1
|
Hogan VA, Harmon J, Cid-Rosas M, Hall LR, Johnson WE. Conserved residues of the immunosuppressive domain of MLV are essential for regulating the fusion-critical SU-TM disulfide bond. J Virol 2024; 98:e0098924. [PMID: 39470209 PMCID: PMC11575397 DOI: 10.1128/jvi.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CX6CC motif. Extraordinary conservation of the ISD and its invariant association with the CX6CC suggests a fundamental contribution to Env function. To investigate ISD function, we characterized several mutants with single amino acid substitutions at conserved positions in the MLV ISD. A majority abolished infectivity, although we did not observe a corresponding loss in intrinsic ability to mediate membrane fusion. Ratios of the surface subunit (SU) to capsid protein (CA) in virions were diminished for a majority of the ISD mutants, while TM:CA ratios were similar to wild type. Specific loss of SU reflected premature isomerization of the labile disulfide bond that links SU and TM prior to fusion. Indeed, all non-infectious mutants displayed significantly lower disulfide stability than wild-type Env. These results reveal a role for ISD positions 2, 3, 4, 7, and 10 in regulating a late step in entry after fusion peptide insertion but prior to creation of the fusion pore. This implies that the ISD is part of a larger domain, comprising the ISD and CX6CC motifs, that is critical for the formation and regulation of the metastable, intersubunit disulfide bond.IMPORTANCEThe gamma-type Env is a prevalent viral fusogen, found within retroviruses and endogenous retroviruses across vertebrate species and in filoviruses such as Ebolavirus. The fusion mechanism of gamma-type Envs is unique from other Class I fusogens such as those of influenza A virus and HIV-1. Gamma-type Envs contain a hallmark feature known as the immunosuppressive domain (ISD) that has been the subject of some controversy in the literature surrounding its putative immunosuppressive effects. Despite the distinctive conservation of the ISD, little has been done to investigate the role of this region for the function of this widespread fusogen. Our work demonstrates the importance of the ISD for the function of gamma-type Envs in infection, particularly in regulating the intermediate steps of membrane fusion. Understanding the fusion mechanism of gamma-type Envs has broad implications for understanding the entry of extant viruses and aspects of host biology connected to co-opted endogenous gamma-type Envs.
Collapse
Affiliation(s)
- Victoria A Hogan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Julia Harmon
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Miguel Cid-Rosas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Laura R Hall
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Welkin E Johnson
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
2
|
Tomé-Poderti L, Olivero-Deibe N, Carrión F, Portela MM, Obal G, Cabrera G, Bianchi S, Lima A, Addiego A, Durán R, Moratorio G, Pritsch O. Characterization and application of recombinant Bovine Leukemia Virus Env protein. Sci Rep 2024; 14:12190. [PMID: 38806566 PMCID: PMC11133380 DOI: 10.1038/s41598-024-62811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.
Collapse
Affiliation(s)
- Lorena Tomé-Poderti
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), INSERM Unit 1259, Université de Tours and CHRU de Tours, Tours, France.
| | | | - Federico Carrión
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Gonzalo Obal
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gleysin Cabrera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Sergio Bianchi
- Laboratory of Molecular Biomarkers, Department of Physiopathology, University Hospital, Universidad de la República, 11600, Montevideo, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Analia Lima
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Addiego
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Experimental Evolution of Viruses, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Immunobiology Department School of Medicine, Universidad de la República, 11800, Montevideo, Uruguay
| |
Collapse
|
3
|
Xu L, Sun S. Reconstitution of Fusion-Competent Human Placental Fusogen Syncytin-2. J Membr Biol 2022; 255:723-732. [PMID: 35596004 DOI: 10.1007/s00232-022-00242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Mammalian placenta formation requires continuous fusion of trophoblasts. Human endogenous retrovirus-derived proteins syncytin-1 and syncytin-2 mediate cell-cell fusion of placental cytotrophoblasts to form syncytiotrophoblasts in primates, which is required for normal placenta function and fetal development. Syncytins are post-translationally cleaved by the endoprotease furin into surface (SU) and transmembrane (TM) subunits for activation. Little is currently known about the molecular mechanisms of syncytin-mediated cell-cell fusion, and their functions have not been well studied in vitro. Here, we express tagged syncytin-2 in mammalian HEK293T cells and demonstrate that the tagging greatly influences the cleavage and fusogenic activity of syncytin-2. By detecting the N-terminal tagged SU, we find that it is released into the extracellular space during the fusion process. Furthermore, when N-linked glycosylation and disulfide bond formation are blocked, the cleavage and fusogenic activity of syncytin-2 are inhibited. Finally, we were able to purify functional syncytin-2 from HEK293T cells and incorporate it into proteoliposomes. These findings lay a solid foundation for interogating the molecular mechanisms of syncytin-2-mediated cell-cell fusion in vitro.
Collapse
Affiliation(s)
- Lu Xu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sha Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Serroni A, Forti K, De Giuseppe A. Role of conserved cysteine residues in the CAIC motif of the SU glycoprotein in the maturation and fusion activity of bovine leukaemia virus. Arch Virol 2019; 164:2309-2314. [PMID: 31172288 DOI: 10.1007/s00705-019-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
The surface (SU) and transmembrane (TM) glycoproteins of many retroviruses are linked by disulphide bonds, and the interaction of SU with a cellular receptor results in disulphide bond isomerisation triggered by the CXXC motif in SU. This reaction leads to the fusion of viral and host cell membranes. In this work, we show that the cysteine at amino acid position 212 in the CAIC motif of the SU glycoprotein of bovine leukaemia virus has a free thiol group. A C-to-A mutation at position 212, either individually or in combination with a C-to-A mutation at position 215, was found to inhibit the maturation process, suggesting its involvement in the formation of the covalent bond with TM.
Collapse
Affiliation(s)
- Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Katia Forti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy.
| | - Antonio De Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
5
|
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses 2019; 11:v11060497. [PMID: 31151254 PMCID: PMC6630264 DOI: 10.3390/v11060497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.
Collapse
|
6
|
Directed Molecular Evolution of an Engineered Gammaretroviral Envelope Protein with Dual Receptor Use Shows Stable Maintenance of Both Receptor Specificities. J Virol 2016; 90:1647-56. [PMID: 26608314 DOI: 10.1128/jvi.02013-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously reported the construction of a murine leukemia virus-based replication-competent gammaretrovirus (SL3-AP) capable of utilizing the human G protein-coupled receptor APJ (hAPJ) as its entry receptor and its natural receptor, the murine Xpr1 receptor, with equal affinities. The apelin receptor has previously been shown to function as a coreceptor for HIV-1, and thus, adaptation of the viral vector to this receptor is of significant interest. Here, we report the molecular evolution of the SL3-AP envelope protein when the virus is cultured in cells harboring either the Xpr1 or the hAPJ receptor. Interestingly, the dual receptor affinity is maintained even after 10 passages in these cells. At the same time, the chimeric viral envelope protein evolves in a distinct pattern in the apelin cassette when passaged on D17 cells expressing hAPJ in three separate molecular evolution studies. This pattern reflects selection for reduced ligand-receptor interaction and is compatible with a model in which SL3-AP has evolved not to activate hAPJ receptor internalization. IMPORTANCE Few successful examples of engineered retargeting of a retroviral vector exist. The engineered SL3-AP envelope is capable of utilizing either the murine Xpr1 or the human APJ receptor for entry. In addition, SL3-AP is the first example of an engineered retrovirus retaining its dual tropism after several rounds of passaging on cells expressing only one of its receptors. We demonstrate that the virus evolves toward reduced ligand-receptor affinity, which sheds new light on virus adaptation. We provide indirect evidence that such reduced affinity leads to reduced receptor internalization and propose a novel model in which too rapid receptor internalization may decrease virus entry.
Collapse
|
7
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
8
|
Mazari PM, Roth MJ. Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 2013; 8:107-21. [PMID: 23252496 DOI: 10.2217/fmb.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene- and cell-based therapies hold great potential for the advancement of the personalized medicine movement. Gene therapy vectors have made dramatic leaps forward since their inception. Retroviral-based vectors were the first to gain clinical attention and still offer the best hope for the long-term correction of many disorders. The fear of nonspecific transduction makes targeting a necessary feature for most clinical applications. However, this remains a difficult feature to optimize, with specificity often coming at the expense of efficiency. The aim of this article is to discuss the various methods employed to retarget retroviral entry. Our focus will lie on the modification of gammaretroviral envelope proteins with an in-depth discussion of the creation and screening of envelope libraries.
Collapse
Affiliation(s)
- Peter M Mazari
- University of Medicine & Dentistry of NJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
9
|
Poxvirus cell entry: how many proteins does it take? Viruses 2012; 4:688-707. [PMID: 22754644 PMCID: PMC3386626 DOI: 10.3390/v4050688] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.
Collapse
|
10
|
Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol 2011; 86:364-72. [PMID: 22031933 DOI: 10.1128/jvi.05708-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cellular entry of Ebola virus (EBOV), a deadly hemorrhagic fever virus, is mediated by the viral glycoprotein (GP). The receptor-binding subunit of GP must be cleaved (by endosomal cathepsins) in order for entry and infection to proceed. Cleavage appears to proceed through 50-kDa and 20-kDa intermediates, ultimately generating a key 19-kDa core. How 19-kDa GP is subsequently triggered to bind membranes and induce fusion remains a mystery. Here we show that 50-kDa GP cannot be triggered to bind to liposomes in response to elevated temperature but that 20-kDa and 19-kDa GP can. Importantly, 19-kDa GP can be triggered at temperatures ∼10°C lower than 20-kDa GP, suggesting that it is the most fusion ready form. Triggering by heat (or urea) occurs only at pH 5, not pH 7.5, and involves the fusion loop, as a fusion loop mutant is defective in liposome binding. We further show that mild reduction (preferentially at low pH) triggers 19-kDa GP to bind to liposomes, with the wild-type protein being triggered to a greater extent than the fusion loop mutant. Moreover, mild reduction inactivates pseudovirion infection, suggesting that reduction can also trigger 19-kDa GP on virus particles. Our results support the hypothesis that priming of EBOV GP, specifically to the 19-kDa core, potentiates GP to undergo subsequent fusion-relevant conformational changes. Our findings also indicate that low pH and an additional endosomal factor (possibly reduction or possibly a process mimicked by reduction) act as fusion triggers.
Collapse
|
11
|
Côté M, Zheng YM, Albritton LM, Liu SL. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection. Virology 2011; 421:173-83. [PMID: 22018783 DOI: 10.1016/j.virol.2011.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/13/2011] [Accepted: 09/24/2011] [Indexed: 11/25/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two amino acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.
Collapse
Affiliation(s)
- Marceline Côté
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
12
|
Xiao-Hong L, Xiao-Yang G, Xian-Zhou Z. Structural properties and S—S dissociation energies in a series of disulfide compounds: a theoretical study. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2011.613121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Li Xiao-Hong
- a College of Physics and Engineering , Henan University of Science and Technology , Luoyang, 471003, People's Republic of China
| | - Gong Xiao-Yang
- a College of Physics and Engineering , Henan University of Science and Technology , Luoyang, 471003, People's Republic of China
| | - Zhang Xian-Zhou
- b College of Physics and Information Engineering , Henan Normal University , Xinxiang, 453007, People's Republic of China
| |
Collapse
|
13
|
Interaction between the HTLV-1 envelope and cellular proteins: impact on virus infection and restriction. Future Med Chem 2011; 2:1651-68. [PMID: 21428837 DOI: 10.4155/fmc.10.255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was discovered 30 years ago. Despite intensive study, the cell surface molecules involved in virus entry have only been identified over the past few years. Three molecules form the receptor complex for HTLV-1: glucose transporter 1, neuropilin 1 and heparan sulfate proteoglycans. Another molecule on the surface of dendritic cells, DC-SIGN, may play a role in dendritic cell-mediated infection of cells. In addition to the cell surface molecules used for entry, the HTLV-1 envelope interacts with cellular proteins, enabling the virus to traffic by exploiting cellular delivery pathways. To facilitate both these steps, HTLV-1 encodes motifs that mimic cellular binding partners for the trafficking system and ligands for the receptors. Here we review the interactions between the HTLV-1 envelope and cellular proteins.
Collapse
|
14
|
[Entry process of enveloped viruses to host cells]. Uirusu 2010; 59:205-13. [PMID: 20218329 DOI: 10.2222/jsv.59.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fusion between viral and cellular membranes is the first critical step of the enveloped viral infection. This is promoted by the drastic conformational change of the viral fusion protein. The conformational change is driven by various cues that are different in each fusion protein. The divergent nature of the induction mechanism of fusion proteins tells us that the regulation of membrane fusion process is substantially important to viral infection. Historically, enveloped viruses were categorized into pH-dependent and pH-independent groups for their entry processes. It has been thought that the pH-independent viruses mainly fuse to cell membrane at the cell surface whereas pH-dependent viruses fuse to endosomal membrane. However, the recent studies suggest that some pH-independent viruses including Human Immunodeficiency Virus (HIV) also utilize the endocytosis pathway to achieve infection. In addition, it has been revealed that the host factors other than receptors play crucial roles in the entry of enveloped viruses. This review summarizes the entry process of enveloped viruses and focuses on the current topics of HIV entry.
Collapse
|
15
|
Turning of the receptor-binding domains opens up the murine leukaemia virus Env for membrane fusion. EMBO J 2008; 27:2799-808. [PMID: 18800055 PMCID: PMC2556092 DOI: 10.1038/emboj.2008.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 08/26/2008] [Indexed: 11/21/2022] Open
Abstract
The activity of the membrane fusion protein Env of Moloney mouse leukaemia virus is controlled by isomerization of the disulphide that couples its transmembrane (TM) and surface (SU) subunits. We have arrested Env activation at a stage prior to isomerization by alkylating the active thiol in SU and compared the structure of isomerization-arrested Env with that of native Env. Env trimers of respective form were isolated from solubilized particles by sedimentation and their structures were reconstructed from electron microscopic images of both vitrified and negatively stained samples. We found that the protomeric unit of both trimers formed three protrusions, a top, middle and a lower one. The atomic structure of the receptor-binding domain of SU fitted into the upper protrusion. This was formed similar to a bent finger. Significantly, in native Env the tips of the fingers were directed against each other enclosing a cavity below, whereas they had turned outward in isomerization-arrested Env transforming the cavity into an open well. This might subsequently guide the fusion peptides in extended TM subunits into the target membrane.
Collapse
|
16
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
17
|
Lamb D, Schüttelkopf AW, van Aalten DMF, Brighty DW. Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology 2008; 5:70. [PMID: 18680566 PMCID: PMC2533354 DOI: 10.1186/1742-4690-5-70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/04/2008] [Indexed: 01/19/2023] Open
Abstract
Background Human T-cell leukaemia virus (HTLV-1) and bovine leukaemia virus (BLV) entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM) from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal α-helical region of the trimer-of-hairpins. Results We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal α-helical region (LHR) of the trimer-of-hairpins. Remarkably, despite this conservation, BLV envelope was profoundly resistant to inhibition by HTLV-1-derived LHR-mimetics. Conversely, a BLV LHR-mimetic peptide antagonized BLV envelope-mediated membrane fusion but failed to inhibit HTLV-1-induced fusion. Notably, conserved leucine residues are critical to the inhibitory activity of the BLV LHR-based peptides. Homology modeling indicated that hydrophobic residues in the BLV LHR likely make direct contact with a pocket at the membrane-proximal end of the core coiled-coil and disruption of these interactions severely impaired the activity of the BLV inhibitor. Finally, the structural predictions assisted the design of a more potent antagonist of BLV membrane fusion. Conclusion A conserved region of the HTLV-1 and BLV coiled coil is a target for peptide inhibitors of envelope-mediated membrane fusion and HTLV-1 entry. Nevertheless, the LHR-based inhibitors are highly specific to the virus from which the peptide was derived. We provide a model structure for the BLV LHR and coiled coil, which will facilitate comparative analysis of leukaemia virus TM function and may provide information of value in the development of improved, therapeutically relevant, antagonists of HTLV-1 entry into cells.
Collapse
Affiliation(s)
- Daniel Lamb
- The Biomedical Research Centre, College of Medicine, Ninewells Hospital, The University, Dundee, DD1 9SY, Scotland, UK.
| | | | | | | |
Collapse
|
18
|
Intersubunit disulfide isomerization controls membrane fusion of human T-cell leukemia virus Env. J Virol 2008; 82:7135-43. [PMID: 18480461 DOI: 10.1128/jvi.00448-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus (HTLV-1) Env carries a typical disulfide isomerization motif, C(225)XXC, in the C-terminal domain SU. Here we have tested whether this motif is used for isomerization of the intersubunit disulfide of Env and whether this rearrangement is required for membrane fusion. We introduced the C225A and C228A mutations into Env and found that the former but not the latter mutant matured into covalently linked SU-TM complexes in transfected cells. Next, we constructed a secreted Env ectodomain and showed that it underwent incubation-dependent intersubunit disulfide isomerization on target cells. However, the rearrangement was blocked by the C225A mutation, suggesting that C(225) carried the isomerization-active thiol. Still, it was possible to reduce the intersubunit disulfide of the native C225A ectodomain mutant with dithiothreitol (DTT). The importance of the CXXC-mediated disulfide isomerization for infection was studied using murine leukemia virus vectors pseudotyped with wild-type or C225A HTLV-1 Env. We found that the mutant Env blocked infection, but this could be rescued with DTT. The fusion activity was tested in a fusion-from-within assay using a coculture of rat XC target and transfected BHK-21 effector cells. We found that the mutation blocked polykaryon formation, but this could be reversed with DTT. Similar DTT-reversible inhibition of infection and fusion was observed when a membrane-impermeable alkylator was present during the infection/fusion incubation. We conclude that the fusion activity of HTLV-1 Env is controlled by an SU CXXC-mediated isomerization of the intersubunit disulfide. Thus, this extends the applicability of the isomerization model from gammaretroviruses to deltaretroviruses.
Collapse
|
19
|
Nonhelical leash and alpha-helical structures determine the potency of a peptide antagonist of human T-cell leukemia virus entry. J Virol 2008; 82:4965-73. [PMID: 18305034 DOI: 10.1128/jvi.02458-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral fusion proteins mediate the entry of enveloped viral particles into cells by inducing fusion of the viral and target cell membranes. Activated fusion proteins undergo a cascade of conformational transitions and ultimately resolve into a compact trimer of hairpins or six-helix bundle structure, which pulls the interacting membranes together to promote lipid mixing. Significantly, synthetic peptides based on a C-terminal region of the trimer of hairpins are potent inhibitors of membrane fusion and viral entry, and such peptides are typically extensively alpha-helical. In contrast, an atypical peptide inhibitor of human T-cell leukemia virus (HTLV) includes alpha-helical and nonhelical leash segments. We demonstrate that both the C helix and C-terminal leash are critical to the inhibitory activities of these peptides. Amino acid side chains in the leash and C helix extend into deep hydrophobic pockets at the membrane-proximal end of the HTLV type 1 (HTLV-1) coiled coil, and these contacts are necessary for potent antagonism of membrane fusion. In addition, a single amino acid substitution within the inhibitory peptide improves peptide interaction with the core coiled coil and yields a peptide with enhanced potency. We suggest that the deep pockets on the coiled coil are ideal targets for small-molecule inhibitors of HTLV-1 entry into cells. Moreover, the extended nature of the HTLV-1-inhibitory peptide suggests that such peptides may be intrinsically amenable to modifications designed to improve inhibitory activity. Finally, we propose that leash-like mimetic peptides may be of value as entry inhibitors for other clinically important viral infections.
Collapse
|
20
|
Schneider WM, Zheng H, Coté ML, Roth MJ. The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain. Virology 2008; 371:165-74. [PMID: 17961622 DOI: 10.1016/j.virol.2007.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 07/30/2007] [Accepted: 09/22/2007] [Indexed: 01/20/2023]
Abstract
Virus-cell and cell-cell fusion events are affected by various properties of the fusogenic Env protein on the cell surface. The G541R mutation within the TM ectodomain of murine leukemia virus (MuLV) 4070A arose by positive selection in viral passage and results in a reduction of cell-cell fusion events while maintaining viral titer. Size exclusion chromatography shows that the multimerization properties are similar among expressed wild-type and mutant ectodomain peptides. Circular dichroism measurements reveal decreased thermal stability of the G541R mutant as compared to wild type. The G541R mutant also renders the peptide more susceptible to Lys-C protease cleavage. The 42-114 monoclonal antibody does not bind to the G541R mutant peptides, suggesting a structural difference from wild type. These altered physical properties result in productive viral infection of G541R bearing virus with decreased syncytia.
Collapse
Affiliation(s)
- William M Schneider
- UMDNJ-Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane Rm. 636, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
21
|
Stabilization of TM trimer interactions during activation of moloney murine leukemia virus Env. J Virol 2007; 82:2358-66. [PMID: 18094169 DOI: 10.1128/jvi.01931-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmembrane subunit (TM) of the trimeric retrovirus Env complex is thought to direct virus-cell membrane fusion by refolding into a cell membrane-interacting, extended form that subsequently folds back on itself into a very stable trimer of hairpin-like TM polypeptides. However, so far there is only limited evidence for the formation of a stable TM trimer during Env activation. Here we have studied the oligomer composition and stability of an intermediate and the fully activated form of Moloney murine leukemia virus (Mo-MLV) Env. Activation of Mo-MLV Env is controlled by isomerization of its intersubunit disulfide. This results in surface subunit (SU) dissociation and TM refolding. If activation is done in the presence of an alkylator, this will modify the isomerization-active thiol in the SU of Env and arrest Env at an intermediate stage, the isomerization-arrested state (IAS) of its activation pathway. We generated IAS and fully activated Envs in vitro and in vivo and studied their states of oligomerization by two-dimensional blue native polyacrylamide gel electrophoresis (PAGE) and nonreducing sodium dodecyl sulfate (SDS)-PAGE. The IAS Env was composed of trimers of SU-TM complexes, whereas the activated Env consisted of SU monomers and TM trimers. When the oligomers were subjected to mild SDS treatment the TM trimer was found to be 3.5 times more resistant than the IAS oligomer. Thus, this demonstrates that a structural conversion of TM takes place during activation, which results in the formation of a stable TM trimer.
Collapse
|
22
|
Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007; 9:1009-34. [PMID: 17567241 DOI: 10.1089/ars.2007.1639] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For enveloped viruses, genome entry into the target cell involves two major steps: virion binding to the cell-surface receptor and fusion of the virion and cell membranes. Virus-cell membrane fusion is mediated by the virus envelope complex, and its fusogenicity is the result of an active virus-cell interaction process that induces conformation changes within the envelope. For some viruses, such as influenza, exposure to an acidic milieu within the cell during the early steps of infection triggers the necessary structural changes. However, for other pathogens which are not exposed to such environmental stress, activation of fusogenicity can result from precise thiol/disulfide rearrangements mediated by either an endogenous redox autocatalytic isomerase or a cell-associated oxidoreductase. Study of the activation of HIV envelope fusogenicity has revealed new knowledge about how redox changes within a viral envelope trigger fusion. We discuss these findings and their implication for anti-HIV therapy. In addition, to compare and contrast the situation outlined for HIV with an enveloped virus that can fuse with the cell plasma membrane independent of the redox status of its envelope protein, we review parallel data obtained on SARS coronavirus entry.
Collapse
Affiliation(s)
- Emmanuel Fenouillet
- CNRS FRE2738 and Université de la Méditerranée, Faculté de Médecine, Marseille, France.
| | | | | |
Collapse
|
23
|
Sjöberg M, Wallin M, Lindqvist B, Garoff H. Furin cleavage potentiates the membrane fusion-controlling intersubunit disulfide bond isomerization activity of leukemia virus Env. J Virol 2007; 80:5540-51. [PMID: 16699035 PMCID: PMC1472177 DOI: 10.1128/jvi.01851-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekström, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.
Collapse
Affiliation(s)
- Mathilda Sjöberg
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | | | |
Collapse
|
24
|
Stiasny K, Kössl C, Lepault J, Rey FA, Heinz FX. Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog 2007; 3:e20. [PMID: 17305426 PMCID: PMC1797619 DOI: 10.1371/journal.ppat.0030020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/29/2006] [Indexed: 12/16/2022] Open
Abstract
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion. The fusion of cellular lipid membranes is an essential process in all forms of life. Such membranes are also part of a specific structural class of viruses—so-called enveloped viruses—that include influenza virus, HIV, severe acute respiratory syndrome coronavirus, Ebola virus, yellow fever virus, and many others. The fusion of the viral with a cellular membrane is a key step in the life cycle of these viruses and allows the delivery of their genetic information into cells. This entry step is controlled by specific proteins at the viral surface that are primed to undergo dramatic structural changes and thus drive membrane fusion. An interference with this process can be a powerful means for inhibiting virus replication and fusion inhibitors have recently become a valuable addition to the armamentarium of anti-HIV treatments. In the present study, we identified an intermediate of the fusion pathway of flaviviruses, which comprise mosquito- and tick-transmitted viruses such as yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. This work has generated further insights into the mechanism of flavivirus membrane fusion and can thus provide new leads for the development of antiviral agents against these important human pathogens.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Vienna, Austria
| | - Christian Kössl
- Institute of Virology, Medical University of Vienna, Vienna, Austria
| | - Jean Lepault
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472/1157 CNRS/INRA, Gif-sur-Yvette, France
| | - Félix A Rey
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Vienna, Austria
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
|
26
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical and Biological Engineering, College of Engineering, The Graduate School, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Hepadnaviridae is a family of hepatotropic DNA viruses that is divided into the genera orthohepadnavirus of mammals and avihepadnavirus of birds. All members of this family can cause acute and chronic hepatic infection, which in the case of human hepatitis B virus (HBV) constitutes a major global health problem. Although our knowledge about the molecular biology of these highly liver-specific viruses has profoundly increased in the last two decades, the mechanisms of attachment and productive entrance into the differentiated host hepatocytes are still enigmatic. The difficulties in studying hepadnaviral entry were primarily caused by the lack of easily accessible in vitro infection systems. Thus, for more than twenty years, differentiated primary hepatocytes from the respective species were the only in vitro models for both orthohepadnaviruses (e.g. HBV) and avihepadnaviruses (e.g. duck hepatitis B virus [DHBV]). Two important discoveries have been made recently regarding HBV: (1) primary hepatocytes from tree-shrews; i.e., Tupaia belangeri, can be substituted for primary human hepatocytes, and (2) a human hepatoma cell line (HepaRG) was established that gains susceptibility for HBV infection upon induction of differentiation in vitro. A number of potential HBV receptor candidates have been described in the past, but none of them have been confirmed to function as a receptor. For DHBV and probably all other avian hepadnaviruses, carboxypeptidase D (CPD) has been shown to be indispensable for infection, although the exact role of this molecule is still under debate. While still restricted to the use of primary duck hepatocytes (PDH), investigations performed with DHBV provided important general concepts on the first steps of hepadnaviral infection. However, with emerging data obtained from the new HBV infection systems, the hope that DHBV utilizes the same mechanism as HBV only partially held true. Nevertheless, both HBV and DHBV in vitro infection systems will help to: (1) functionally dissect the hepadnaviral entry pathways, (2) perform reverse genetics (e.g. test the fitness of escape mutants), (3) titrate and map neutralizing antibodies, (4) improve current vaccines to combat acute and chronic infections of hepatitis B, and (5) develop entry inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus-Liebig University of Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
28
|
Li K, Zhang S, Kronqvist M, Ekström M, Wallin M, Garoff H. The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase. Virology 2006; 361:149-60. [PMID: 17182074 DOI: 10.1016/j.virol.2006.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/31/2006] [Accepted: 11/13/2006] [Indexed: 11/18/2022]
Abstract
Murine leukemia virus (MLV) fusion is controlled by isomerization of the disulphide bond between the receptor-binding surface (SU) and fusion-active transmembrane subunits of the Env-complex. The bond is in SU linked to a CXXC motif. This carries a free thiol that upon receptor binding can be activated (ionized) to attack the disulphide and rearrange it into a disulphide isomer within the motif. To find out whether His8 in the conserved SPHQ sequence of Env directs thiol activation, we analyzed its ionization in MLV vectors with wtEnv and Env with His8 deleted or substituted for Tyr or Arg, which partially or completely arrests fusion. The ionization was monitored by following the pH effect on isomerization in vitro by Ca2+ depletion or in vivo by receptor binding. We found that wtEnv isomerized optimally at slightly basic pH whereas the partially active mutant required higher and the inactive mutants still higher pH. This suggests that His8 directs the ionization of the CXXC thiol.
Collapse
Affiliation(s)
- Kejun Li
- Department of Biosciences and Nutrition, Karolinska Institute, S-141 57 HUDDINGE, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Flavivirus membrane fusion is mediated by a class II viral fusion protein, the major envelope protein E, and the fusion process is extremely fast and efficient. Understanding of the underlying mechanisms has been advanced significantly by the determination of E protein structures in their pre- and post-fusion conformations and by the elucidation of the quarternary organization of E proteins in the viral envelope. In this review, these structural data are discussed in the context of functional and biochemical analyses of the flavivirus fusion mechanism and its characteristics are compared with those of other class II- and class I-driven fusion processes.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| |
Collapse
|
30
|
Ou W, Silver J. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion. Virology 2006; 350:406-17. [PMID: 16507315 DOI: 10.1016/j.virol.2006.01.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/11/2006] [Accepted: 01/26/2006] [Indexed: 01/01/2023]
Abstract
Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion.
Collapse
Affiliation(s)
- Wu Ou
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Building 4, Room 336, Bethesda, MD 20892, USA.
| | | |
Collapse
|
31
|
Wallin M, Löving R, Ekström M, Li K, Garoff H. Kinetic analyses of the surface-transmembrane disulfide bond isomerization-controlled fusion activation pathway in Moloney murine leukemia virus. J Virol 2006; 79:13856-64. [PMID: 16254321 PMCID: PMC1280236 DOI: 10.1128/jvi.79.22.13856-13864.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface (SU) and transmembrane (TM) subunits of Moloney murine leukemia virus (Mo-MLV) Env are disulfide linked. The linking cysteine in SU is part of a conserved CXXC motif in which the other cysteine carries a free thiol. Recently, we showed that receptor binding activates its free thiol to isomerize the intersubunit disulfide bond into a disulfide within the motif instead (M. Wallin, M. Ekström and H. Garoff, EMBO J. 23:54-65, 2004). This facilitated SU dissociation and activation of TM for membrane fusion. The evidence was mainly based on the finding that alkylation of the CXXC-thiol prevented isomerization. This arrested membrane fusion, but the activity could be rescued by cleaving the intersubunit disulfide bond with dithiothreitol (DTT). Here, we demonstrate directly that receptor binding causes SU-TM disulfide bond isomerization in a subfraction of the viral Envs. The kinetics of the isomerization followed that of virus-cell membrane fusion. Arresting the fusion with lysophosphatidylcholine did not arrest isomerization, suggesting that isomerization precedes the hemifusion stage of fusion. Our earlier finding that native Env was not possible to alkylate but required isomerization induction by receptor binding intimated that alkylation trapped an intermediate form of Env. To further clarify this possibility, we analyzed the kinetics by which the alkylation-sensitive Env was generated during fusion. We found that it followed the fusion kinetics. In contrast, the release of fusion from alkylated, isomerization-blocked virus by DTT reduction of the SU-TM disulfide bond was much faster. These results suggest that the alkylation-sensitive form of Env is a true intermediate in the fusion activation pathway of Env.
Collapse
Affiliation(s)
- Michael Wallin
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
32
|
Lavillette D, Barbouche R, Yao Y, Boson B, Cosset FL, Jones IM, Fenouillet E. Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: comparison with HIV envelope. J Biol Chem 2006; 281:9200-4. [PMID: 16418166 PMCID: PMC7982606 DOI: 10.1074/jbc.m512529200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited ∼4 unpaired cysteines, and chemically reduced S1 displaying up to ∼6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.
Collapse
Affiliation(s)
- Dimitri Lavillette
- INSERM U758, Ecole Normale Supérieure, Institut Fédératif de Recherche (IFR) 128, Lyon-Gerland F69007, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Follis KE, York J, Nunberg JH. Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region. Virology 2005; 341:122-9. [PMID: 16081124 PMCID: PMC7111819 DOI: 10.1016/j.virol.2005.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/28/2005] [Accepted: 07/05/2005] [Indexed: 02/04/2023]
Abstract
The fusion subunit of the SARS-CoV S glycoprotein contains two regions of hydrophobic heptad-repeat amino acid sequences that have been shown in biophysical studies to form a six-helix bundle structure typical of the fusion-active core found in Class I viral fusion proteins. Here, we have applied serine-scanning mutagenesis to the C-terminal-most heptad-repeat region in the SARS-CoV S glycoprotein to investigate the functional role of this region in membrane fusion. We show that hydrophobic sidechains at a and d positions only within the short helical segment of the C-terminal heptad-repeat region (I1161, I1165, L1168, A1172, and L1175) are critical for cell–cell fusion. Serine mutations at outlying heptad-repeat residues that form an extended chain in the core structure (V1158, L1179, and L1182) do not affect fusogenicity. Our study provides genetic evidence for the important role of α-helical packing in promoting S glycoprotein-mediated membrane fusion.
Collapse
Affiliation(s)
- Kathryn E Follis
- Montana Biotechnology Center, The University of Montana, Science Complex Room 221, Missoula, MT 59812, USA
| | | | | |
Collapse
|
34
|
Jaoudé GA, Sureau C. Role of the antigenic loop of the hepatitis B virus envelope proteins in infectivity of hepatitis delta virus. J Virol 2005; 79:10460-6. [PMID: 16051838 PMCID: PMC1182656 DOI: 10.1128/jvi.79.16.10460-10466.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The infectious particles of hepatitis B virus (HBV) and hepatitis delta virus (HDV) are coated with the large, middle, and small envelope proteins encoded by HBV. While it is clear that the N-terminal pre-S1 domain of the large protein, which is exposed at the virion surface, is implicated in binding to a cellular receptor at viral entry, the role in infectivity of the envelope protein antigenic loop, also exposed to the virion surface and accessible to neutralizing antibodies, remains to be established. In the present study, mutations were created in the antigenic loop of the three envelope proteins, and the resulting mutants were evaluated for their capacity to assist in the maturation and infectivity of HDV. We observed that short internal combined deletions and insertions, affecting residues 109 to 133 in the antigenic loop, were tolerated for secretion of both subviral HBV particles and HDV virions. However, when assayed for infectivity on primary cultures of human hepatocytes or on the recently described HepaRG cell line, virions carrying deletions between residues 118 and 129 were defective. Single amino acid substitutions in this region revealed that Gly-119, Pro-120, Cys-121, Arg-122, and Cys-124 were instrumental in viral entry. These results demonstrate that in addition to a receptor-binding site previously identified in the pre-S1 domain of the L protein, a determinant of infectivity resides in the antigenic loop of HBV envelope proteins.
Collapse
Affiliation(s)
- Georges Abou Jaoudé
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, 6 Rue Alexandre-Cabanel, 75739 Paris, France
| | | |
Collapse
|
35
|
Burkhart MD, D'Agostino P, Kayman SC, Pinter A. Involvement of the C-terminal disulfide-bonded loop of murine leukemia virus SU protein in a postbinding step critical for viral entry. J Virol 2005; 79:7868-76. [PMID: 15919941 PMCID: PMC1143666 DOI: 10.1128/jvi.79.12.7868-7876.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A role for the C-terminal domain (CTD) of murine leukemia virus (MuLV) Env protein in viral fusion was indicated by the potent inhibition of MuLV-induced fusion, but not receptor binding, by two rat monoclonal antibodies (MAbs) specific for epitopes in the CTD. Although these two MAbs, 35/56 and 83A25, have very different patterns of reactivity with viral isolates, determinants of both epitopes were mapped to the last C-terminal disulfide-bonded loop of SU (loop 10), and residues in this loop responsible for the different specificities of these MAbs were identified. Both MAbs reacted with a minor fraction of a truncated SU fragment terminating four residues after loop 10, indicating that while the deleted C-terminal residues were not part of these epitopes, they promoted their formation. Neither MAb recognized the loop 10 region expressed in isolated form, suggesting that these epitopes were not completely localized within loop 10 but required additional sequences located N terminal to the loop. Direct support for a role for loop 10 in fusion was provided by the demonstration that Env mutants containing an extra serine or threonine residue between the second and third positions of the loop were highly attenuated for infectivity and defective in fusion assays, despite wild-type levels of expression, processing, and receptor binding. Other mutations at positions 1 to 3 of loop 10 inhibited processing of the gPr80 precursor protein or led to increased shedding of SU, suggesting that loop 10 also affects Env folding and the stability of the interaction between SU and TM.
Collapse
Affiliation(s)
- Michael D Burkhart
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103-3506, USA
| | | | | | | |
Collapse
|