1
|
Toraño A, Moreno I, Infantes JA, Domínguez M. Description of a non-competitive ELISA based on time course analysis of ligand binding at saturation, and a direct method for calculating the affinity of monoclonal antibodies. J Immunol Methods 2024; 534:113756. [PMID: 39265885 DOI: 10.1016/j.jim.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
We present a time-course saturation ELISA for measuring the equilibrium constant of the monoclonal antibody (mAb) SIM 28 against horse radish peroxidase (HRP). The curves of HRP binding to a series of fixed mAb dilutions were plotted to completion, and the Kt (= Ks) value (time to occupy 50 % of the mAb paratopes) was determined for each mAb dilution and HRP concentration. Analysis of the kinetic mechanism of the reaction by Lineweaver-Burk and Hanes plots showed that the slope and y-intercept were affected, indicating that mAb ligand saturation follows non-competitive inhibition kinetics in this assay format. In this kinetics, the inhibition constant Ki (= Kd) is the time required to double the slope or halve the Vmax of the Lineweaver-Burk plot. The Kt values of the time courses were doubled (2 x Kt) and normalized by dividing by the total reaction time to obtain a unitless factor which, when multiplied by the concentration of HRP, gives the Ki. The affinity constant of mAb SIM 28 was determined from ELISA data (n = 16) by three methods: i) doubling of Kt, ii) Beatty equation (Kaff = (n-1)/2 (n [HRP']t - [HRP]t), and iii) SPR (Biacore) analysis. The calculated affinities (mean ± 95 % confidence limits) were i) 4.6 ± 0.67 × 10-9 M, ii) Kaff = 0.23 ± 0.03 × 109 M-1 (Kd = 4.8 ± 0.81 × 10-9 M), and iii) 4.3 ± 0.57 × 10-9 M, respectively. The similar results obtained with the three different techniques indicate that this time-course saturation ELISA, combined with the double Kt method, is a repeatable and direct approach to mAb affinity determination.
Collapse
Affiliation(s)
- Alfredo Toraño
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Inmaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - José Antonio Infantes
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
2
|
Jeon P, Yoo B, Kim Y, Lee SY, Woo HM, Lim HY, Lee JY, Park S, Lee H. Characterization of high-affinity antibodies against the surface Gc protein of Dabie bandavirus / severe fever with thrombocytopenia syndrome virus. Biochem Biophys Rep 2024; 39:101779. [PMID: 39099605 PMCID: PMC11296068 DOI: 10.1016/j.bbrep.2024.101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) or Dabie bandavirus is an emerging pathogen responsible for SFTS. It is considered a novel threat to human health, given the high associated fatality. SFTSV is a segmented negative-strand RNA virus containing three single-stranded RNAs, with the M segment encoding the glycoproteins Gn and Gc. Gc is vital for viral entry into the host cell surface, along with the Gn protein. As the Gc is the surface-exposable antigen from virions, it is a critical diagnostic marker of infection. Although various SFTSV Gn or N protein-based sero-diagnostic methods have been developed, there are no commercially available sero-diagnostic kits. Therefore, we generated monoclonal antibodies (mAbs) against SFTSV Gc and explored their application in serum diagnostic tests to develop sensitive serodiagnostic tools covering broad-range genotypes (A to F). First, 10 SFTSV Gc antibody-binding fragments (Fabs) were isolated using a phage display system and converted into human IgGs. Enzyme-linked immunosorbent assays (ELISA) of the SFTSV and Rift Valley fever virus (RVFV: same genus as SFTSV) Gc antigens showed that all antibodies attached to the SFTSV Gc protein had high affinity. An immunofluorescence assay (IFA), to verify the cross-reactivity of seven antibodies with high affinities for various SFTSV genotypes (A, B2, B3, D, and F) and detect mAb binding with intact Gc proteins, revealed that five IgG type mAbs were bound to intact Gc proteins of various genotypes. Six high-affinity antibodies were selected using ELISA and IFA. The binding capacity of the six antibodies against the SFTSV Gc antigen was measured using surface plasmon resonance. All antibodies had high binding capacity. Consequently, these antibodies serve as valuable markers in the serological diagnosis of SFTSV.
Collapse
Affiliation(s)
- Pyeonghwa Jeon
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Republic of Korea
| | - Bin Yoo
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Yoonji Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - So-Young Lee
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Republic of Korea
| | - Hye-Min Woo
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Republic of Korea
| | - Hee-Young Lim
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, Korea National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheonju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Sora Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea
| | - Hansaem Lee
- Division of Emerging Virus & Vector Research, Center for Emerging Virus Research, Republic of Korea
| |
Collapse
|
3
|
Moulana A, Dupic T, Phillips AM, Chang J, Roffler AA, Greaney AJ, Starr TN, Bloom JD, Desai MM. The landscape of antibody binding affinity in SARS-CoV-2 Omicron BA.1 evolution. eLife 2023; 12:e83442. [PMID: 36803543 PMCID: PMC9949795 DOI: 10.7554/elife.83442] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
The Omicron BA.1 variant of SARS-CoV-2 escapes convalescent sera and monoclonal antibodies that are effective against earlier strains of the virus. This immune evasion is largely a consequence of mutations in the BA.1 receptor binding domain (RBD), the major antigenic target of SARS-CoV-2. Previous studies have identified several key RBD mutations leading to escape from most antibodies. However, little is known about how these escape mutations interact with each other and with other mutations in the RBD. Here, we systematically map these interactions by measuring the binding affinity of all possible combinations of these 15 RBD mutations (215=32,768 genotypes) to 4 monoclonal antibodies (LY-CoV016, LY-CoV555, REGN10987, and S309) with distinct epitopes. We find that BA.1 can lose affinity to diverse antibodies by acquiring a few large-effect mutations and can reduce affinity to others through several small-effect mutations. However, our results also reveal alternative pathways to antibody escape that does not include every large-effect mutation. Moreover, epistatic interactions are shown to constrain affinity decline in S309 but only modestly shape the affinity landscapes of other antibodies. Together with previous work on the ACE2 affinity landscape, our results suggest that the escape of each antibody is mediated by distinct groups of mutations, whose deleterious effects on ACE2 affinity are compensated by another distinct group of mutations (most notably Q498R and N501Y).
Collapse
Affiliation(s)
- Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jeffrey Chang
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Anne A Roffler
- Biological and Biomedical Sciences, Harvard Medical SchoolBostonUnited States
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Medical Scientist Training Program, University of WashingtonSeattleUnited States
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
| |
Collapse
|
4
|
Moreno I, Infantes JA, Domínguez M, Toraño A. Monoclonal antibody on-rate constant determined from time-course data of ligand binding by capture ELISA: Evaluation of eight data analysis methods. J Immunol Methods 2022; 506:113292. [PMID: 35654111 DOI: 10.1016/j.jim.2022.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
We describe an ELISA method with which to determine monoclonal antibody (mAb) on-rate constants (k+1) based on time-course data of ligand (L) binding to plate-bound mAb. The assay was performed in pseudo-first order kinetic conditions ([L] > > [mAb]) and at various starting ligand concentrations. Time-course initial velocity was analyzed by several methods to derive the pseudo-first order (kobs) and second order (k+1) association rate constants of the antibody; the methods included i) an exponential first order rate equation, ii) reaction half-time from the Michaelis-Menten relationship, iii) the Vmax/Km tangent of the time-course curve, iv) Boeker's extrapolated-vo method, v-vi) modified Hanes-Woolf and Lineweaver-Burk linear plots, vii) a LOS plot, and viii) initial velocity gradient. Due to k+1 value dispersion associated with the methods of analysis, the on-rate constant of mAb SIM 253-19 anti-cholera toxin was estimated as an average value of 1.79 ± 0.11 × 106 M-1 s-1, 95% CL (1.68-1.89) and 5.8 (%CV [coefficient of variation]), which is similar to the k+1 obtained by surface plasmon resonance, 1.60 ± 0.17 × 106 M-1 s -1 (mean ± half range). This kinetic ELISA is a sensitive, quantitative method by which to determine antibody association rate constants.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - José Antonio Infantes
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Alfredo Toraño
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
5
|
Pardridge WM. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021; 15:3. [PMID: 35056060 PMCID: PMC8778919 DOI: 10.3390/ph15010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.
Collapse
|
6
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Herlands L, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. eLife 2021; 10:e73027. [PMID: 34874007 PMCID: PMC8651292 DOI: 10.7554/elife.73027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
- Department of Chemistry, St. John’s UniversityQueensUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | | | | | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Division of Pulmonary and Sleep Medicine, Seattle Children’s HospitalSeattleUnited States
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
7
|
Huang Y, Harris BS, Minami SA, Jung S, Shah PS, Nandi S, McDonald KA, Faller R. SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophys J 2021; 121:79-90. [PMID: 34883069 PMCID: PMC8648368 DOI: 10.1016/j.bpj.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
Highly detailed steered molecular dynamics simulations are performed on differently glycosylated receptor binding domains of the severe acute respiratory syndrome coronavirus-2 spike protein. The binding strength and the binding range increase with glycosylation. The interaction energy rises very quickly when pulling the proteins apart and only slowly drops at larger distances. We see a catch-slip-type behavior whereby interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode is hydrogen bonds, but Lennard-Jones and electrostatic interactions are relevant as well.
Collapse
Affiliation(s)
- Yihan Huang
- Department of Materials Science, UC Davis, Davis, California
| | | | - Shiaki A Minami
- Department of Chemical Engineering, UC Davis, Davis, California
| | - Seongwon Jung
- Department of Chemical Engineering, UC Davis, Davis, California
| | - Priya S Shah
- Department of Chemical Engineering, UC Davis, Davis, California; Department of Microbiology and Molecular Genetics, UC Davis, Davis, California
| | - Somen Nandi
- Department of Chemical Engineering, UC Davis, Davis, California; Global HealthShare Initiative, UC Davis, Davis, California
| | - Karen A McDonald
- Department of Chemical Engineering, UC Davis, Davis, California; Global HealthShare Initiative, UC Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, UC Davis, Davis, California.
| |
Collapse
|
8
|
Dahora LC, Verheul MK, Williams KL, Jin C, Stockdale L, Cavet G, Giladi E, Hill J, Kim D, Leung Y, Bobay BG, Spicer LD, Sawant S, Rijpkema S, Dennison SM, Alam SM, Pollard AJ, Tomaras GD. Salmonella Typhi Vi capsule prime-boost vaccination induces convergent and functional antibody responses. Sci Immunol 2021; 6:eabj1181. [PMID: 34714686 PMCID: PMC9960181 DOI: 10.1126/sciimmunol.abj1181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vaccine development to prevent Salmonella Typhi infections has accelerated over the past decade, resulting in licensure of new vaccines, which use the Vi polysaccharide (Vi PS) of the bacterium conjugated to an unrelated carrier protein as the active component. Antibodies elicited by these vaccines are important for mediating protection against typhoid fever. However, the characteristics of protective and functional Vi antibodies are unknown. In this study, we investigated the human antibody repertoire, avidity maturation, epitope specificity, and function after immunization with a single dose of Vi-tetanus toxoid conjugate vaccine (Vi-TT) and after a booster with plain Vi PS (Vi-PS). The Vi-TT prime induced an IgG1-dominant response, whereas the Vi-TT prime followed by the Vi-PS boost induced IgG1 and IgG2 antibody production. B cells from recipients who received both prime and boost showed evidence of convergence, with shared V gene usage and CDR3 characteristics. The detected Vi antibodies showed heterogeneous avidity ranging from 10 μM to 500 pM, with no evidence of affinity maturation after the boost. Vi-specific antibodies mediated Fc effector functions, which correlated with antibody dissociation kinetics but not with association kinetics. We identified antibodies induced by prime and boost vaccines that recognized subdominant epitopes, indicated by binding to the de–O-acetylated Vi backbone. These antibodies also mediated Fc-dependent functions, such as complement deposition and monocyte phagocytosis. Defining strategies on how to broaden epitope targeting for S. Typhi Vi and enriching for antibody Fc functions that protect against typhoid fever will advance the design of high-efficacy Vi vaccines for protection across diverse populations.
Collapse
Affiliation(s)
- Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Immunology, Duke University, Durham, NC, USA.,Corresponding author. (L.C.D.); (G.D.T.)
| | - Marije K. Verheul
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, UK
| | | | - Celina Jin
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, UK
| | - Lisa Stockdale
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, UK
| | | | | | - Jennifer Hill
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, UK
| | | | | | - Benjamin G. Bobay
- Department of Biochemistry, Duke University, Durham, NC, USA.,Department of Radiology, Duke University, Durham, NC, USA.,Duke University NMR Center, Duke University Medical Center, Durham, NC, USA
| | - Leonard D. Spicer
- Department of Biochemistry, Duke University, Durham, NC, USA.,Department of Radiology, Duke University, Durham, NC, USA.,Duke University NMR Center, Duke University Medical Center, Durham, NC, USA
| | - Sheetal Sawant
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University, Durham, NC, USA
| | - Sjoerd Rijpkema
- Division of Bacteriology, National Institute of Biological Standards and Control, Potters Bar, UK
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University, Durham, NC, USA
| | - S. Munir Alam
- Department of Medicine, Duke University, Durham, NC, USA.,Department of Pathology, Duke University, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, UK
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.,Corresponding author. (L.C.D.); (G.D.T.)
| |
Collapse
|
9
|
van Haaren MM, McCoy LE, Torres JL, Lee W, Cottrell CA, Copps JL, van der Woude P, Yasmeen A, de Taeye SW, Torrents de la Peña A, Moore JP, Burton DR, Klasse PJ, Ward AB, Sanders RW, van Gils MJ. Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. J Virol 2021; 95:e0009421. [PMID: 34076487 PMCID: PMC8354326 DOI: 10.1128/jvi.00094-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
The high viral diversity of HIV-1 is a formidable hurdle for the development of an HIV-1 vaccine. Elicitation of broadly neutralizing antibodies (bNAbs) would offer a solution, but so far immunization strategies have failed to efficiently elicit bNAbs. To overcome these obstacles, it is important to understand the immune responses elicited by current HIV-1 envelope glycoprotein (Env) immunogens. To gain more insight, we characterized monoclonal antibodies (MAbs) isolated from rabbits immunized with Env SOSIP trimers based on the clade B isolate AMC008. Four rabbits that were immunized three times with AMC008 trimer developed robust autologous and sporadic low-titer heterologous neutralizing responses. Seventeen AMC008 trimer-reactive MAbs were isolated using antigen-specific single B-cell sorting. Four of these MAbs neutralized the autologous AMC008 virus and several other clade B viruses. When visualized by electron microscopy, the complex of the neutralizing MAbs with the AMC008 trimer showed binding to the gp41 subunit with unusual approach angles, and we observed that their neutralization ability depended on their capacity to induce Env trimer dissociation. Thus, AMC008 SOSIP trimer immunization induced clade B-neutralizing MAbs with unusual approach angles with neutralizing effects that involve trimer destabilization. Optimizing these responses might provide an avenue to the induction of trimer-dissociating bNAbs. IMPORTANCE Roughly 32 million people have died as a consequence of HIV-1 infection since the start of the epidemic, and 1.7 million people still get infected with HIV-1 annually. Therefore, a vaccine to prevent HIV-1 infection is urgently needed. Current HIV-1 immunogens are not able to elicit the broad immune responses needed to provide protection against the large variation of HIV-1 strains circulating globally. A better understanding of the humoral immune responses elicited by immunization with state-of-the-art HIV-1 immunogens should facilitate the design of improved HIV-1 vaccine candidates. We identified antibodies with the ability to neutralize multiple HIV-1 viruses by destabilization of the envelope glycoprotein. Their weak but consistent cross-neutralization ability indicates the potential of this epitope to elicit broad responses. The trimer-destabilizing effect of the neutralizing MAbs, combined with detailed characterization of the neutralization epitope, can be used to shape the next generation of HIV-1 immunogens to elicit improved humoral responses after vaccination.
Collapse
Affiliation(s)
- M. M. van Haaren
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - L. E. McCoy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - J. L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - W. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - C. A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - J. L. Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - P. van der Woude
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S. W. de Taeye
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Torrents de la Peña
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J. P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - D. R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - A. B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, California, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - R. W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - M. J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Pardridge WM, Chou T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel) 2021; 14:535. [PMID: 34205013 PMCID: PMC8226686 DOI: 10.3390/ph14060535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
We develop and analyze mathematical models for receptor-mediated transcytosis of monoclonal antibodies (MAb) targeting the transferrin receptor (TfR) or the insulin receptor (IR), which are expressed at the blood-brain barrier (BBB). The mass-action kinetic model for both the TfR and IR antibodies were solved numerically to generate predictions for the concentrations of all species in all compartments considered. Using these models, we estimated the rates of MAb endocytosis into brain capillary endothelium, which forms the BBB in vivo, the rates of MAb exocytosis from the intra-endothelial compartment into brain extracellular space, and the rates of receptor recycling from the endothelial space back to the luminal endothelial plasma membrane. Our analysis highlights the optimal rates of MAb association with the targeted receptor. An important role of the endogenous ligand, transferrin (Tf) or insulin, in receptor-mediated-transport (RMT) of the associated MAb was found and was attributed to the five order magnitude difference between plasma concentrations of Tf (25,000 nM) and insulin (0.3 nM). Our modeling shows that the very high plasma concentration of Tf leads to only 5% of the endothelial TfR expressed on the luminal endothelial membrane.
Collapse
Affiliation(s)
| | - Tom Chou
- Departments of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095, USA;
| |
Collapse
|
11
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.438911. [PMID: 33851164 PMCID: PMC8043454 DOI: 10.1101/2021.04.08.438911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Magda Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicolas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
12
|
Saba I, Barat C, Chabaud S, Reyjon N, Leclerc M, Jakubowska W, Orabi H, Lachhab A, Pelletier M, Tremblay MJ, Bolduc S. Immunocompetent Human 3D Organ-Specific Hormone-Responding Vaginal Mucosa Model of HIV-1 Infection. Tissue Eng Part C Methods 2021; 27:152-166. [PMID: 33573474 DOI: 10.1089/ten.tec.2020.0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lack of appropriate experimental models often limits our ability to investigate the establishment of infections in specific tissues. To reproduce the structural and spatial organization of vaginal mucosae to study human immunodeficiency virus type-1 (HIV-1) infection, we used the self-assembly technique to bioengineer tridimensional vaginal mucosae using human cells extracted from HIV-1-negative healthy pre- and postmenopausal donors. We produced a stroma, free of exogenous material, that can be adapted to generate near-to-native vaginal tissue with the best complexity obtained with seeded epithelial cells on the organ-specific stroma. The autologous engineered tissues had mechanical properties close to native mucosa and shared similar glycogen production, which declined in reconstructed tissues of the postmenopausal donor. The in vitro-engineered tissues were also rendered immune competent by adding human monocyte-derived macrophages (MDMs) on the epithelium or in the stroma layers. The model was infected with HIV-1, and viral replication and transcytosis were observed when immunocompetent reconstructed vaginal mucosa tissue has incorporated MDMs into the stroma and infected with free HIV-1 green fluorescent protein (GFP) viral particles. These data illustrate a natural permissiveness of immunocompetent untransformed human vaginal mucosae to HIV-1 infection. This model offers a physiological tool to explore viral load, HIV-1 transmission in an environment that may contribute to the virus propagation, and new antiviral treatments in vitro. Impact statement This study introduces an innovative immunocompetent three-dimensional human organ-specific vaginal mucosa free of exogenous material for in vitro modeling of human immunodeficiency virus type-1 (HIV-1) infection. The proposed model is histologically close to native tissue, especially by presenting glycogen accumulation in the epithelium's superficial cells, responsive to estrogen, and able to sustain a monocyte-derived macrophage population infected or not by HIV-1 during ∼2 months.
Collapse
Affiliation(s)
- Ingrid Saba
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Corinne Barat
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Nolan Reyjon
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Maude Leclerc
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Weronika Jakubowska
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Hazem Orabi
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada
| | - Asmaa Lachhab
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Michel J Tremblay
- Infectious and Immune Diseases, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec City, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec City, Canada
| |
Collapse
|
13
|
Gordon CKL, Wu D, Pusuluri A, Feagin TA, Csordas AT, Eisenstein MS, Hawker CJ, Niu J, Soh HT. Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chem Biol 2019; 14:2652-2662. [PMID: 31532184 PMCID: PMC6929039 DOI: 10.1021/acschembio.9b00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Base-modified aptamers
that incorporate non-natural chemical moieties
can achieve greatly improved affinity and specificity relative to
natural DNA or RNA aptamers. However, conventional methods for generating
base-modified aptamers require considerable expertise and resources.
In this work, we have accelerated and generalized the process of generating
base-modified aptamers by combining a click-chemistry strategy with
a fluorescence-activated cell sorting (FACS)-based screening methodology
that measures the affinity and specificity of individual aptamers
at a throughput of ∼107 per hour. Our “click-particle
display (PD)” strategy offers many advantages. First, almost
any chemical modification can be introduced with a commercially available
polymerase. Second, click-PD can screen vast numbers of individual
aptamers on the basis of quantitative on- and off-target binding measurements
to simultaneously achieve high affinity and specificity. Finally,
the increasing availability of FACS instrumentation in academia and
industry allows for easy adoption of click-PD in a broader scientific
community. Using click-PD, we generated a boronic acid-modified aptamer
with ∼1 μM affinity for epinephrine, a target for which
no aptamer has been reported to date. We subsequently generated a
mannose-modified aptamer with nanomolar affinity for the lectin concanavalin
A (Con A). The strong affinity of both aptamers is fundamentally dependent
upon the presence of chemical modifications, and we show that their
removal essentially eliminates aptamer binding. Importantly, our Con
A aptamer exhibited exceptional specificity, with minimal binding
to other structurally similar lectins. Finally, we show that our aptamer
has remarkable biological activity. Indeed, this aptamer is the most
potent inhibitor of Con A-mediated hemagglutination reported to date.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hyongsok Tom Soh
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
14
|
Hearty S, Leonard P, Ma H, O'Kennedy R. Measuring Antibody-Antigen Binding Kinetics Using Surface Plasmon Resonance. Methods Mol Biol 2018; 1827:421-455. [PMID: 30196510 DOI: 10.1007/978-1-4939-8648-4_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance (SPR) is now widely embraced as a technology for monitoring a diverse range of protein-protein interactions and is considered almost de rigueur for characterizing antibody-antigen interactions. The technique obviates the need to label either of the interacting species, and the binding event is visualized in real time. Thus, it is ideally suited for screening crude, unpurified antibody samples that dominate early candidate panels following antibody selection campaigns. SPR returns not only concentration and affinity data but when used correctly can resolve the discrete component kinetic parameters (association and dissociation rate constants) of the affinity interaction. Herein, we outline some SPR-based generic antibody screening configurations and methodologies in the context of expediting data-rich ranking of candidate antibody panels and ensuring that antibodies with the optimal kinetic binding characteristics are reliably identified.
Collapse
Affiliation(s)
- Stephen Hearty
- School of Biotechnology, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Paul Leonard
- School of Biotechnology, Dublin City University, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
- Qatar Foundation and Research Complex, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
15
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
16
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
17
|
Structural definition of an antibody-dependent cellular cytotoxicity response implicated in reduced risk for HIV-1 infection. J Virol 2014; 88:12895-906. [PMID: 25165110 DOI: 10.1128/jvi.02194-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic, as infected or vaccinated individuals frequently produce antibodies specific for these determinants. Antibody titers, as measured by enzyme-linked immunosorbent assay (ELISA) against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two nonneutralizing, A32-like monoclonal antibodies (MAbs), N5-i5 and 2.2c, that compete for antigen binding and have similar antigen-binding affinities yet exhibit a 75-fold difference in ADCC potency. We find that these MAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain, including the C1 and C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants of ADCC potency, with the latter process having the greater impact. These studies provide atomic-level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of the humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these nonneutralizing responses is an important aspect of elucidating the complete spectrum of immune response against HIV-1 infection. With this report, we provide the first atomic-level definition of nonneutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point to the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated function of antibodies to HIV-1 and will help us understand the outcome of vaccine trials based on humoral immunity.
Collapse
|
18
|
Haim H, Salas I, McGee K, Eichelberger N, Winter E, Pacheco B, Sodroski J. Modeling virus- and antibody-specific factors to predict human immunodeficiency virus neutralization efficiency. Cell Host Microbe 2014; 14:547-58. [PMID: 24237700 DOI: 10.1016/j.chom.2013.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Efforts to prevent human immunodeficiency virus type 1 (HIV-1) infection would benefit from understanding the factors that govern virus neutralization by antibodies. We present a mechanistic model for HIV-1 neutralization that includes both virus and antibody parameters. Variations in epitope integrity on the viral envelope glycoprotein (Env) trimer and Env reactivity to bound antibody influence neutralization susceptibility. In addition, we define an antibody-specific parameter, the perturbation factor (PF), that describes the degree of conformational change in the Env trimer required for a given antibody to bind. Minimally perturbing (low-PF) antibodies can efficiently neutralize viruses with a broad range of Env reactivities due to fast on-rates and high affinity for Env. Highly perturbing (high-PF) antibodies inhibit only viruses with reactive (perturbation-sensitive) Envs, often through irreversible mechanisms. Accounting for these quantifiable viral and antibody-associated parameters helps to predict the observed profiles of HIV-1 neutralization by antibodies with a wide range of potencies.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Modeling neutralization kinetics of HIV by broadly neutralizing monoclonal antibodies in genital secretions coating the cervicovaginal mucosa. PLoS One 2014; 9:e100598. [PMID: 24967706 PMCID: PMC4072659 DOI: 10.1371/journal.pone.0100598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bnAb) in cervicovaginal mucus (CVM) represents a promising "first line of defense" strategy to reduce vaginal HIV transmission. However, it remains unclear what levels of bnAb must be present in CVM to effectively reduce infection. We approached this complex question by modeling the dynamic tally of bnAb coverage on HIV. This analysis introduces a critical, timescale-dependent competition: to protect, bnAb must accumulate at sufficient stoichiometry to neutralize HIV faster than virions penetrate CVM and reach target cells. We developed a model that incorporates concentrations and diffusivities of HIV and bnAb in semen and CVM, kinetic rates for binding (kon) and unbinding (koff) of select bnAb, and physiologically relevant thicknesses of CVM and semen layers. Comprehensive model simulations lead to robust conclusions about neutralization kinetics in CVM. First, due to the limited time virions in semen need to penetrate CVM, substantially greater bnAb concentrations than in vitro estimates must be present in CVM to neutralize HIV. Second, the model predicts that bnAb with more rapid kon, almost independent of koff, should offer greater neutralization potency in vivo. These findings suggest the fastest arriving virions at target cells present the greatest likelihood of infection. It also implies the marked improvements in in vitro neutralization potency of many recently discovered bnAb may not translate to comparable reduction in the bnAb dose needed to confer protection against initial vaginal infections. Our modeling framework offers a valuable tool to gaining quantitative insights into the dynamics of mucosal immunity against HIV and other infectious diseases.
Collapse
|
20
|
Bates JT, Keefer CJ, Slaughter JC, Kulp DW, Schief WR, Crowe JE. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology 2014; 454-455:139-44. [PMID: 24725940 DOI: 10.1016/j.virol.2014.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 01/14/2023]
Abstract
The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (Kon) for binding to RSV F protein, while alteration of dissociation rate (Koff) did not significantly affect neutralizing activity. Interestingly, linkage of reduced Kon with reduced potency mirrored the effect of increased Kon found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants.
Collapse
Affiliation(s)
- John T Bates
- The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - Christopher J Keefer
- The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - James C Slaughter
- The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United states
| | - William R Schief
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United states; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United states
| | - James E Crowe
- The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states; The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states.
| |
Collapse
|
21
|
Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ. Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4⁺ T cells across an in vitro blood-brain barrier model. Virology 2014; 454-455:128-38. [PMID: 24725939 DOI: 10.1016/j.virol.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022]
Abstract
Eicosanoids, including cysteinylleukotrienes (cysLTs), are found in the central nervous system (CNS) of individuals infected with HIV-1. Few studies have addressed the contribution of cysLTs in HIV-1-associated CNS disorders. We demonstrate that conditioned medium from human astrocytes treated with leukotriene C4 (LTC4) increases the transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier (BBB) model using cultured brain endothelial cells. Additional studies indicate that the higher cell migration is linked with secretion by astrocytes of CX3CL1/fractalkine, a chemokine that has chemoattractant activity for CD4(+) T cells. Moreover, we report that the enhanced cell migration across BBB leads to a more important CD4(+) T cell-mediated HIV-1 transfer toward macrophages. Altogether data presented in the present study reveal the important role that LTC4, a metabolite of arachidonic acid, may play in the HIV-1-induced neuroinvasion, neuropathogenesis and disease progression.
Collapse
Affiliation(s)
- Jonathan Bertin
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Pascal Jalaguier
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Marc-André Roy
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada; Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
22
|
Demirkhanyan L, Marin M, Lu W, Melikyan GB. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog 2013; 9:e1003431. [PMID: 23785290 PMCID: PMC3681749 DOI: 10.1371/journal.ppat.1003431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Human defensins are at the forefront of the host responses to HIV and other pathogens in mucosal tissues. However, their ability to inactivate HIV in the bloodstream has been questioned due to the antagonistic effect of serum. In this study, we have examined the effect of sub-inhibitory concentrations of human α-defensin HNP-1 on the kinetics of early steps of fusion between HIV-1 and target cells in the presence of serum. Direct measurements of HIV-cell fusion using an enzymatic assay revealed that, in spite of the modest effect on the extent of fusion, HNP-1 prolonged the exposure of functionally important transitional epitopes of HIV-1 gp41 on the cell surface. The increased lifetime of gp41 intermediates in the presence of defensin was caused by a delay in the post-coreceptor binding steps of HIV-1 entry that correlated with the marked enhancement of the virus' sensitivity to neutralizing anti-gp41 antibodies. By contrast, the activity of antibodies to gp120 was not affected. HNP-1 appeared to specifically potentiate antibodies and peptides targeting the first heptad repeat domain of gp41, while its effect on inhibitors and antibodies to other gp41 domains was less prominent. Sub-inhibitory concentrations of HNP-1 also promoted inhibition of HIV-1 entry into peripheral blood mononuclear cells by antibodies and, more importantly, by HIV-1 immune serum. Our findings demonstrate that: (i) sub-inhibitory doses of HNP-1 potently enhance the activity of a number of anti-gp41 antibodies and peptide inhibitors, apparently by prolonging the lifetime of gp41 intermediates; and (ii) the efficiency of HIV-1 fusion inhibitors and neutralizing antibodies is kinetically restricted. This study thus reveals an important role of α-defensin in enhancing adaptive immune responses to HIV-1 infection and suggests future strategies to augment these responses. Human neutrophil peptide 1 (HNP-1) is a small cationic peptide that can directly block HIV-1 entry in the absence of serum. However, since serum attenuates the anti-HIV activity of this peptide, HNP-1 is unlikely to inhibit infection in the bloodstream. Here, we demonstrate that sub-inhibitory doses of HNP-1 in the presence of serum can strongly enhance the activity of neutralizing antibodies and inhibitors targeting transiently exposed intermediate conformations of HIV-1 gp41. HNP-1 appears to exert this effect by delaying post-coreceptor binding steps of fusion and thereby prolonging the exposure of gp41 intermediates. These results imply that the HIV-1 fusion kinetics is an important determinant of sensitivity to neutralizing antibodies and peptides against transiently exposed functional domains of gp41. The surprising synergy between sub-inhibitory concentrations of HNP-1 and anti-gp41 antibodies suggests new strategies to sensitize the virus to circulating antibodies by developing compounds that prolong the exposure of conserved gp41 epitopes on the cell surface.
Collapse
Affiliation(s)
- Lusine Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Eugene HS, Pierce-Paul BR, Cragio JK, Ross TM. Rhesus macaques vaccinated with consensus envelopes elicit partially protective immune responses against SHIV SF162p4 challenge. Virol J 2013; 10:102. [PMID: 23548077 PMCID: PMC3637437 DOI: 10.1186/1743-422x-10-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
The development of a preventative HIV/AIDS vaccine is challenging due to the diversity of viral genome sequences, especially in the viral envelope (Env₁₆₀). Since it is not possible to directly match the vaccine strain to the vast number of circulating HIV-1 strains, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. Previous studies from our group demonstrated that a mixture of wild type clade B Env(gp160s) were able to protect against a heterologous clade B challenge more effectively than a consensus clade B Envg(p160) vaccine. In order to broaden the immune response to other clades of HIV, in this study rhesus macaques were vaccinated with a polyvalent mixture of purified HIV-1 trimerized consensus Envg(p140) proteins representing clades A, B, C, and E. The elicited immune responses were compared to a single consensus Env(gp140) representing all isolates in group M (Con M). Both vaccines elicited anti- Env(gp140) IgG antibodies that bound an equal number of HIV-1 Env(gp160) proteins representing clades A, B and C. In addition, both vaccines elicited antibodies that neutralized the HIV-1(SF162) isolate. However, the vaccinated monkeys were not protected against SHIV(SF162p4) challenge. These results indicate that consensus Env(gp160) vaccines, administered as purified Env(gp140) trimers, elicit antibodies that bind to Env(gp160s) from strains representing multiple clades of HIV-1, but these vaccines did not protect against heterologous SHIV challenge.
Collapse
Affiliation(s)
- Hermancia S Eugene
- Center for Vaccine Research, University of Pittsburgh, 9047 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
24
|
Bates JT, Keefer CJ, Utley TJ, Correia BE, Schief WR, Crowe JE. Reversion of somatic mutations of the respiratory syncytial virus-specific human monoclonal antibody Fab19 reveal a direct relationship between association rate and neutralizing potency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3732-9. [PMID: 23455501 PMCID: PMC3608519 DOI: 10.4049/jimmunol.1202964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of affinity in determining neutralizing potency of mAbs directed against viruses is not well understood. We investigated the kinetic, structural, and functional advantage conferred by individual naturally occurring somatic mutations in the Ab H chain V region of Fab19, a well-described neutralizing human mAb directed to respiratory syncytial virus. Comparison of the affinity-matured Ab Fab19 with recombinant Fab19 Abs that were variants containing reverted amino acids from the inferred unmutated ancestor sequence revealed the molecular basis for affinity maturation of this Ab. Enhanced binding was achieved through mutations in the third H chain CDR (HCDR3) that conferred a markedly faster on-rate and a desirable increase in antiviral neutralizing activity. In contrast, most somatic mutations in the HCDR1 and HCDR2 regions did not significantly enhance Ag binding or antiviral activity. We observed a direct relationship between the measured association rate (Kon) for F protein and antiviral activity. Modeling studies of the structure of the Ag-Ab complex suggested the HCDR3 loop interacts with the antigenic site A surface loop of the respiratory syncytial virus F protein, previously shown to contain the epitope for this Ab by experimentation. These studies define a direct relationship of affinity and neutralizing activity for a viral glycoprotein-specific human mAb.
Collapse
Affiliation(s)
- John T. Bates
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center,
Nashville, TN
| | | | - Thomas J. Utley
- Department of Pathology, Microbiology, and Immunology,
Vanderbilt University Medical Center, Nashville, TN
| | - Bruno E. Correia
- Department of Chemical Physiology, The Scripps Research
Institute, La Jolla, CA
| | - William R. Schief
- Department of Immunology and Microbial Science, The Scripps
Research Institute, La Jolla, CA
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center,
Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical
Center, Nashville, TN
| |
Collapse
|
25
|
Obara CJ, Dowd KA, Ledgerwood JE, Pierson TC. Impact of viral attachment factor expression on antibody-mediated neutralization of flaviviruses. Virology 2013; 437:20-7. [PMID: 23312596 DOI: 10.1016/j.virol.2012.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/13/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023]
Abstract
Neutralization of flaviviruses requires engagement of the virion by antibodies with a stoichiometry that exceeds a required threshold. Factors that modulate the number of antibodies bound to an individual virion when it contacts target cells impact neutralization potency. However, the contribution of cellular factors to the potency of neutralizing antibodies has not been explored systematically. Here we investigate the relationship between expression level of a viral attachment factor on cells and the neutralizing potency of antibodies. Analysis of the attachment factor DC-SIGNR on cells in neutralization studies failed to identify a correlation between DC-SIGNR expression and antibody-mediated protection. Furthermore, neutralization potency was equivalent on a novel Jurkat cell line induced to express DC-SIGNR at varying levels. Finally, blocking virus-attachment factor interactions had no impact on neutralization activity. Altogether, our studies suggest that cellular attachment factor expression is not a significant contributor to the potency of neutralizing antibodies to flaviviruses.
Collapse
Affiliation(s)
- Christopher J Obara
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD 20852, USA
| | | | | | | |
Collapse
|
26
|
Sequential seasonal H1N1 influenza virus infections protect ferrets against novel 2009 H1N1 influenza virus. J Virol 2012; 87:1400-10. [PMID: 23115287 DOI: 10.1128/jvi.02257-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals <60 years of age had the lowest incidence of infection, with ~25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.
Collapse
|
27
|
Bertin J, Barat C, Bélanger D, Tremblay MJ. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells. J Neuroinflammation 2012; 9:55. [PMID: 22424294 PMCID: PMC3334677 DOI: 10.1186/1742-2094-9-55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/16/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. METHODS To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). RESULTS We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. CONCLUSIONS These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.
Collapse
Affiliation(s)
- Jonathan Bertin
- Centre de Recherche en Infectiologie, RC709, Centre Hospitalier Universitaire de Québec-CHUL, 2705 Boul, Laurier, Québec, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
28
|
Im H, Sutherland JN, Maynard JA, Oh SH. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 2012; 84:1941-7. [PMID: 22235895 DOI: 10.1021/ac300070t] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate an affordable low-noise surface plasmon resonance (SPR) instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10(-6) without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 ms followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools.
Collapse
Affiliation(s)
- Hyungsoon Im
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
29
|
Hearty S, Leonard P, O'Kennedy R. Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol Biol 2012; 907:411-442. [PMID: 22907366 DOI: 10.1007/978-1-61779-974-7_24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface plasmon resonance (SPR) is now widely embraced as a technology for monitoring a diverse range of protein-protein interactions and is considered almost de rigueur for characterizing antibody-antigen interactions. The technique obviates the need to label either of the interacting species and the binding event is visualized in real-time. Thus, it is ideally suited for screening crude, unpurified antibody samples that dominate early candidate panels following antibody selection campaigns. SPR returns both concentration and affinity data but when used correctly can also resolve the discrete component kinetic parameters (association and dissociation rate constants) of the affinity interaction. Herein, we outline some SPR-based generic antibody screening configurations and methodologies in the context of expediting data-rich ranking of candidate antibody panels and ensuring that antibodies with the optimal kinetic binding characteristics are reliably identified.
Collapse
Affiliation(s)
- Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
30
|
Elicitation of anti-1918 influenza virus immunity early in life prevents morbidity and lower levels of lung infection by 2009 pandemic H1N1 influenza virus in aged mice. J Virol 2011; 86:1500-13. [PMID: 22130546 DOI: 10.1128/jvi.06034-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Spanish influenza virus pandemic of 1918 was responsible for 40 million to 50 million deaths and is antigenically similar to the swine lineage 2009 pandemic influenza virus. Emergence of the 2009 pandemic from swine into humans has raised the possibility that low levels of cross-protective immunity to past shared epitopes could confer protection. In this study, influenza viruslike particles (VLPs) were engineered to express the hemagglutinin (HA) and genes from the 1918 influenza virus to evaluate the duration of cross-protection to the H1N1 pandemic strain by vaccinating young mice (8 to 12 weeks) and then allowing the animals to age to 20 months. This immunity was long lasting, with homologous receptor-blocking antibodies detected throughout the lifespan of vaccinated mice. Furthermore, the 1918 VLPs fully protected aged mice from 2009 pandemic H1N1 virus challenge 16 months after vaccination. Histopathological assessment showed that aged vaccinated mice had significant protection from alveolar infection but less protection of the bronchial tissue than adult vaccinated mice. Additionally, passive transfer of immune serum from aged vaccinated mice resulted in protection from death but not morbidity. This is the first report describing the lifelong duration of cross-reactive immune responses elicited by a 1918 VLP vaccine in a murine model. Importantly, these lifelong immune responses did not result in decreased total viral replication but did prevent infection of the lower respiratory tract. These findings show that immunity acquired early in life can restrict the anatomical location of influenza viral replication, rather than preventing infection, in the aged.
Collapse
|
31
|
Identification and characterization of an immunogenic hybrid epitope formed by both HIV gp120 and human CD4 proteins. J Virol 2011; 85:13097-104. [PMID: 21994452 DOI: 10.1128/jvi.05072-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain antibodies from HIV-infected humans bind conserved transition state (CD4 induced [CD4i]) domains on the HIV envelope glycoprotein, gp120, and demonstrate extreme dependence on the formation of a gp120-human CD4 receptor complex. The epitopes recognized by these antibodies remain undefined although recent crystallographic studies of the anti-CD4i monoclonal antibody (MAb) 21c suggest that contacts with CD4 as well as gp120 might occur. Here, we explore the possibility of hybrid epitopes that demand the collaboration of both gp120 and CD4 residues to enable antibody reactivity. Analyses with a panel of human anti-CD4i MAbs and gp120-CD4 antigens with specific mutations in predicted binding domains revealed one putative hybrid epitope, defined by the human anti-CD4i MAb 19e. In virological and immunological tests, MAb 19e did not bind native or constrained gp120 except in the presence of CD4. This contrasted with other anti-CD4i MAbs, including MAb 21c, which bound unliganded, full-length gp120 held in a constrained conformation. Conversely, MAb 19e exhibited no specific reactivity with free human CD4. Computational modeling of MAb 19e interactions with gp120-CD4 complexes suggested a distinct binding profile involving antibody heavy chain interactions with CD4 and light chain interactions with gp120. In accordance, targeted mutations in CD4 based on this model specifically reduced MAb 19e interactions with stable gp120-CD4 complexes that retained reactivity with other anti-CD4i MAbs. These data represent a rare instance of an antibody response that is specific to a pathogen-host cell protein interaction and underscore the diversity of immunogenic CD4i epitope structures that exist during natural infection.
Collapse
|
32
|
Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PLoS One 2010; 5:e15261. [PMID: 21151874 PMCID: PMC2998427 DOI: 10.1371/journal.pone.0015261] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/03/2010] [Indexed: 01/05/2023] Open
Abstract
The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the “intracytoplasmic domain” based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical “Kennedy epitope” (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chengqun Sun
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Joergensen LM, Salanti A, Dobrilovic T, Barfod L, Hassenkam T, Theander TG, Hviid L, Arnot DE. The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs. Malar J 2010; 9:100. [PMID: 20403153 PMCID: PMC2868858 DOI: 10.1186/1475-2875-9-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target. Methods A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob. Results Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules. Conclusions High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.
Collapse
Affiliation(s)
- Lars M Joergensen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), CSS Øster Farimagsgade 5, Building 22 & 23, Postbox 2099, 1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuhrt D, Faith SA, Leone A, Rohankedkar M, Sodora DL, Picker LJ, Cole KS. Evidence of early B-cell dysregulation in simian immunodeficiency virus infection: rapid depletion of naïve and memory B-cell subsets with delayed reconstitution of the naïve B-cell population. J Virol 2010; 84:2466-76. [PMID: 20032183 PMCID: PMC2820932 DOI: 10.1128/jvi.01966-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/09/2009] [Indexed: 12/29/2022] Open
Abstract
Despite eliciting a robust antibody response in humans, several studies in human immunodeficiency virus (HIV)-infected patients have demonstrated the presence of B-cell deficiencies during the chronic stage of infection. While several explanations for the HIV-induced B-cell deficit have been proposed, a clear mechanistic understanding of this loss of B-cell functionality is not known. This study utilizes simian immunodeficiency virus (SIV) infection of rhesus macaques to assess B-cell population dynamics beginning at the acute phase and continuing through the chronic phase of infection. Flow cytometric assessment demonstrated a significant early depletion of both naïve and memory B-cell subsets in the peripheral blood, with differential kinetics for recovery of these populations. Furthermore, the altered numbers of naïve and memory B-cell subsets in these animals corresponded with increased B-cell activation and altered proliferation profiles during the acute phase of infection. Finally, all animals produced high titers of antibody, demonstrating that the measurement of virus-specific antibody responses was not an accurate reflection of alterations in the B-cell compartment. These data indicate that dynamic B-cell population changes in SIV-infected macaques arise very early after infection at the precise time when an effective adaptive immune response is needed.
Collapse
Affiliation(s)
- David Kuhrt
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Seth A. Faith
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Amanda Leone
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Mukta Rohankedkar
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Donald L. Sodora
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Louis J. Picker
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| | - Kelly Stefano Cole
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, Seattle Biomedical Research Institute, Seattle, Washington 98109, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006
| |
Collapse
|
35
|
Faith SA, Wu Y, Kuhrt D, Steckbeck JD, Craigo JK, Clements JE, Cole KS. Induction of antibody-mediated neutralization in SIVmac239 by a naturally acquired V3 mutation. Virology 2010; 400:86-92. [PMID: 20153009 DOI: 10.1016/j.virol.2010.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/04/2010] [Accepted: 01/08/2010] [Indexed: 01/14/2023]
Abstract
Achieving humoral immunity against human immunodeficiency virus (HIV) is a major obstacle in AIDS vaccine development. Despite eliciting robust humoral responses to HIV, exposed hosts rarely produce broadly neutralizing antibodies. The present study utilizes simian immunodeficiency virus (SIV) to identify viral epitopes that conferred antibody neutralization to clone SIV/17E-CL, an in vivo variant derived from neutralization resistant SIVmac239. Neutralization assays using rhesus macaque monoclonal antibodies were performed on viruses engineered to express single or multiple amino acid mutations. Results identified a single amino acid mutation, P334R, in the carboxy-terminal half of the V3 loop as a critical residue that induced neutralization while retaining normal glycoprotein expression on the surface of the virus. Furthermore, the R334 residue yielded neutralization sensitivity by antibodies recognizing diverse conformational and linear epitopes of gp120, suggesting that neutralization phenotype was a consequence of global structural changes of the envelope protein rather than a specific site epitope.
Collapse
Affiliation(s)
- Seth A Faith
- University of Pittsburgh Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW HIV-1 neutralizing antibodies are directed to the Envelope glycoprotein trimer on the surface of the virion and block entry into target cells in vitro. During infection, closely related but distinct variants arise in infected individuals, and the interplay of Envelope and neutralizing antibodies is a dynamic process. Vaccines that generate neutralizing antibodies and drugs that inhibit entry must address the issue of variation of subtypes worldwide. The purpose of this review is to summarize major advances in the neutralizing antibody field published during 2005 and early 2006. RECENT FINDINGS The main themes that are covered in this review include new findings in the development of neutralizing antibodies during natural and experimental infection, characterization of monoclonal antibodies with neutralizing activity, Envelope structural data, the development of novel Envelope constructs, and novel approaches designed to generate neutralizing antibodies by vaccination. SUMMARY Advances leading to a better understanding of the structure of the Envelope and the character of neutralizing antibodies that develop during the course of infection have provided important clues to guide the design of better immunogens and drugs to block attachment. These findings have implications for prophylactic and therapeutic vaccine approaches, drugs, and antibody-based therapies to reduce HIV transmission.
Collapse
|
37
|
Ingestion of the malaria pigment hemozoin renders human macrophages less permissive to HIV-1 infection. Virology 2009; 395:56-66. [DOI: 10.1016/j.virol.2009.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/02/2009] [Accepted: 09/05/2009] [Indexed: 11/18/2022]
|
38
|
Gopi H, Cocklin S, Pirrone V, McFadden K, Tuzer F, Zentner I, Ajith S, Baxter S, Jawanda N, Krebs FC, Chaiken IM. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120. J Mol Recognit 2009; 22:169-74. [PMID: 18498083 DOI: 10.1002/jmr.892] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, we identified a high affinity and potency metallocene-containing triazole peptide conjugate that suppresses the interactions of HIV-1 envelope gp120 at both its CD4 and co-receptor binding sites. The ferrocene-peptide conjugate, HNG-156, was formed by an on-resin copper-catalysed [2+3] cycloaddition reaction. Surface plasmon resonance interaction analysis revealed that, compared to a previously reported phenyl-containing triazole conjugate HNG-105 (105), peptide 156 had a higher direct binding affinity for several subtypes of HIV-1 gp120 due mainly to the decreased dissociation rate of the conjugate-gp120 complex. The ferrocene triazole conjugate bound to gp120 of both clade A (92UG037-08) and clade B (YU-2 and SF162) virus subtypes with nanomolar KD in direct binding and inhibited the binding of gp120 to soluble CD4 and to antibodies that bind to HIV-1YU-2 gp120 at both the CD4 binding site and CD4-induced binding sites. HNG-156 showed a close-to nanomolar IC50 for inhibiting cell infection by HIV-1BaL whole virus. The dual receptor site antagonist activity and potency of HNG-156 make it a promising viral envelope inhibitor lead for developing anti-HIV-1 treatments.
Collapse
Affiliation(s)
- Hosahudya Gopi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One 2008; 3:e1501. [PMID: 18231588 PMCID: PMC2200794 DOI: 10.1371/journal.pone.0001501] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/24/2007] [Indexed: 12/13/2022] Open
Abstract
Background Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine. Methodology/Principal Findings We generated from a baculovirus expression system using insect cells, a non-infectious recombinant VLP vaccine from both influenza A H5N1 clade 1 and clade 2 isolates with pandemic potential. VLPs were administered to mice in either a one-dose or two-dose regimen and the immune responses were compared to those induced by recombinant hemagglutinin (rHA). Both humoral and cellular responses were analyzed. Mice vaccinated with VLPs were protected against challenge with lethal reassortant viruses expressing the H5N1 HA and NA, regardless if the H5N1 clade was homologous or heterologous to the vaccine. However, rHA-vaccinated mice showed considerable weight loss and death following challenge with the heterovariant clade virus. Protection against death induced by VLPs was independent of the pre-challenge HAI titer or cell-mediated responses to HA or M1 since vaccinated mice, with low to undetectable cross-clade HAI antibodies or cellular responses to influenza antigens, were still protected from a lethal viral challenge. However, an apparent association rate of antibody binding to HA correlated with protection and was enhanced using VLPs, particularly when delivered intranasally, compared to rHA vaccines. Conclusion/Significance This is the first report describing the use of an H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of H5N1 influenza.
Collapse
|
40
|
Rollman E, Smith MZ, Brooks AG, Purcell DFJ, Zuber B, Ramshaw IA, Kent SJ. Killing kinetics of simian immunodeficiency virus-specific CD8+ T cells: implications for HIV vaccine strategies. THE JOURNAL OF IMMUNOLOGY 2007; 179:4571-9. [PMID: 17878354 DOI: 10.4049/jimmunol.179.7.4571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Steckbeck JD, Cole KS. Dissecting the humoral immune response to simian immunodeficiency virus: mechanisms of antibody-mediated virus neutralization. Immunol Res 2007; 36:51-60. [PMID: 17337766 PMCID: PMC3357918 DOI: 10.1385/ir:36:1:51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The ultimate goal of an AIDS vaccine is to elicit potent cellular and humoral immune responses that will result in broadly enduring protective immunity. During the past several years, we have focused on characterizing the quantitative and qualitative properties of the antibody response, principally working to define the mechanism(s) of antibody-mediated neutralization in vitro. We have utilized a panel of monoclonal antibodies generated from monkeys infected with attenuated SIV for more than 8 mo to dissect the early events of virus infection involved in antibody-mediated neutralization. Presented herein are highlights from our studies that have identified potential mechanisms by which antibodies neutralize SIV in vitro.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | | |
Collapse
|
42
|
Roux KH, Taylor KA. AIDS virus envelope spike structure. Curr Opin Struct Biol 2007; 17:244-52. [PMID: 17395457 DOI: 10.1016/j.sbi.2007.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/26/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
The envelope (Env) spikes on HIV-1 and closely related SIV define the viral tropism, mediate the fusion process and are the prime target of the humoral response. Despite intensive efforts, Env has been slow to reveal its structural and functional secrets. Three gp120 subunits comprise the 'head' of Env and three gp41 subunits comprise the 'stalk' and other membrane-associated elements. The recent description of the core structure of unliganded (untriggered) gp120, compared to earlier CD4-liganded atomic structures, reveals dramatic conformational reorganization of the components and suggests a mechanism for the initiation of fusion. The structure of the key V3 loop, both in isolation and in association with the liganded core, helps define its role in fusion and as a prime target of neutralizing antibodies. Additional details are emerging regarding the structure of gp41 as it transitions from the preliganded configuration to the fusion intermediate (fusion-active or prehairpin intermediate) configuration, although much remains speculative. Recent advances in cryoelectron tomography are giving us the first glimpses of the overall three-dimensional structure of Env, which, when fitted with the available component atomic structures, provides new insights into the organization of the structural elements within the trimeric spike.
Collapse
Affiliation(s)
- Kenneth H Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4370, USA.
| | | |
Collapse
|
43
|
Reading SA, Dimmock NJ. Neutralization of animal virus infectivity by antibody. Arch Virol 2007; 152:1047-59. [PMID: 17516034 DOI: 10.1007/s00705-006-0923-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/11/2006] [Indexed: 11/24/2022]
Abstract
Neutralization is the ability of antibody to bind to and inactivate virus infectivity under defined conditions in vitro. Most neutralizing antibodies also protect animals in vivo, but protection is more complex as it also involves interaction of antibody with cells and molecules of the innate immune system. Neutralization by antibody can be mediated by a number of different mechanisms: by aggregation of virions, destabilization of the virion structure, inhibition of virion attachment to target cells, inhibition of the fusion of the virion lipid membrane with the membrane of the host cell, inhibition of the entry of the genome of non-enveloped viruses into the cell cytoplasm, inhibition of a function of the virion core through a signal transduced by an antibody, transcytosing IgA, and binding to nascent virions to block their budding or release from the cell surface. The mechanism of neutralization is determined by the properties of both a virion epitope and the antibody that reacts with it. Further, since a virus has at least several unique epitopes sited in different locations on the virion, and since the paratope and other properties of the reacting antibody can vary, this means that a virus can be neutralized by several different mechanisms. Understanding the processes of neutralization informs the creation of modern vaccines, and gives valuable insights into virus-cell interactions.
Collapse
Affiliation(s)
- S A Reading
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
44
|
Sheppard NC, Davies SL, Jeffs SA, Vieira SM, Sattentau QJ. Production and characterization of high-affinity human monoclonal antibodies to human immunodeficiency virus type 1 envelope glycoproteins in a mouse model expressing human immunoglobulins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:157-67. [PMID: 17167037 PMCID: PMC1797789 DOI: 10.1128/cvi.00274-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human (Hu) monoclonal antibodies (MAbs) against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) are useful tools in the structural and functional analysis of Env, are under development both as potential prophylaxis and as therapy for established HIV-1 infection, and have crucial roles in guiding the design of preventative vaccines. Despite representing more than 50% of infections globally, no MAbs have been generated in any species against C clade HIV-1 Env. To generate HuMAbs to a novel Chinese C clade Env vaccine candidate (primary isolate strain HIV-1(97CN54)), we used BAB5 mice that express a human immunoglobulin (Ig) M antibody repertoire in place of endogenous murine immunoglobulins. When immunized with HIV-1(97CN54) Env, these mice developed antigen-specific IgM antibodies. Hybridoma fusions using splenocytes from these mice enabled the isolation of two Env-specific IgM HuMAbs: N3C5 and N03B11. N3C5 bound to HIV-1 Env from clades A and C, whereas N03B11 bound two geographically distant clade C isolates but not Env from other clades. These HuMAbs bind conformational epitopes within the immunodominant region of the gp41 ectodomain. N3C5 weakly neutralized the autologous isolate in the absence of complement and weakly enhanced infection in the presence of complement. N03B11 has no effect on infectivity in either the presence or the absence of complement. These novel HuMAbs are useful reagents for the study of HIV-1 Env relevant to the global pandemic, and mice producing human immunoglobulin present a tool for the production of such antibodies.
Collapse
Affiliation(s)
- Neil C Sheppard
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Forthal DN, Landucci G, Cole KS, Marthas M, Becerra JC, Van Rompay K. Rhesus macaque polyclonal and monoclonal antibodies inhibit simian immunodeficiency virus in the presence of human or autologous rhesus effector cells. J Virol 2006; 80:9217-25. [PMID: 16940533 PMCID: PMC1563916 DOI: 10.1128/jvi.02746-05] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although antibodies can prevent or modulate lentivirus infections in nonhuman primates, the biological functions of antibody responsible for such effects are not known. We sought to determine the role of antibody-dependent cell-mediated virus inhibition (ADCVI), an antibody function that inhibits virus yield from infected cells in the presence of Fc receptor-bearing effector cells, in preventing or controlling SIVmac251 infection in rhesus macaques (Macaca mulatta). Using CEMx174 cells infected with simian immunodeficiency virus mac251 (SIVmac251), both polyclonal and monoclonal anti-SIV antibodies were capable of potent virus inhibition in the presence of human peripheral blood mononuclear cell (PBMC) effector cells. In the absence of effector cells, virus inhibition was generally very poor. PBMCs from healthy rhesus macaques were also capable of mediating virus inhibition either against SIVmac251-infected CEMx174 cells or against infected, autologous rhesus target cells. We identified both CD14(+) cells and, to a lesser extent, CD8(+) cells as the effector cell population in the rhesus PBMCs. Finally, pooled, nonneutralizing SIV-antibody-positive serum, shown in a previous study to prevent infection of neonatal macaques after oral SIVmac251 challenge, had potent virus-inhibitory activity in the presence of effector cells; intact immunoglobulin G, rather than F(ab')(2), was required for such activity. This is the first demonstration of both humoral and cellular ADCVI functions in the macaque-SIV model. ADCVI activity in nonneutralizing serum that prevents SIV infection suggests that ADCVI may be a protective immune function. Finally, our data underscore the potential importance of Fc-Fc receptor interactions in mediating biological activities of antibody.
Collapse
Affiliation(s)
- Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California-Irvine, Irvine, CA 92697-4028, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Steckbeck JD, Grieser HJ, Sturgeon T, Taber R, Chow A, Bruno J, Murphy-Corb M, Montelaro RC, Cole KS. Dynamic evolution of antibody populations in a rhesus macaque infected with attenuated simian immunodeficiency virus identified by surface plasmon resonance. J Med Primatol 2006; 35:248-60. [PMID: 16872288 PMCID: PMC3361734 DOI: 10.1111/j.1600-0684.2006.00173.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that an effective AIDS vaccine will need to elicit broadly neutralizing antibody responses. However, the mechanisms of antibody-mediated neutralization have not been defined. Previous studies from our lab have identified significant differences in the rates of antibody binding to trimeric SIV envelope proteins that correlate with neutralization sensitivity. Importantly, these results demonstrate differences in monoclonal antibody (MAb) binding to neutralization-sensitive and neutralization-resistant envelope proteins, suggesting that one mechanism for virus neutralization may be related to the stability of antibody binding. To date, little has been done to evaluate the binding properties of polyclonal serum antibodies elicited by SIV infection or vaccination. METHODS In the current study, we translate these findings with MAbs to study antibody binding properties of polyclonal serum antibody responses generated in rhesus macaques infected with attenuated SIV. Quantitative and qualitative binding properties of well-characterized longitudinal serum samples to trimeric, recombinant SIV gp140 envelope proteins were analyzed using surface plasmon resonance (SPR) technology (Biacore). RESULTS Results from these studies identified two antibody populations in most of the samples analyzed; one antibody population exhibited fast association/dissociation rates (unstable) while the other population demonstrated slower association/dissociation rates (stable). Over time, the percentage of the total binding response of each antibody population evolved, demonstrating a dynamic evolution of the antibody response that was consistent with the maturation of antibody responses defined using our standard panel of serological assays. However, the current studies provided a higher resolution analysis of polyclonal antibody binding properties, particularly with respect to the early time-points post-infection (PI), that is not possible with standard serological assays. More importantly, the increased stability of the antibody population with time PI corresponded with potent neutralization of homologous SIV in vitro. CONCLUSIONS These results suggest that the stability of the antibody-envelope interaction may be an important mechanism of serum antibody virus neutralization. In addition, measurements of the 'apparent' rates of association and dissociation may offer unique numerical descriptors to characterize the level of antibody maturation achieved by candidate vaccine strategies capable of eliciting broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- J D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|