family Solemoviridae, and are type members of the Enamovirus and Polerovirus genera, respectively. Both use translational readthrough to express a C-terminally extended minor capsid protein (CP), termed CP-readthrough domain (CP-RTD), from a viral subgenomic mRNA that is transcribed during infections. Limited incorporation of CP-RTD subunits into virus particles is essential for aphid transmission, however the functional readthrough structures that mediate CP-RTD translation have not yet been defined. Through RNA solution structure probing, RNA secondary structure modeling, site-directed mutagenesis, and functional in vitro and in vivo analyses, we have investigated in detail the readthrough elements and complex structure involved in expression of CP-RTD in PEMV1, and assessed and deduced a comparatively simpler readthrough structure for PLRV. Collectively, this study has (i) generated the first higher-order RNA structural models for readthrough elements in an enamovirus and a polerovirus, (ii) revealed a stark contrast in the complexity of readthrough structures in these two related viruses, (iii) provided compelling experimental evidence for the strict requirement for long-distance RNA-RNA interactions in generating the active readthrough signals, (iv) uncovered what could be considered the most complex readthrough structure reported to date, that for PEMV1, and (v) proposed plausible assembly pathways for the formation of the elaborate PEMV1 and simple PLRV readthrough structures. These findings notably advance our understanding of this essential mode of gene expression in these agriculturally important plant viruses.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Miller WA, Lozier Z. Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:121-141. [PMID: 35436423 DOI: 10.1146/annurev-phyto-121421-125135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated cis-acting signals of these viruses fall into two unrelated taxa represented by Barley yellow dwarf virus and Cereal yellow dwarf virus. Here, we explain the reclassification of these viruses based on their very different genomes. We also provide an overview of viral protein functions and their interactions with the host and vector, replication mechanisms of viral and satellite RNAs, and the complex gene expression strategies. Throughout, we point out key unanswered questions in virus evolution, structural biology, and genome function and replication that, when answered, may ultimately provide new tools for virus management.
Collapse
Affiliation(s)
- W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| | - Zachary Lozier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Umar M, Tegg RS, Farooq T, Thangavel T, Wilson CR. Abundance of Poleroviruses within Tasmanian Pea Crops and Surrounding Weeds, and the Genetic Diversity of TuYV Isolates Found. Viruses 2022; 14:1690. [PMID: 36016314 PMCID: PMC9416036 DOI: 10.3390/v14081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/08/2023] Open
Abstract
The genus Polerovirus contains positive-sense, single-stranded RNA plant viruses that cause significant disease in many agricultural crops, including vegetable legumes. This study aimed to identify and determine the abundance of Polerovirus species present within Tasmanian pea crops and surrounding weeds that may act as virus reservoirs. We further sought to examine the genetic diversity of TuYV, the most commonly occurring polerovirus identified. Pea and weed samples were collected during 2019-2020 between October and January from thirty-four sites across three different regions (far northwest, north, and midlands) of Tasmania and tested by RT-PCR assay, with selected samples subject to next-generation sequencing. Results revealed that the presence of polerovirus infection and the prevalence of TuYV in both weeds and pea crops varied across the three Tasmanian cropping regions, with TuYV infection levels in pea crops ranging between 0 and 27.5% of tested plants. Overall, two species members from each genus, Polerovirus and Potyvirus, one member from each of Luteovirus, Potexvirus, and Carlavirus, and an unclassified virus from the family Partitiviridae were also found as a result of NGS data analysis. Analysis of gene sequences of the P0 and P3 genes of Tasmanian TuYV isolates revealed substantial genetic diversity within the collection, with a few isolates appearing more closely aligned with BrYV isolates. Questions remain around the differentiation of TuYV and BrYV species. Phylogenetic inconsistency in the P0 and P3 ORFs supports the concept that recombination may have played a role in TuYV evolution in Tasmania. Results of the evolutionary analysis showed that the selection pressure was higher in the P0 gene than in the P3 gene, and the majority of the codons for each gene are evolving under purifying selection. Future full genome-based analyses of the genetic variations will expand our understanding of the evolutionary patterns existing among TuYV populations in Tasmania.
Collapse
Affiliation(s)
- Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| | - Tahir Farooq
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tamilarasan Thangavel
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
- Department of Agriculture and Fisheries (Queensland), Bundaberg Research Facility, 49 Ashfield Road, Bundaberg, QLD 4670, Australia
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS 7008, Australia; (M.U.); (R.S.T.); (T.T.)
| |
Collapse
|
11
|
Fránová J, Lenz O, Přibylová J, Čmejla R, Valentová L, Koloniuk I. High Incidence of Strawberry Polerovirus 1 in the Czech Republic and Its Vectors, Genetic Variability and Recombination. Viruses 2021; 13:2487. [PMID: 34960756 PMCID: PMC8706236 DOI: 10.3390/v13122487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
In total, 332 strawberry plants from 33 different locations in the Czech Republic with or without disease symptoms were screened by RT-PCR for the presence of strawberry polerovirus 1 (SPV1) and five other viruses: strawberry mottle virus, strawberry crinkle virus, strawberry mild yellow edge virus, strawberry vein banding virus, and strawberry virus 1. SPV1 was detected in 115 tested strawberry plants (35%), including 89 mixed infections. No correlation between symptoms and the detected viruses was found. To identify potential invertebrate SPV1 vectors, strawberry-associated invertebrate species were screened by RT-PCR, and the virus was found in the aphids Aphis forbesi, A. gossypii, A. ruborum, A.sanquisorbae, Aulacorthum solani, Chaetosiphon fragaefolii, Myzus ascalonicus, and several other non-aphid invertebrate species. SPV1 was also detected in aphid honeydew. Subsequent tests of C. fragaefolii and A.gossypii virus transmission ability showed that at least 4 h of acquisition time were needed to acquire the virus. However, 1 day was sufficient for inoculation using C. fragaefolii. In conclusion, being aphid-transmitted like other tested viruses SPV1 was nevertheless the most frequently detected agent. Czech SPV1 isolates belonged to at least two phylogenetic clusters. The sequence analysis also indicated that recombination events influence evolution of SPV1 genomes.
Collapse
Affiliation(s)
- Jana Fránová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (O.L.); (J.P.)
| | - Ondřej Lenz
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (O.L.); (J.P.)
| | - Jaroslava Přibylová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (O.L.); (J.P.)
| | - Radek Čmejla
- Laboratory for Molecular Biology, Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic; (R.Č.); (L.V.)
| | - Lucie Valentová
- Laboratory for Molecular Biology, Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic; (R.Č.); (L.V.)
| | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; (O.L.); (J.P.)
| |
Collapse
|
12
|
Factors Determining Transmission of Persistent Viruses by Bemisia tabaci and Emergence of New Virus-Vector Relationships. Viruses 2021; 13:v13091808. [PMID: 34578388 PMCID: PMC8472762 DOI: 10.3390/v13091808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Many plant viruses depend on insect vectors for their transmission and dissemination. The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important virus vectors, transmitting more than four hundred virus species, the majority belonging to begomoviruses (Geminiviridae), with their ssDNA genomes. Begomoviruses are transmitted by B. tabaci in a persistent, circulative manner, during which the virus breaches barriers in the digestive, hemolymph, and salivary systems, and interacts with insect proteins along the transmission pathway. These interactions and the tissue tropism in the vector body determine the efficiency and specificity of the transmission. This review describes the mechanisms involved in circulative begomovirus transmission by B. tabaci, focusing on the most studied virus in this regard, namely the tomato yellow leaf curl virus (TYLCV) and its closely related isolates. Additionally, the review aims at drawing attention to the recent knowhow of unorthodox virus—B. tabaci interactions. The recent knowledge of whitefly-mediated transmission of two recombinant poleroviruses (Luteoviridae), a virus group with an ssRNA genome and known to be strictly transmitted with aphids, is discussed with its broader context in the emergence of new whitefly-driven virus diseases.
Collapse
|
13
|
Ghosh S, Bello VH, Ghanim M. Transmission parameters of pepper whitefly-borne vein yellows virus (PeWBVYV) by Bemisia tabaci and identification of an insect protein with a putative role in polerovirus transmission. Virology 2021; 560:54-65. [PMID: 34038845 DOI: 10.1016/j.virol.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Pepper crops in Israel are infected by poleroviruses, Pepper vein yellows virus 2 (PeVYV-2) and Pepper whitefly-borne vein yellows virus (PeWBVYV). Herein we characterize the transmission of PeWBVYV and the aphid-transmitted PeVYV-2, and show that PeWBVYV is specifically transmitted by MEAM1 species of the whitefly Bemisia tabaci, with a minimum latency period of 120 h, and not by the Mediterranean (MED). PeWBVYV and PeVYV-2 were detected in the hemolymph of MED and MEAM1, respectively, however, amounts of PeWBVYV in the hemolymph of MED or PeVYV-2 in MEAM1 were much lower than PeWBVYV in hemolymph of MEAM1. Moreover, we show that PeWBVYV does not interact with the GroEL protein of the symbiont Hamiltonella and thus does not account for the non-transmissibility by MED. An insect glycoprotein, C1QBP, interacting in vitro with the capsid proteins of both PeWBVYV and PeVYV-2 is reported which suggests a putative functional role in polerovirus transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, The Volcani Center, Rishon LeZion, 7505101, Israel
| | | | - Murad Ghanim
- Department of Entomology, The Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
14
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Sun SR, Chen JS, He EQ, Huang MT, Fu HY, Lu JJ, Gao SJ. Genetic Variability and Molecular Evolution of Maize Yellow Mosaic Virus Populations from Different Geographic Origins. PLANT DISEASE 2021; 105:896-903. [PMID: 33044140 DOI: 10.1094/pdis-05-20-1013-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jian-Sheng Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Er-Qi He
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
16
|
Sharman M, Appiah AS, Filardo F, Nancarrow N, Congdon BS, Kehoe M, Aftab M, Tegg RS, Wilson CR. Biology and genetic diversity of phasey bean mild yellows virus, a common virus in legumes in Australia. Arch Virol 2021; 166:1575-1589. [PMID: 33738562 DOI: 10.1007/s00705-021-05022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/13/2021] [Indexed: 11/27/2022]
Abstract
This study examined the natural and experimental host range and aphid and graft transmission of the tentative polerovirus phasey bean mild yellows virus (PBMYV). Eleven complete coding sequences from PBMYV isolates were determined from a range of hosts and locations. We found two genetically distinct variants of PBMYV. PBMYV-1 was the originally described variant, and PBMYV-2 had a large putative recombination in open reading frame 5 such that PBMYV-1 and PBMYV-2 shared only 65-66% amino acid sequence identity in the P5 protein. The virus was transmitted by a clonal colony of cowpea aphids (Aphis craccivora) and by grafting with infected scions but was not transmitted by a clonal colony of green peach aphids (Myzus persicae). PBMYV was found in natural infections in 11 host species with a range of symptoms and severity, including seven important grain legume crops from across a wide geographic area in Australia. PBMYV was common and widespread in the tropical weed phasey bean (Macroptilium lathyroides), but it is likely that there are other major alternative hosts for the virus in temperate regions of Australia. The experimental host range of PBMYV included the Fabaceae hosts chickpea (Cicer arietinum), faba bean (Vicia faba), pea (Pisum sativum), and phasey bean, but transmissions failed to infect several other members of the families Asteraceae, Cucurbitaceae, Fabaceae and Solanaceae. PBMYV was commonly found in grain legume crops in eastern and western Australia, sometimes at greater than 90% incidence. This new knowledge about PBMYV warrants further assessments of its economic impact on important grain legume crops.
Collapse
Affiliation(s)
- Murray Sharman
- Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia.
| | - Andrew S Appiah
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon, Accra, Ghana
| | - Fiona Filardo
- Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Narelle Nancarrow
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC, 3400, Australia
| | - Benjamin S Congdon
- Department of Primary Industries and Regional Development, Industry and Economic Development, 3 Baron-Hay Court, Kensington, WA, 6151, Australia
| | - Monica Kehoe
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Mohammad Aftab
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC, 3400, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, University of Tasmania, New Town, Hobart, TAS, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, New Town, Hobart, TAS, Australia
| |
Collapse
|
17
|
Genetic diversity and recombination between turnip yellows virus strains in Australia. Arch Virol 2021; 166:813-829. [PMID: 33481112 DOI: 10.1007/s00705-020-04931-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 01/24/2023]
Abstract
Disease outbreaks caused by turnip yellows virus (TuYV), a member of the genus Polerovirus, family Luteoviridae, regularly occur in canola and pulse crops throughout Australia. To understand the genetic diversity of TuYV for resistance breeding and management, genome sequences of 28 TuYV isolates from different hosts and locations were determined using high-throughput sequencing (HTS). We aimed to identify the parts of the genome that were most variable and clarify the taxonomy of viruses related to TuYV. Poleroviruses contain seven open reading frames (ORFs): ORF 0-2, 3a, and 3-5. Phylogenetic analysis based on the genome sequences, including isolates of TuYV and brassica yellows virus (BrYV) from the GenBank database, showed that most genetic variation among isolates occurred in ORF 5, followed by ORF 0 and ORF 3a. Phylogenetic analysis of ORF 5 revealed three TuYV groups; P5 group 1 and group 3 shared 45-49% amino acid sequence identity, and group 2 is a recombinant between the other two. Phylogenomic analysis of the concatenated ORFs showed that TuYV is paraphyletic with respect to BrYV, and together these taxa form a well-supported monophyletic group. Our results support the hypothesis that TuYV and BrYV belong to the same species and that the phylogenetic topologies of ORF 0, 3a and 5 are incongruent and may not be informative for species demarcation. A number of beet western yellow virus (BWYV)- and TuYV-associated RNAs (aRNA) were also identified by HTS for the first time in Australia.
Collapse
|
18
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
19
|
Byrne MJ, Steele JFC, Hesketh EL, Walden M, Thompson RF, Lomonossoff GP, Ranson NA. Combining Transient Expression and Cryo-EM to Obtain High-Resolution Structures of Luteovirid Particles. Structure 2019; 27:1761-1770.e3. [PMID: 31611039 PMCID: PMC6899511 DOI: 10.1016/j.str.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023]
Abstract
The Luteoviridae are pathogenic plant viruses responsible for significant crop losses worldwide. They infect a wide range of food crops, including cereals, legumes, cucurbits, sugar beet, sugarcane, and potato and, as such, are a major threat to global food security. Viral replication is strictly limited to the plant vasculature, and this phloem limitation, coupled with the need for aphid transmission of virus particles, has made it difficult to generate virus in the quantities needed for high-resolution structural studies. Here, we exploit recent advances in heterologous expression in plants to produce sufficient quantities of virus-like particles for structural studies. We have determined their structures to high resolution by cryoelectron microscopy, providing the molecular-level insight required to rationally interrogate luteovirid capsid formation and aphid transmission, thereby providing a platform for the development of preventive agrochemicals for this important family of plant viruses.
Collapse
Affiliation(s)
- Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John F C Steele
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miriam Walden
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Ghosh S, Kanakala S, Lebedev G, Kontsedalov S, Silverman D, Alon T, Mor N, Sela N, Luria N, Dombrovsky A, Mawassi M, Haviv S, Czosnek H, Ghanim M. Transmission of a New Polerovirus Infecting Pepper by the Whitefly Bemisia tabaci. J Virol 2019; 93:e00488-19. [PMID: 31092571 PMCID: PMC6639281 DOI: 10.1128/jvi.00488-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
Many animal and plant viruses depend on arthropods for their transmission. Virus-vector interactions are highly specific, and only one vector or one of a group of vectors from the same family is able to transmit a given virus. Poleroviruses (Luteoviridae) are phloem-restricted RNA plant viruses that are exclusively transmitted by aphids. Multiple aphid-transmitted polerovirus species commonly infect pepper, causing vein yellowing, leaf rolling, and fruit discoloration. Despite low aphid populations, a recent outbreak with such severe symptoms in many bell pepper farms in Israel led to reinvestigation of the disease and its insect vector. Here we report that this outbreak was caused by a new whitefly (Bemisia tabaci)-transmitted polerovirus, which we named Pepper whitefly-borne vein yellows virus (PeWBVYV). PeWBVYV is highly (>95%) homologous to Pepper vein yellows virus (PeVYV) from Israel and Greece on its 5' end half, while it is homologous to African eggplant yellows virus (AeYV) on its 3' half. Koch's postulates were proven by constructing a PeWBVYV infectious clone causing the pepper disease, which was in turn transmitted to test pepper plants by B. tabaci but not by aphids. PeWBVYV represents the first report of a whitefly-transmitted polerovirus.IMPORTANCE The high specificity of virus-vector interactions limits the possibility of a given virus changing vectors. Our report describes a new virus from a family of viruses strictly transmitted by aphids which is now transmitted by whiteflies (Bemisia tabaci) and not by aphids. This report presents the first description of polerovirus transmission by whiteflies. Whiteflies are highly resistant to insecticides and disperse over long distances, carrying virus inoculum. Thus, the report of such unusual polerovirus transmission by a supervector has extensive implications for the epidemiology of the virus disease, with ramifications concerning the international trade of agricultural commodities.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Volcani Center, ARO, Rishon LeZion, Israel
| | | | - Galina Lebedev
- Department of Entomology, Volcani Center, ARO, Rishon LeZion, Israel
| | | | - David Silverman
- Agricultural Extension Service, Ministry of Agriculture & Rural Development, Rishon LeZion, Israel
| | - Tamar Alon
- Agricultural Extension Service, Ministry of Agriculture & Rural Development, Rishon LeZion, Israel
| | - Neta Mor
- Agricultural Extension Service, Ministry of Agriculture & Rural Development, Rishon LeZion, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Volcani Center, ARO, Rishon LeZion, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Volcani Center, ARO, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Volcani Center, ARO, Rishon LeZion, Israel
| | - Munir Mawassi
- Department of Plant Pathology and Weed Research, Volcani Center, ARO, Rishon LeZion, Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Research, Volcani Center, ARO, Rishon LeZion, Israel
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
21
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Wang Q, Xu FZ, An LL, Xiang HY, Zhang WH, Liu GS, Liu HB. Molecular characterization of a new recombinant brassica yellows virus infecting tobacco in China. Virus Genes 2019; 55:253-256. [PMID: 30697673 DOI: 10.1007/s11262-019-01636-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.
Collapse
Affiliation(s)
- Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Fang-Zheng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Lu-Lu An
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Hai-Ying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, People's Republic of China
| | - Wei-Hua Zhang
- Vegetable and Flower Research Institute of Shandong Academy of Agricultural Sciences, Ji'nan, 250100, People's Republic of China
| | - Guan-Shan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Hao-Bao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
23
|
Wetzel V, Brault V, Varrelmann M. Production of a Beet chlorosis virus full-length cDNA clone by means of Gibson assembly and analysis of biological properties. J Gen Virol 2018; 99:1522-1527. [PMID: 30215595 DOI: 10.1099/jgv.0.001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Beet chlorosis virus (genus Polerovirus, family Luteoviridae), which is persistently transmitted by the aphid Myzus persicae, is part of virus yellows in sugar beet and causes interveinal yellowing as well as significant yield loss in Beta vulgaris. To allow reverse genetic studies and replace vector transmission, an infectious cDNA clone under cauliflower mosaic virus 35S control in a binary vector for agrobacterium-mediated infection was constructed using Gibson assembly. Following agroinoculation, the BChV full-length clone was able to induce a systemic infection of the cultivated B. vulgaris. The engineered virus was successfully aphid-transmitted when acquired from infected B. vulgaris and displayed the same host plant spectrum as wild-type virus. This new polerovirus infectious clone is a valuable tool to identify the viral determinants involved in host range and study BChV protein function, and can be used to screen sugar beet for BChV resistance.
Collapse
Affiliation(s)
- Veronika Wetzel
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Véronique Brault
- 2SVQV, Université de Strasbourg, INRA, Equipe Virologie Vection, 28 Rue de Herrlisheim, 68000 Colmar, France
| | - Mark Varrelmann
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
24
|
Wamaitha MJ, Nigam D, Maina S, Stomeo F, Wangai A, Njuguna JN, Holton TA, Wanjala BW, Wamalwa M, Lucas T, Djikeng A, Garcia-Ruiz H. Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virol J 2018; 15:90. [PMID: 29792207 PMCID: PMC5966901 DOI: 10.1186/s12985-018-0999-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.
Collapse
Affiliation(s)
- Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), P. O. Box 14733-00800, Nairobi, Kenya
| | - Deepti Nigam
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska- Lincoln, Lincoln, NE 68583 USA
| | - Solomon Maina
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
- Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617 Australia
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, Kenya
| | - Anne Wangai
- Kenya Agricultural and Livestock Research Organization (KALRO), P. O. Box 14733-00800, Nairobi, Kenya
| | - Joyce Njoki Njuguna
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, Kenya
| | - Timothy A. Holton
- Plant Innovation Centre, Post-Entry Quarantine, Department of Agriculture and Water Resources, 135 Donnybrook Road, Mickleham, VIC 3064 Australia
| | - Bramwel W. Wanjala
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, Kenya
| | - Mark Wamalwa
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, Kenya
| | - Tanui Lucas
- Kenya Agricultural and Livestock Research Organization (KALRO), P. O. Box 14733-00800, Nairobi, Kenya
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), The University of Edinburgh, Edinburgh, Scotland EH25 9RG UK
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska- Lincoln, Lincoln, NE 68583 USA
| |
Collapse
|
25
|
Mulot M, Monsion B, Boissinot S, Rastegar M, Meyer S, Bochet N, Brault V. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein. Front Microbiol 2018; 9:457. [PMID: 29593696 PMCID: PMC5859162 DOI: 10.3389/fmicb.2018.00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae. The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta- or in vitro-synthesized dsRNA targeting Eph-mRNA (dsRNAEph) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNAEph-treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNAEph acquisition was also observed for two other poleroviruses transmitted by M. persicae, suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNAEph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.
Collapse
Affiliation(s)
- Michaël Mulot
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| | - Baptiste Monsion
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| | - Sylvaine Boissinot
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| | - Maryam Rastegar
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France.,Department of Plant Protection, Shiraz University, Shiraz, Iran
| | - Sophie Meyer
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| | - Nicole Bochet
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| | - Véronique Brault
- SVQV, Université de Strasbourg, Institut National de la Recherche Agronomique, Colmar, France
| |
Collapse
|
26
|
Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses 2017; 9:v9100294. [PMID: 28994713 PMCID: PMC5691645 DOI: 10.3390/v9100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Collapse
Affiliation(s)
- Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Deborah A Barton
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kenlee Nakasugi
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Craig Jackson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Melanie L Kalischuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA.
| | - Lawrence M Kawchuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1, Canada.
| | - Maite F S Vaslin
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Regis L Correa
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
27
|
Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR). Virus Res 2017; 241:172-184. [PMID: 28688850 DOI: 10.1016/j.virusres.2017.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/27/2023]
Abstract
As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.
Collapse
|
28
|
Pinheiro PV, Ghanim M, Alexander M, Rebelo AR, Santos RS, Orsburn BC, Gray S, Cilia M. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors. Mol Cell Proteomics 2016; 16:S230-S243. [PMID: 27932519 DOI: 10.1074/mcp.m116.063495] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Indexed: 11/06/2022] Open
Abstract
The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops.
Collapse
Affiliation(s)
- Patricia V Pinheiro
- From the ‡Department of Entomology, Cornell University, Ithaca, New York 14853.,§Boyce Thompson Institute for Plant Research, Ithaca, New York 14853.,¶Embrapa Rice and Beans, Santo Antônio de Goiás 171, Brazil
| | - Murad Ghanim
- ‖Department of Entomology, Volcani Center, Bet Dagan 5025001, Israel
| | - Mariko Alexander
- **Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Ana Rita Rebelo
- §Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Rogerio S Santos
- §Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Stewart Gray
- **Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York.,§§USDA Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, New York
| | - Michelle Cilia
- From the ‡Department of Entomology, Cornell University, Ithaca, New York 14853; .,**Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York.,§§USDA Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, New York
| |
Collapse
|
29
|
DeBlasio SL, Johnson RS, MacCoss MJ, Gray SM, Cilia M. Model System-Guided Protein Interaction Mapping for Virus Isolated from Phloem Tissue. J Proteome Res 2016; 15:4601-4611. [DOI: 10.1021/acs.jproteome.6b00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stacy L. DeBlasio
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Richard S. Johnson
- Department
of Genome Sciences, University of Washington, Seattle Washington 98109, United States
| | - Michael J. MacCoss
- Department
of Genome Sciences, University of Washington, Seattle Washington 98109, United States
| | - Stewart M. Gray
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Cilia
- Agricultural
Research Service, USDA, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P. Metagenomic-Based Screening and Molecular Characterization of Cowpea-Infecting Viruses in Burkina Faso. PLoS One 2016; 11:e0165188. [PMID: 27764211 PMCID: PMC5072566 DOI: 10.1371/journal.pone.0165188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022] Open
Abstract
Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.
Collapse
Affiliation(s)
- Essowè Palanga
- Laboratoire de Génétique et Biotechnologies Végétales, Université de Ouagadougou, 03 BP 7021, Ouagadougou, Burkina Faso
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | | - Daniel Gargani
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | | | - Jean Zabré
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Zakaria Bouda
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - James Bouma Neya
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Mahamadou Sawadogo
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | | | | |
Collapse
|
31
|
Tian J, Liu D, Liu Y, Wu H, Jiang Y, Zu S, Liu C, Sun X, Liu J, Qu L. Molecular characterization of a feline calicivirus isolated from tiger and its pathogenesis in cats. Vet Microbiol 2016; 192:110-117. [PMID: 27527772 DOI: 10.1016/j.vetmic.2016.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Feline calicivirus (FCV) is a virus that causes respiratory disease in cats. In this study, the FCV TIG-1 was isolated from Siberian tiger feces collected in 2014 in Heilongjiang Province, China. Phylogenetic analysis among TIG-1 and other FCVs showed that TIG-1 does not share the same lineage with other FCV isolates from Heilongjiang or other regions in China but is located in the same cluster with the FCV strain Urbana, which was isolated from the United States. The growth kinetics in vitro and the pathogenicity in cats between TIG-1 and the domestic cat-origin FCV strain F9 (vaccine strain) and strain 2280 were compared. We found that the growth kinetics of strains TIG-1 and 2280 were faster than that of strain F9 from 12h to 36h post-infection, indicating that strains TIG-1 and 2280 produce infectious virions and reach peak yields earlier. Challenge experiments in cats showed that TIG-1 grew faster than the other two strains in the lungs of cats and that TIG-1 is a virulent FCV with 100% morbidity and lethality. In addition, the histopathological results showed that the virulent TIG-1 strain directly led to severe lung tissue damage and indirectly led to intestinal damage. The results presented here show that a tiger-origin FCV exhibits high virulence in cats.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Dafei Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongxiang Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongxia Wu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanmei Jiang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Shaopo Zu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Chunguo Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xue Sun
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Jiasen Liu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
32
|
Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a Novel Polerovirus Infecting Maize in China. Viruses 2016; 8:E120. [PMID: 27136578 PMCID: PMC4885075 DOI: 10.3390/v8050120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.
Collapse
Affiliation(s)
- Sha Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Guangzhuang Jiang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianxiang Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yong Liu
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
33
|
DeBlasio SL, Chavez JD, Alexander MM, Ramsey J, Eng JK, Mahoney J, Gray SM, Bruce JE, Cilia M. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology. J Virol 2016; 90:1973-87. [PMID: 26656710 PMCID: PMC4733995 DOI: 10.1128/jvi.01706-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mariko M Alexander
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - John Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Jimmy K Eng
- University of Washington Proteomics Resources, Seattle, Washington, USA
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Stewart M Gray
- USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michelle Cilia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, USA USDA-Agricultural Research Service, Ithaca, New York, USA Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
34
|
Kassem MA, Gosalvez B, Garzo E, Fereres A, Gómez-Guillamón ML, Aranda MA. Resistance to Cucurbit aphid-borne yellows virus in Melon Accession TGR-1551. PHYTOPATHOLOGY 2015; 105:1389-1396. [PMID: 26075973 DOI: 10.1094/phyto-02-15-0041-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The genetic control of resistance to Cucurbit aphid-borne yellows virus (CABYV; genus Polerovirus, family Luteoviridae) in the TGR-1551 melon accession was studied through agroinoculation of a genetic family obtained from the cross between this accession and the susceptible Spanish cultivar 'Bola de Oro'. Segregation analyses were consistent with the hypothesis that one dominant gene and at least two more modifier genes confer resistance; one of these additional genes is likely present in the susceptible parent 'Bola de Oro'. Local and systemic accumulation of the virus was analyzed in a time course experiment, showing that TGR-1551 resistance was expressed systemically as a significant reduction of virus accumulation compared with susceptible controls, but not locally in agroinoculated cotyledons. In aphid transmission experiments, CABYV inoculation by aphids was significantly reduced in TGR-1551 plants, although the virus was acquired at a similar rate from TGR-1551 as from susceptible plants. Results of feeding behavior studies using the DC electrical penetration graph technique suggested that viruliferous aphids can salivate and feed from the phloem of TGR-1551 plants and that the observed reduction in virus transmission efficiency is not related to reduced salivation by Aphis gossypii in phloem sieve elements. Since the virus is able to accumulate to normal levels in agroinoculated tissues, our results suggest that resistance of TGR-1551 plants to CABYV is related to impairment of virus movement or translocation after it reaches the phloem sieve elements.
Collapse
Affiliation(s)
- Mona A Kassem
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Blanca Gosalvez
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Elisa Garzo
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Alberto Fereres
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Maria Luisa Gómez-Guillamón
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Miguel A Aranda
- First, second, and sixth authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; third and fourth authors: Instituto de Ciencias Agrarias (ICA), CSIC, Serrano 115 dpdo, 28006, Madrid, Spain; and fifth author: Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
35
|
Rodriguez-Medina C, Boissinot S, Chapuis S, Gereige D, Rastegar M, Erdinger M, Revers F, Ziegler-Graff V, Brault V. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation. Virology 2015; 486:44-53. [PMID: 26402374 DOI: 10.1016/j.virol.2015.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/20/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells.
Collapse
Affiliation(s)
| | | | - Sophie Chapuis
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Dalya Gereige
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Maryam Rastegar
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Monique Erdinger
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Frédéric Revers
- INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Véronique Brault
- UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar, France.
| |
Collapse
|
36
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
37
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
38
|
Boissinot S, Erdinger M, Monsion B, Ziegler-Graff V, Brault V. Both structural and non-structural forms of the readthrough protein of cucurbit aphid-borne yellows virus are essential for efficient systemic infection of plants. PLoS One 2014; 9:e93448. [PMID: 24691251 PMCID: PMC3972232 DOI: 10.1371/journal.pone.0093448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.
Collapse
Affiliation(s)
- Sylvaine Boissinot
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, Colmar, France
- Université de Strasbourg, Strasbourg, France
| | - Monique Erdinger
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, Colmar, France
- Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, Colmar, France
- Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Strasbourg, France
| | - Véronique Ziegler-Graff
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Strasbourg, France
| | - Véronique Brault
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, Colmar, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
39
|
Abstract
The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD-INRA-SupAgro, CIRAD TA-A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France; , ,
| | | | | |
Collapse
|
40
|
Kassem MA, Juarez M, Gómez P, Mengual CM, Sempere RN, Plaza M, Elena SF, Moreno A, Fereres A, Aranda MA. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. PHYTOPATHOLOGY 2013; 103:1188-1197. [PMID: 23802870 DOI: 10.1094/phyto-11-12-0280-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The genetic variability of a Cucurbit aphid-borne yellows virus (CABYV) (genus Polerovirus, family Luteoviridae) population was evaluated by determining the nucleotide sequences of two genomic regions of CABYV isolates collected in open-field melon and squash crops during three consecutive years in Murcia (southeastern Spain). A phylogenetic analysis showed the existence of two major clades. The sequences did not cluster according to host, year, or locality of collection, and nucleotide similarities among isolates were 97 to 100 and 94 to 97% within and between clades, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions reflected that all open reading frames have been under purifying selection. Estimates of the population's genetic diversity were of the same magnitude as those previously reported for other plant virus populations sampled at larger spatial and temporal scales, suggesting either the presence of CABYV in the surveyed area long before it was first described, multiple introductions, or a particularly rapid diversification. We also determined the full-length sequences of three isolates, identifying the occurrence and location of recombination events along the CABYV genome. Furthermore, our field surveys indicated that Aphis gossypii was the major vector species of CABYV and the most abundant aphid species colonizing melon fields in the Murcia (Spain) region. Our surveys also suggested the importance of the weed species Ecballium elaterium as an alternative host and potential virus reservoir.
Collapse
|
41
|
Tamborindeguy C, Bereman MS, DeBlasio S, Igwe D, Smith DM, White F, MacCoss MJ, Gray SM, Cilia M. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus. PLoS One 2013; 8:e71620. [PMID: 23951206 PMCID: PMC3739738 DOI: 10.1371/journal.pone.0071620] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/30/2013] [Indexed: 01/21/2023] Open
Abstract
Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV). The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate virus transport from the hindgut lumen into the hemocoel.
Collapse
Affiliation(s)
- Cecilia Tamborindeguy
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (CT)
| | - Michael S. Bereman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stacy DeBlasio
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - David Igwe
- Virology and Molecular Diagnostics Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dawn M. Smith
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Frank White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stewart M. Gray
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Michelle Cilia
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (CT)
| |
Collapse
|
42
|
Dombrovsky A, Glanz E, Lachman O, Sela N, Doron-Faigenboim A, Antignus Y. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus. PLoS One 2013; 8:e70722. [PMID: 23936244 PMCID: PMC3728342 DOI: 10.1371/journal.pone.0070722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 06/23/2013] [Indexed: 11/18/2022] Open
Abstract
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- Department of Plant Pathology, ARO, the Volcani Center, Bet Dagan, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Complete Genome Sequence of Potato leafroll virus Isolates Infecting Potato in the Different Geographical Areas of India Shows Low Level Genetic Diversity. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:199-204. [PMID: 24426276 DOI: 10.1007/s13337-013-0138-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
Abstract
Five Potato leafroll virus (PLRV) isolates were collected from five states representing different potato growing parts of India. The ssRNA genome sequences of these isolates were determined. The genome comprised of 5,883 nucleotides and deduced genome organization resembled other PLRV isolates. About 97.6-98.7 % similarities was observed within the Indian isolates and were more close to European, Canadian, African, American and Czech isolates (95.8-98.6 %) than to an Australian isolate (92.9-93.4 %). These isolates were 43.7-53.1 % similar to other poleroviruses and 29.1-29.3 % to Barley yellow dwarf virus, a luteovirus. Out of five isolates, the isolate PBI-6 was recombinant one as detected by RDP3 software. Multiple sequence alignment of nucleotide and amino acid sequences of different ORFs indicated that the ORF 3 and ORF 4, corresponding to coat protein and movement proteins are more conserved than other ORFs. Amino acid changes specific to Indian isolates were observed and it was more in ORF 2 than in ORF 0, ORF 3 and ORF 4. This is the first report of complete genome sequence of PLRV isolates from India, which reveals low level genetic diversity.
Collapse
|
44
|
Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:177-201. [PMID: 23663003 DOI: 10.1146/annurev-phyto-082712-102346] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
Collapse
Affiliation(s)
- C Bragard
- Earth & Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 2012; 86:7850-7. [PMID: 22593155 PMCID: PMC3421669 DOI: 10.1128/jvi.00916-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 11/20/2022] Open
Abstract
Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Lake Alfred, Florida, USA
- United States Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - William O. Dawson
- Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Lake Alfred, Florida, USA
| |
Collapse
|
46
|
Fusaro AF, Correa RL, Nakasugi K, Jackson C, Kawchuk L, Vaslin MFS, Waterhouse PM. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 2012; 426:178-87. [PMID: 22361475 DOI: 10.1016/j.virol.2012.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/03/2012] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0(PE), in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0(PE) has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0(PE) destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.
Collapse
|
47
|
Abstract
Cucurbit crops may be affected by at least 28 different viruses in the Mediterranean basin. Some of these viruses are widely distributed and cause severe yield losses while others are restricted to limited areas or specific crops, and have only a negligible economic impact. A striking feature of cucurbit viruses in the Mediterranean basin is their always increasing diversity. Indeed, new viruses are regularly isolated and over the past 35 years one "new" cucurbit virus has been reported on average every 2 years. Among these "new" viruses some were already reported in other parts of the world, but others such as Zucchini yellow mosaic virus (ZYMV), one of the most severe cucurbit viruses and Cucurbit aphid-borne yellows virus (CABYV), one of the most prevalent cucurbit viruses, were first described in the Mediterranean area. Why this region may be a potential "hot-spot" for cucurbit virus diversity is not fully known. This could be related to the diversity of cropping practices, of cultivar types but also to the important commercial exchanges that always prevailed in this part of the world. This chapter describes the major cucurbit viruses occurring in the Mediterranean basin, discusses factors involved in their emergence and presents options for developing sustainable control strategies.
Collapse
Affiliation(s)
- Hervé Lecoq
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | |
Collapse
|
48
|
Abstract
Compared to other vegetable crops, the major viral constraints affecting pepper crops in the Mediterranean basin have been remarkably stable for the past 20 years. Among these viruses, the most prevalent ones are the seed-transmitted tobamoviruses; the aphid-transmitted Potato virus Y and Tobacco etch virus of the genus Potyvirus, and Cucumber mosaic virus member of the genus Cucumovirus; and thrips-transmitted tospoviruses. The last major viral emergence concerns the tospovirus Tomato spotted wilt virus (TSWV), which has undergone major outbreaks since the end of the 1980s and the worldwide dispersal of the thrips vector Frankliniella occidentalis from the western part of the USA. TSWV outbreaks in the Mediterranean area might have been the result of both viral introductions from Northern America and local reemergence of indigenous TSWV isolates. In addition to introductions of new viruses, resistance breakdowns constitute the second case of viral emergences. Notably, the pepper resistance gene Tsw toward TSWV has broken down a few years after its deployment in several Mediterranean countries while there has been an expansion of L³-resistance breaking pepper mild mottle tobamovirus isolates. Beyond the agronomical and economical concerns induced by the breakdowns of virus resistance genes in pepper, they also constitute original models to understand plant-virus interactions and (co)evolution.
Collapse
Affiliation(s)
- Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | |
Collapse
|
49
|
Immunofluorescence localisation of Banana bunchy top virus (family Nanoviridae) within the aphid vector, Pentalonia nigronervosa, suggests a virus tropism distinct from aphid-transmitted luteoviruses. Virus Res 2010; 155:520-5. [PMID: 21167229 DOI: 10.1016/j.virusres.2010.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/27/2022]
Abstract
We have applied immunocapture PCR and developed an immunofluorescence assay to specifically detect Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) within its aphid vector, Pentalonia nigronervosa (Hemiptera, Aphididae). BBTV was localised using either monoclonal or polyclonal antibodies into the anterior midgut (stomach) and into specific cells forming the principal salivary glands. These results suggest a distinct path of virus translocation that likely differs from the one described for aphid-transmitted luteovirus, which enter hemocoels through the hindguts and posterior midguts and that penetrate the accessory salivary glands of their competent vectors. To our understanding, this is the first work analysing the localisation of a virus member of the family Nanoviridae within an aphid vector.
Collapse
|
50
|
Pagán I, Holmes EC. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 2010; 84:6177-87. [PMID: 20375155 PMCID: PMC2876656 DOI: 10.1128/jvi.02160-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 03/31/2010] [Indexed: 12/20/2022] Open
Abstract
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.
Collapse
Affiliation(s)
- Israel Pagán
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|