1
|
Montenegro C, Perdomo-Celis F, Franco MA. Update on Early-Life T Cells: Impact on Oral Rotavirus Vaccines. Viruses 2024; 16:818. [PMID: 38932111 PMCID: PMC11209100 DOI: 10.3390/v16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rotavirus infection continues to be a significant public health problem in developing countries, despite the availability of several vaccines. The efficacy of oral rotavirus vaccines in young children may be affected by significant immunological differences between individuals in early life and adults. Therefore, understanding the dynamics of early-life systemic and mucosal immune responses and the factors that affect them is essential to improve the current rotavirus vaccines and develop the next generation of mucosal vaccines. This review focuses on the advances in T-cell development during early life in mice and humans, discussing how immune homeostasis and response to pathogens is established in this period compared to adults. Finally, the review explores how this knowledge of early-life T-cell immunity could be utilized to enhance current and novel rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Manuel A. Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110221, Colombia; (C.M.); (F.P.-C.)
| |
Collapse
|
2
|
Trubach D, Muleta KG, Lahl K, Saini SK. Identification and Characterization of Antigen-Specific T-Cells in Viral Infections. Methods Mol Biol 2024; 2813:295-308. [PMID: 38888785 DOI: 10.1007/978-1-0716-3890-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Identification and characterization of CD8+ T-cells is important to determine their role in protecting and clearing viral infections. Here we provide details of the peptide-MHC (pMHC) tetramers-based approach to identify antigen-specific T-cells in human and murine samples. This method provides ex vivo quantification and functional characterization of T-cells reactive to specific viral antigens derived from CMV and rotavirus in human blood and in murine intestinal lamina propria samples, respectively.
Collapse
Affiliation(s)
- Darya Trubach
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Sunil Kumar Saini
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
4
|
Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei LM, Pruijssers AJ, Plemper RK, Nice TJ, Baldridge MT, Dermody TS, Chassaing B, Gewirtz AT. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell 2019; 179:644-658.e13. [PMID: 31607511 PMCID: PMC7525827 DOI: 10.1016/j.cell.2019.09.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/23/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.
Collapse
Affiliation(s)
- Zhenda Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Chunyu Zhao
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle Bittinger
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy J Nice
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, GSU, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
LAP + Cells Modulate Protection Induced by Oral Vaccination with Rhesus Rotavirus in a Neonatal Mouse Model. J Virol 2019; 93:JVI.00882-19. [PMID: 31292251 DOI: 10.1128/jvi.00882-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) has been shown to play a role in immunity against different pathogens in vitro and against parasites in vivo However, its role in viral infections in vivo is incompletely understood. Using a neonatal mouse model of heterologous rhesus rotavirus (RV) vaccination, we show that the vaccine induced rotavirus-specific CD4 T cells, the majority of which lacked expression of KLRG1 or CD127, and a few regulatory rotavirus-specific CD4 T cells that expressed surface latency-associated peptide (LAP)-TGF-β. In these mice, inhibiting TGF-β, with both a neutralizing antibody and an inhibitor of TGF-β receptor signaling (activin receptor-like kinase 5 inhibitor [ALK5i]), did not change the development or intensity of the mild diarrhea induced by the vaccine, the rotavirus-specific T cell response, or protection against a subsequent challenge with a murine EC-rotavirus. However, mice treated with anti-LAP antibodies had improved protection after a homologous EC-rotavirus challenge, compared with control rhesus rotavirus-immunized mice. Thus, oral vaccination with a heterologous rotavirus stimulates regulatory RV-specific CD4 LAP-positive (LAP+) T cells, and depletion of LAP+ cells increases vaccine-induced protection.IMPORTANCE Despite the introduction of several live attenuated animal and human rotaviruses as efficient oral vaccines, rotaviruses continue to be the leading etiological agent for diarrhea mortality among children under 5 years of age worldwide. Improvement of these vaccines has been partially delayed because immunity to rotaviruses is incompletely understood. In the intestine (where rotavirus replicates), regulatory T cells that express latency-associated peptide (LAP) play a prominent role, which has been explored for many diseases but not specifically for infectious agents. In this paper, we show that neonatal mice given a live oral rotavirus vaccine develop rotavirus-specific LAP+ T cells and that depletion of these cells improves the efficiency of the vaccine. These findings may prove useful for the design of strategies to improve rotavirus vaccines.
Collapse
|
6
|
Sun T, Ferrero RL, Girardin SE, Gommerman JL, Philpott DJ. NLRC5 deficiency has a moderate impact on immunodominant CD8 + T-cell responses during rotavirus infection of adult mice. Immunol Cell Biol 2019; 97:552-562. [PMID: 30768806 DOI: 10.1111/imcb.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
The NOD-like receptor (NLR) family plays an important role in innate immunity. Class II transactivator and NOD-like receptor caspase activation and recruitment domain CARD containing 5 (NLRC5) are unusual members of the NLR family that instead of recognizing pathogen-associated or damage-associated molecular patterns, form enhanceosomes with adaptor molecules and modulate major histocompatibility complex (MHC) class II and MHC class I expression, respectively. While NLRC5 has been shown to play a role during intracellular pathogen infection and tumor cell immune evasion, its role in regulating antigen-specific CD8+ T-cell responses at the intestinal mucosa has not been investigated. Here, we take advantage of the rotavirus model in adult mice to dissect the impact of NLRC5 on CD8+ T-cell responses to this viral infection at the gut mucosa. We show that while Nlrc5-/- mice exhibited normal proportions of T-cell subpopulations in the intraepithelial and lamina propria compartments, these mice had decreased baseline MHC class I expression on various immune cells in the lamina propria. Upon rotavirus infection, Nlrc5 deficiency resulted in impaired H2-Kb -restricted antigen-specific CD8+ T-cell responses, which were recapitulated in mice deficient for Nlrc5 within the dendritic cell compartment. The impaired CD8+ T-cell response in Nlrc5-/- mice was not significant enough to impact viral titers, suggesting compensation in Nlrc5-/- mice, perhaps as a result of higher numbers of activated B cells in the mesenteric lymph nodes and normal rotavirus-specific immunoglobulin A responses. Collectively, our results demonstrate a minor role for NLRC5 in modulating H2-Kb -restricted antigen-specific CD8+ T-cell responses in the small intestine during rotavirus infection in adult mice.
Collapse
Affiliation(s)
- Tian Sun
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Stephen E Girardin
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Malm M, Hyöty H, Knip M, Vesikari T, Blazevic V. Development of T cell immunity to norovirus and rotavirus in children under five years of age. Sci Rep 2019; 9:3199. [PMID: 30824789 PMCID: PMC6397277 DOI: 10.1038/s41598-019-39840-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Most of the research effort to understand protective immunity against norovirus (NoV) has focused on humoral immunity, whereas immunity against another major pediatric enteric virus, rotavirus (RV), has been studied more thoroughly. The aim of this study was to investigate development of cell-mediated immunity to NoV in early childhood. Immune responses to NoV GI.3 and GII.4 virus-like particles and RV VP6 were determined in longitudinal blood samples of 10 healthy children from three months to four years of age. Serum IgG antibodies were measured using enzyme-linked immunosorbent assay and production of interferon-gamma by peripheral blood T cells was analyzed by enzyme-linked immunospot assay. NoV-specific T cells were detected in eight of 10 children by the age of four, with some individual variation. T cell responses to NoV GII.4 were higher than those to GI.3, but these responses were generally lower than responses to RV VP6. In contrast to NoV-specific antibodies, T cell responses were transient in nature. No correlation between cell-mediated and antibody responses was observed. NoV exposure induces vigorous T cell responses in children under five years of age, similar to RV. A role of T cells in protection from NoV infection in early childhood warrants further investigation.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, and Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Timo Vesikari
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| |
Collapse
|
8
|
Rotavirus Double Infection Model to Study Preventive Dietary Interventions. Nutrients 2019; 11:nu11010131. [PMID: 30634561 PMCID: PMC6357201 DOI: 10.3390/nu11010131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are the main cause of acute diarrhea among young children worldwide with an increased frequency of reinfection. Several life style factors, such as dietary components, may influence such processes by affecting the outcome of the first rotavirus infection and therefore having a beneficial impact on the anti-rotavirus immune responses during any subsequent reinfections. The aim of this research was to develop a double-infection model in rat that mimics real-life clinical scenarios and would be useful in testing whether nutritional compounds can modulate the rotavirus-associated disease and immune response. Three experimental designs and a preventive dietary-like intervention were conducted in order to achieve a differential response in the double-infected animals compared to the single-infected ones and to study the potential action of a modulatory agent in early life. Diarrhea was only observed after the first infection, with a reduction of fecal pH and fever. After the second infection an increase in body temperature was also found. The immune response against the second infection was regulated by the preventive effect of the dietary-like intervention during the first infection in terms of specific antibodies and DTH. A rotavirus-double-infection rat model has been developed and is suitable for use in future preventive dietary intervention studies.
Collapse
|
9
|
Sun T, Rojas OL, Li C, Ward LA, Philpott DJ, Gommerman JL. Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Mucosal Immunol 2017; 10:775-788. [PMID: 27600308 DOI: 10.1038/mi.2016.79] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Although we know a great deal about which types of dendritic cells (DCs) promote T-cell priming in the periphery, less is known about which DC subset(s) provoke antiviral responses within the gut. Here we report that conventional Zbtb46-dependent DCs were critically required for antiviral CD8+ T-cell responses against rotavirus (RV), the major cause of childhood gastroenteritis worldwide. Furthermore, we found that in adult mice, Batf3-dependent DCs were required for generating optimal RV-specific CD8+ T-cell responses. However, in contrast to mice that lack Zbtb46-dependent DCs, a significant amount of interferon gamma-producing RV-specific CD8+ T cells were still detected in the small intestine of RV-infected adult Batf3-/- mice, suggesting the existence of compensatory cross-presentation mechanisms in the absence of Batf3-dependent DCs. In contrast to adult mice, we found that Batf3-dependent DCs were absolutely required for generating RV-specific CD8+ T-cell responses in neonates. Loss of Batf3-dependent DCs also resulted in a skewed polyclonal CD4+ T-cell response in both adult and neonatal mice upon RV infection, although local and systemic RV-specific immunoglobulin A production kinetics and titers were unimpaired. Our results provide insights that inform early-life vaccination strategies against RV infection.
Collapse
Affiliation(s)
- T Sun
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - O L Rojas
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - C Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - L A Ward
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - D J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - J L Gommerman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Malm M, Tamminen K, Vesikari T, Blazevic V. Type-specific and cross-reactive antibodies and T cell responses in norovirus VLP immunized mice are targeted both to conserved and variable domains of capsid VP1 protein. Mol Immunol 2016; 78:27-37. [PMID: 27573255 DOI: 10.1016/j.molimm.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 12/21/2022]
Abstract
Norovirus (NoV)-specific antibodies, which block binding of the virus-like particles (VLPs) to the cell receptors are conformation dependent and directed towards the most exposed domain of the NoV capsid VP1 protein, the P2 domain. Limited data are available on the antibodies directed to other domains of the VP1, and even less on the NoV VP1-specific T cell epitopes. In here, BALB/c mice were immunized with six VLPs derived from NoV GII.4-1999, GII.4-2009 (New Orleans), GII.4-2012 (Sydney), GII.12, GI.1, and G1.3. Serum immunoglobulin G binding antibodies, histo-blood group antigen blocking antibodies and T cell responses using type-specific and heterologous NoV VLPs, P-dimers and 76 overlapping synthetic peptides, spanning the entire 539 amino acid sequence of GII.4 VP1, were determined. The results showed that at least half of the total antibody content is directed towards conserved S domain of the VP1. Only a small fraction (<1%) of the VP1 binding antibodies were blocking/neutralizing. With the use of matrix peptide pools and individual peptides, seven CD4+ and CD8+ T cell restricted epitopes were mapped, two located in S domain, four in P2 domain and one in P1 domain of NoV VP1. The epitopes were GII.4 strain-specific but also common GII.4 genotype-specific T cell epitopes were identified. More importantly, the results suggest a 9-amino acids long sequence (318PAPLGTPDF326) in P2 domain of VP1 as a universal NoV genogroup II-specific CD8+ T cell epitope. Distribution of the T cell epitopes alongside the capsid VP1 indicates the need of the complete protein for high immunogenicity.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Kirsi Tamminen
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, FI-33520 Tampere, Finland.
| |
Collapse
|
11
|
Evaluation of oral Lanzhou lamb rotavirus vaccine via passive transfusion with CD4(+)/CD8(+) T lymphocytes. Virus Res 2016; 217:101-6. [PMID: 27025573 DOI: 10.1016/j.virusres.2016.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 11/23/2022]
Abstract
Lanzhou Lamb derived Rotavirus (RV) Vaccine (namely LLR) for children is only used in China. Since there were no reports on evaluation of LLR, even the data of phase IV clinical trial, we proceed the evaluation of LLR through focusing on T-cell to investigate whether LLR could induce the potential function involving in protection as a vaccine. Four groups of nude mice were transfused with CD4(+)/CD8(+) T-cells isolated from LLR-immunized (primed) and LLR-unimmunized (naïve) mice via intraperitonea (i.p.) respectively. Consequently, the adoption mice were challenged with mice-origin wild rotavirus EDIM (Epizootic Diarrhea of Infant Mice) by intragastric administration. Series of fecal/serum samples were collected and viral shedding, then serum IgA/IgG and secreted IgA were assayed. Compared to the mice transfused with T lymphocytes from naïve mice, the nude mice transfused with CD4(+) T lymphocytes from primed mice induce fecal and serum IgA increasing more rapidly, and have a shorter duration of virus shedding too. Whereas, no significant difference in virus clearance was found between the mice transfused with CD8(+) T lymphocytes isolated from primed and naïve mice. Therefore, we cleared the distinct roles of transfused CD4(+)/CD8(+) T lymphocytes for rotavirus clearance in nude mice, that the viral clearance conducted by CD4(+) T lymphocytes. Meanwhile, it has ability to help induction of LLR specific immunogenicity. Comparing with the transfusion of cell from primed and naïve mice, LLR can induce CD4(+) T lymphocytes memory which is a potential index to reflect the immunogenicity and protection, while CD8(+) T lymphocytes remove rotavirus by CTL with little memory ability.
Collapse
|
12
|
Sun T, Rojas OL, Li C, Philpott DJ, Gommerman JL. Hematopoietic LTβR deficiency results in skewed T cell cytokine profiles during a mucosal viral infection. J Leukoc Biol 2015; 100:103-10. [DOI: 10.1189/jlb.4mab0715-294r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
|
13
|
Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch Virol 2015; 160:1693-703. [DOI: 10.1007/s00705-015-2439-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/26/2022]
|
14
|
Parra M, Herrera D, Jácome MF, Mesa MC, Rodríguez LS, Guzmán C, Angel J, Franco MA. Circulating rotavirus-specific T cells have a poor functional profile. Virology 2014; 468-470:340-350. [PMID: 25238642 DOI: 10.1016/j.virol.2014.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/12/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ(+) cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2--unlike rIL-12 or DGKα-i--increased the frequencies of RV-CD4 TNF-α(+), CD4 IFN-γ(+), and CD8 IFN-γ(+) cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2.
Collapse
Affiliation(s)
- Miguel Parra
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Daniel Herrera
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - María Fernanda Jácome
- Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Martha C Mesa
- Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luz-Stella Rodríguez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Carolina Guzmán
- Departamento de Pediatría, Hospital Universitario San Ignacio, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Manuel A Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| |
Collapse
|
15
|
Alteration of the thymic T cell repertoire by rotavirus infection is associated with delayed type 1 diabetes development in non-obese diabetic mice. PLoS One 2013; 8:e59182. [PMID: 23554993 PMCID: PMC3598695 DOI: 10.1371/journal.pone.0059182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 12/12/2022] Open
Abstract
Rotaviruses are implicated as a viral trigger for the acceleration of type 1 diabetes in children. Infection of adult non-obese diabetic (NOD) mice with rotavirus strain RRV accelerates diabetes development, whereas RRV infection in infant NOD mice delays diabetes onset. In this study of infant mice, RRV titers and lymphocyte populations in the intestine, mesenteric lymph nodes (MLN) and thymus of NOD mice were compared with those in diabetes-resistant BALB/c and C57BL/6 mice. Enhanced intestinal RRV infection occurred in NOD mice compared with the other mouse strains. This was associated with increases in the frequency of CD8αβ TCRαβ intraepithelial lymphocytes, and their PD-L1 expression. Virus spread to the MLN and T cell numbers there also were greatest in NOD mice. Thymic RRV infection is shown here in all mouse strains, often in combination with alterations in T cell ontogeny. Infection lowered thymocyte numbers in infant NOD and C57BL/6 mice, whereas thymocyte production was unaltered overall in infant BALB/c mice. In the NOD mouse thymus, effector CD4+ T cell numbers were reduced by infection, whereas regulatory T cell numbers were maintained. It is proposed that maintenance of thymic regulatory T cell numbers may contribute to the increased suppression of inflammatory T cells in response to a strong stimulus observed in pancreatic lymph nodes of adult mice infected as infants. These findings show that rotavirus replication is enhanced in diabetes-prone mice, and provide evidence that thymic T cell alterations may contribute to the delayed diabetes onset following RRV infection.
Collapse
|
16
|
Girard A, Roques E, St-Louis MC, Massie B, Archambault D. Expression of human rotavirus chimeric fusion proteins from replicating but non disseminating adenovectors and elicitation of rotavirus-specific immune responses in mice. Mol Biotechnol 2013; 54:1010-20. [PMID: 23430460 DOI: 10.1007/s12033-013-9653-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the usefulness of replicating but non disseminating adenovirus vectors (AdVs) as vaccine vector using human rotavirus (HRV) as a model pathogen. HRV VP7, VP4, or VP4Δ (N-terminal 336 amino acids of VP4) structural proteins as well as the VP4Δ::VP7 chimeric fusion protein were expressed in mammalian cells when delivered with the AdVs. A preliminary experiment demonstrated that VP4Δ was able to induce a HRV-specific IgG response in BALB/c mice inoculated intramuscularly with AdVs expressing the rotaviral protein. Moreover, an AdV-prime/plasmid DNA-boost regimen of vectors resulted in VP4Δ-specific antibody (Ab) titers ~4 times higher than those obtained from mice immunized with AdVs alone. Subsequently, the various HRV protein-encoding AdVs were compared using the AdV-prime/plasmid DNA-boost regimen. Higher IgG and IgA responses to HRV were obtained when VP4Δ::VP7 fusion protein was used as an immunogen as compared to VP7 or VP4 alone or to a mix of both proteins delivered independently by AdVs. A synergetic effect in terms of Ab was obtained with VP4Δ::VP7. In conclusion, this study demonstrated for the first time the suitability of using replicating but non disseminating AdVs as vaccine vector and the VP4Δ::VP7 fusion protein as an immunogen for vaccination against HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Quebec at Montreal, P.O. Box 8888, Succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
17
|
Knipping K, McNeal MM, Crienen A, van Amerongen G, Garssen J, Van't Land B. A gastrointestinal rotavirus infection mouse model for immune modulation studies. Virol J 2011; 8:109. [PMID: 21385425 PMCID: PMC3061940 DOI: 10.1186/1743-422x-8-109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R®) could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. METHODS BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV) at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM) virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH) responses were also measured. RESULTS Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. CONCLUSIONS Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.
Collapse
Affiliation(s)
- Karen Knipping
- Danone Research Centre for Specialised Nutrition, P,O, Box 7005, 6700 CA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Broquet AH, Hirata Y, McAllister CS, Kagnoff MF. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1618-26. [PMID: 21187438 DOI: 10.4049/jimmunol.1002862] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ∼500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavirus production by intestinal epithelium and virus excretion in the feces. In contrast with most RNA viruses, which interact with either retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) inside cells, rotavirus was sensed by both RIG-I and MDA5, alone and in combination. Rotavirus did not signal IFN-β through either of the dsRNA sensors TLR3 or dsRNA-activated protein kinase (PKR). Silencing RIG-I or MDA5, or their common adaptor protein mitochondrial antiviral signaling protein (MAVS), significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Overexpression of laboratory of genetics and physiology 2, a RIG-I-like receptor that interacts with viral RNA but lacks the caspase activation and recruitment domains required for signaling through MAVS, significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Rotavirus-infected mice lacking MAVS, but not those lacking TLR3, TRIF, or PKR, produced significantly less IFN-β and increased amounts of virus in the intestinal epithelium, and shed increased quantities of virus in the feces. We conclude that RIG-I or MDA5 signaling through MAVS is required for the activation of IFN-β production by rotavirus-infected IECs and has a functionally important role in determining the magnitude of rotavirus replication in the intestinal epithelium.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Line
- Chlorocebus aethiops
- DEAD Box Protein 58
- DEAD-box RNA Helicases/deficiency
- DEAD-box RNA Helicases/physiology
- HT29 Cells
- Humans
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/physiology
- Intestinal Mucosa/enzymology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/virology
- Membrane Proteins/deficiency
- Membrane Proteins/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/physiology
- RNA Helicases/genetics
- RNA Helicases/physiology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Receptors, Cell Surface
- Receptors, Immunologic
- Response Elements/immunology
- Rotavirus/genetics
- Rotavirus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Alexis H Broquet
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
19
|
Zhou H, Guo L, Wang M, Qu J, Zhao Z, Wang J, Hung T. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice. Virol J 2011; 8:3. [PMID: 21205330 PMCID: PMC3024956 DOI: 10.1186/1743-422x-8-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/05/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Rotavirus (RV) is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6), as well as that of recombinant adenovirus expressing RV VP6 (rAd), in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP), VLP2/6 prime-rAd boost (VLP+rAd), rAd alone, and VLP alone. RESULTS Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9%) in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%), VLP alone (75%), or rAd alone (40%) treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227) and IgA (r = 0.96137, P = 0.038663). CONCLUSIONS A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.
Collapse
Affiliation(s)
- Hongli Zhou
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Dong Dan San Tiao, Beijing 100730, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Wei J, Li J, Zhang X, Tang Y, Wang J, Wu Y. A Naturally Processed Epitope on Rotavirus VP7 Glycoprotein Recognized by HLA-A2.1-Restricted Cytotoxic CD8+T Cells. Viral Immunol 2009; 22:189-94. [DOI: 10.1089/vim.2008.0091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing Wei
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing, People's Republic of China
- Key Laboratory of Aquatic Organism Reproduction and Development (Ministry of Education), Southwest University, Chongqing, People's Republic of China
| | - Jintao Li
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing, People's Republic of China
| | - Xiaoping Zhang
- Key Laboratory of Aquatic Organism Reproduction and Development (Ministry of Education), Southwest University, Chongqing, People's Republic of China
| | - Yan Tang
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing, People's Republic of China
| | - Jingxue Wang
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Matsunaga H, Hokari R, Kurihara C, Okada Y, Takebayashi K, Okudaira K, Watanabe C, Komoto S, Nakamura M, Tsuzuki Y, Kawaguchi A, Nagao S, Itoh K, Miura S. Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm Bowel Dis 2008; 14:1348-57. [PMID: 18484673 DOI: 10.1002/ibd.20491] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although the immunoregulatory effects of omega-3 fatty acid and adiponectin have been postulated, their role in intestinal inflammation is controversial. The aim of this study was to determine whether dietary fat intake influences activity of colonic inflammation through modulating this system. METHODS C57BL/6 mice received dextran sulfate sodium for induction of colitis. Mice were fed a control diet, omega-3 fat-rich diet, omega-6 fat-rich diet, or saturated fat-rich diet. Some mice were administered a peroxisome proliferator activated receptor-gamma; agonist, pioglitazone. Messenger RNA expression of adiponectin and its receptors were analyzed. Adiponectin expression in colonic mucosa of ulcerative colitis patients was also analyzed. RESULTS The receptors for adiponectin were found to be ubiquitously expressed in epithelial cells, intraepithelial lymphocytes, lamina proprial mononuclear cells, and subepithelial myofibroblasts from colonic tissue, but adiponectin was only expressed in myofibroblasts. Induction of colitis significantly decreased the expression of adiponectin in colonic mucosa. The omega-3 fat diet group, but not the other fat diet groups, showed exacerbated colitis with a further decrease of adiponectin expression. Pioglitazone treatment ameliorated the level of decrease in adiponectin expression and improved colonic inflammation induced by the omega-3 fat-rich diet. In patients with ulcerative colitis, the expression level of adiponectin in colonic mucosa was also decreased compared with that in control mucosa. CONCLUSIONS Adiponectin was found to be expressed in myofibroblasts. Adiponectin expression was significantly suppressed by induction of colitis, and aggravation of colitis after exposure to omega-3 fat may be due to a further decrease in the expression level of adiponectin.
Collapse
Affiliation(s)
- Hisayuki Matsunaga
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Malik J, Gupta SK, Bhatnagar S, Bhan MK, Ray P. Evaluation of IFN-γ response to rotavirus and non-structural protein NSP4 of rotavirus in children following severe rotavirus diarrhea. J Clin Virol 2008; 43:202-6. [DOI: 10.1016/j.jcv.2008.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 06/17/2008] [Accepted: 06/24/2008] [Indexed: 11/24/2022]
|
23
|
The influence of CD4+ CD25+ Foxp3+ regulatory T cells on the immune response to rotavirus infection. Vaccine 2008; 26:5601-11. [PMID: 18725261 DOI: 10.1016/j.vaccine.2008.07.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/07/2008] [Accepted: 07/29/2008] [Indexed: 12/20/2022]
Abstract
Rotavirus (RV) infection of the intestine is the major cause of severe dehydrating diarrhea in infants around the world. Although protective immunity against RV, especially acquired B and T-cell responses, has been extensively studied, our understanding of RV immunity remains incomplete. In addition, the interaction between various protective immune mechanisms in the gut and specific enteric immune suppressor systems that normally exert a regulatory function on mucosal immunity has not been extensively investigated. Among the candidate suppressor systems, we hypothesized that CD4+ CD25+ Foxp3+ regulatory T (Treg) cells may play a role in modulating RV immunity since such cells are naturally present in large numbers in the intestine and function nonspecifically. Here we demonstrate that neonatal murine RV (EC) infection induces an expansion of the Treg cell population and the magnitude of the T cell mediated immune response is modulated by Treg cells. Accordingly, when natural Treg cells in neonatal mice were depleted before virus infection, both CD4+ and CD8+ T-cell responses to RV, such as proliferation and IFN-gamma secretion, were enhanced in mesenteric lymph nodes (MLNs) and the spleen. Interestingly, increased proliferation of CD19+ B cells from Treg cell depleted animals was also observed. Finally, we analyzed the in vivo effect of the Treg cell depletion on diarrheal disease, virus shedding and IgA RV-specific response. Treg cell depletion did not affect these functions. Our studies of immune modulatory Treg cells in the RV infection model may promote a better understanding of the basis for RV immunity as well as providing valuable clues for the development of more immunogenic RV vaccines.
Collapse
|
24
|
Qualitative and quantitative characteristics of rotavirus-specific CD8 T cells vary depending on the route of infection. J Virol 2008; 82:6812-9. [PMID: 18480435 DOI: 10.1128/jvi.00450-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD8 T-cell response provides an important defense against rotavirus, which infects a variety of systemic locations in addition to the gut. Here we investigated the distribution, phenotype, and function of rotavirus-specific CD8 T cells in multiple organs after rotavirus infection initiated via the intranasal, oral, or intramuscular route. The highest level of virus-specific CD8 T cells was observed in the Peyer's patches of orally infected mice and in the lungs of intranasally infected animals. Very low levels of virus-specific CD8 T cells were detected in peripheral blood or spleen irrespective of the route of infection. Rotavirus-specific CD8 T cells from Peyer's patches of orally infected mice expressed high levels of CCR9, while CXCR6 and LFA-1 expression was associated with virus-specific CD8 T cells in lungs of intranasally infected mice. Oral infection induced the highest proportion of gamma interferon(-) CD107a/b(+) CD8 T cells in Peyer's patches. When equal numbers of rotavirus-specific CD8 T cells were transferred into Rag-1 knockout mice chronically infected with rotavirus, the donor cells derived from Peyer's patches of orally infected mice were more efficient than those derived from lungs of intranasally infected animals in clearing intestinal infection. These results suggest that different routes of infection induce virus-specific CD8 T cells with distinct homing phenotypes and effector functions as well as variable abilities to clear infection.
Collapse
|
25
|
Zhao W, Pahar B, Sestak K. Identification of Rotavirus VP6-Specific CD4+ T Cell Epitopes in a G1P[8] Human Rotavirus-Infected Rhesus Macaque. Virology (Auckl) 2008; 1:9-15. [PMID: 20401320 DOI: 10.4137/vrt.s563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A non-human primate model was used to evaluate its potential for identification of rotavirus viral protein 6 (VP6) CD4+ T cell epitopes. Four juvenile rhesus macaques were inoculated with a mixed inoculum (G1P[8] and G9P[8]) of human rotaviruses. Infection accompanied by G1P[8] shedding was achieved in the two macaques that had no rotavirus immunoglobulin A (IgA) in plasma. To measure the interferon gamma (IFN-γ) and tumor necrosis factor (TNF) anti-viral cytokines produced by peripheral CD4+ cells that recognize VP6 epitopes, whole blood cells from one infected macaque were stimulated in vitro with VP6 peptides. Stimulation with peptide pools derived from the simian rotavirus VP6(161-395) region revealed reactivity of CD4+ T cells with the VP6(281-331) domain. A VP6(301-315) region was identified as the epitope responsible for IFN-γ production while a broader VP6(293-327) domain was linked to TNF production. These results suggest that human rotavirus-infected macaques can be used for identification of additional epitopes and domains to address specific questions related to the development of pediatric vaccines.
Collapse
Affiliation(s)
- Wei Zhao
- Tulane National Primate Research Center, Covington, LA, U.S.A
| | | | | |
Collapse
|
26
|
Parez N. Rotavirus gastroenteritis: Why to back up the development of new vaccines? Comp Immunol Microbiol Infect Dis 2008; 31:253-69. [PMID: 17698192 DOI: 10.1016/j.cimid.2007.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Rotaviruses (RVs) are the main aetiologic agent of severe acute diarrhoea in children under the age of 5, worldwide. Given that the currently available preventive measures to fight against the transmission of RV disease are not sufficiently effective, vaccination likely represents the only efficacious adapted response to the massive impact of this infection. Although the two current RV vaccines have shown good tolerance and significant efficacy to protect infant against severe RV disease, their development have raised key questions that are still unanswered regarding their cost, efficacy and safety. These two vaccines have in common the disadvantages related to the use of oral attenuated live viruses which limit their implementation in both developed and developing countries. In order to overcome these hurdles, it is important to support the development of new, non-replicating vaccines which will not suffer the potential disadvantages of the present vaccines. New approaches and other routes of administration are being tested in animal models and soon will be evaluated in humans. Among those are viral-like particle-based vaccines which have provided the most promising results. Finally, the epidemiology of the disease which differs in developed and developing countries can affect decisions about vaccine composition and delivery. The answer brought by the development of new RV vaccines could reside in developing several types of RV vaccines specifically designed to be used in different settings.
Collapse
Affiliation(s)
- Nathalie Parez
- Urgences Pédiatriques, Hôpital Trousseau, AP-HP, Université Pierre et Marie Curie, EA3500, 26 rue du Dr A Netter, 75571 Paris cedex 12, France.
| |
Collapse
|
27
|
Angel J, Franco MA, Greenberg HB. Rotavirus vaccines: recent developments and future considerations. Nat Rev Microbiol 2007; 5:529-39. [PMID: 17571094 DOI: 10.1038/nrmicro1692] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two new vaccines have recently been shown to be safe and effective in protecting young children against severe rotavirus gastroenteritis. Although both vaccines are now marketed worldwide, it is likely that improvements to these vaccines and/or the development of future generations of rotavirus vaccines will be desirable. This Review addresses recent advances in our knowledge of rotavirus, the host immune response to rotavirus infection and the efficacy and safety of the new vaccines that will be helpful for improving the existing rotavirus vaccines, or developing new rotavirus vaccines in the future.
Collapse
Affiliation(s)
- Juana Angel
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Carrera 7, 40-62, Bogotá, Colombia.
| | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Rotavirus is the most common cause of diarrhoea and dehydration in early childhood. The recent licensure in many nations of vaccines against rotavirus offers promise to significantly reduce this toll. The present review describes recent developments regarding rotavirus vaccines and the challenges they face. RECENT FINDINGS Rotavirus causes significant morbidity and impact upon healthcare systems, at both inpatient and outpatient levels. An earlier rotavirus vaccine, since withdrawn, was temporally associated with intussusception causing small bowel obstruction, especially in infants receiving their first dose at an older age. Large-scale safety and efficacy studies of two new live, oral, attenuated vaccines have shown excellent efficacy against severe rotavirus gastroenteritis. Importantly, both studies detected no association with intussusception with these new vaccines when administered at the scheduled ages. Developed using different rotavirus vaccinology philosophies, questions remain regarding their coverage against new rotavirus serotypes. Ongoing intussusception surveillance following introduction should answer whether they may be safely administered beyond scheduled ages. SUMMARY Safe, efficacious rotavirus vaccines are available in many developed countries, offering significant promise to reduce the burden of gastroenteritis and dehydration. The impact of these vaccines upon not only morbidity, but also circulating rotavirus serotypes, will be monitored with interest.
Collapse
Affiliation(s)
- Jim P Buttery
- NHMRC Centre of Clinical Research Excellence in Child and Adolescent Immunisation, Murdoch Children's Research Institute, Infectious Diseases Unit, Royal Children's Hospital, Parkville, Australia.
| | | |
Collapse
|
29
|
McNeal MM, Basu M, Bean JA, Clements JD, Choi AHC, Ward RL. Identification of an immunodominant CD4+ T cell epitope in the VP6 protein of rotavirus following intranasal immunization of BALB/c mice. Virology 2007; 363:410-8. [PMID: 17337285 DOI: 10.1016/j.virol.2007.01.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 12/22/2006] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
The only lymphocytes required for protection against fecal rotavirus shedding after intranasal immunization of BALB/c (H-2(d)) mice with a chimeric rotavirus VP6 protein (MBPColon, two colonsVP6) and the mucosal adjuvant LT(R192G) are CD4(+) T cells. The purpose of this study was to identify CD4(+) T cell epitopes within VP6 that might be responsible for this protection. To make this determination, spleen cells obtained from BALB/c mice following intranasal immunization with MBPColon, two colonsVP6/LT(R192G) were stimulated in vitro with either MBPColon, two colonsVP6 or overlapping VP6 peptides containing <or=30 amino acids (AA). The numbers of memory (CD44(high)) CD4(+) T cells stimulated to produce T(H)1 and T(H)17 cytokines (IFNgamma and IL-17), as well as the quantities of these cytokines released into the cell supernatants, were then measured relative to those produced in mock-stimulated cells from the same animals. One epitope expected to be found was the VP6 14-mer AA(289-302), previously identified as a CD4(+) T cell epitope in H-2(d) mice. This was not observed but instead the only VP6 epitope identified was AA(242-259), the dominant CD4(+) T cell epitope previously reported after oral, live rotavirus immunization.
Collapse
Affiliation(s)
- Monica M McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Rotavirus infections are the leading cause of severe gastroenteritis in young children worldwide. Recently two new rotavirus vaccines have entered the world market. This review provides a summary of the rationale, development, and evaluation of one of these vaccines, Rotarix. Rotarix is a live oral rotavirus vaccine developed from a single protective human strain following multiple passages in tissue culture to attenuate the strain. The vaccine is administered as two oral doses at approximately 2 and 4 months of age. Large safety and efficacy trials have shown the vaccine is safe, not associated with intussusception, and effective against the most common circulating human serotypes. Efficacy against severe rotavirus gastroenteritis and hospitalization have ranged from 85 to 100 percent.
Collapse
Affiliation(s)
- David I Bernstein
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, OH 45229, USA.
| |
Collapse
|
31
|
Feng N, Jaimes MC, Lazarus NH, Monak D, Zhang C, Butcher EC, Greenberg HB. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:5749-59. [PMID: 16670280 DOI: 10.4049/jimmunol.176.10.5749] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rotaviruses (RV) are the most important cause of severe childhood diarrheal disease. In suckling mice, infection with RV results in an increase in total and virus-specific IgA(+) plasmablasts in the small intestinal lamina propria (LP) soon after infection, providing a unique opportunity to study the mechanism of IgA(+) cell recruitment into the small intestine. In this study, we show that the increase in total and RV-specific IgA(+) plasmablasts in the LP after RV infection can be blocked by the combined administration of Abs against chemokines CCL25 and CCL28, but not by the administration of either Ab alone. RV infection in CCR9 knockout mice still induced a significant accumulation of IgA(+) plasmablasts in the LP, which was blocked by the addition of anti-CCL28 Ab, confirming the synergistic role of CCL25 and CCL28. The absence of IgA(+) plasmablast accumulation in LP following combined anti-chemokine treatment was not due to changes in proliferation or apoptosis in these cells. We also found that coadministration of anti-CCL25 and anti-CCL28 Abs with the addition of anti-alpha(4) Ab did not further inhibit IgA(+) cell accumulation in the LP and that the CCL25 receptor, CCR9, was coexpressed with the intestinal homing receptor alpha(4)beta(7) on IgA(+) plasmablasts. Finally, we showed that RV infection was associated with an increase in both CCL25 and CCL28 in the small intestine. Hence, our findings indicate that alpha(4)beta(7) along with either CCR9 or CCR10 are sufficient for mediating the intestinal migration of IgA(+) plasmablasts during RV infection.
Collapse
Affiliation(s)
- Ningguo Feng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Crawford SE, Patel DG, Cheng E, Berkova Z, Hyser JM, Ciarlet M, Finegold MJ, Conner ME, Estes MK. Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol 2006; 80:4820-32. [PMID: 16641274 PMCID: PMC1472071 DOI: 10.1128/jvi.80.10.4820-4832.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rotaviruses infect mature, differentiated enterocytes of the small intestine and, by an unknown mechanism, escape the gastrointestinal tract and cause viremia. The neonatal rat model of rotavirus infection was used to determine the kinetics of viremia, spread, and pathology of rotavirus in extraintestinal organs. Five-day-old rat pups were inoculated intragastrically with an animal (RRV) or human (HAL1166) rotavirus or phosphate-buffered saline. Blood was collected from a subset of rat pups, and following perfusion to remove residual blood, organs were removed and homogenized to analyze rotavirus-specific antigen by enzyme-linked immunosorbent assay and infectious rotavirus by fluorescent focus assay or fixed in formalin for histology and immunohistochemistry. Viremia was detected following rotavirus infection with RRV and HAL1166. The RRV 50% antigenemia dose was 1.8 x 10(3) PFU, and the 50% diarrhea dose was 7.7 x 10(5) PFU, indicating that infection and viremia occurred in the absence of diarrhea and that detecting rotavirus antigen in the blood was a more sensitive measure of infection than diarrhea. Rotavirus antigens and infectious virus were detected in multiple organs (stomach, intestines, liver, lungs, spleen, kidneys, pancreas, thymus, and bladder). Histopathological changes due to rotavirus infection included acute inflammation of the portal tract and bile duct, microsteatosis, necrosis, and inflammatory cell infiltrates in the parenchymas of the liver and lungs. Colocalization of structural and nonstructural proteins with histopathology in the liver and lungs indicated that the histological changes observed were due to rotavirus infection and replication. Replicating rotavirus was also detected in macrophages in the lungs and blood vessels, indicating a possible mechanism of rotavirus dissemination. Extraintestinal infectious rotavirus, but not diarrhea, was observed in the presence of passively or actively acquired rotavirus-specific antibody. These findings alter the previously accepted concept of rotavirus pathogenesis to include not only gastroenteritis but also viremia, and they indicate that rotavirus could cause a broad array of systemic diseases in a number of different organs.
Collapse
Affiliation(s)
- Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Agnello D, Hervé CA, Lavaux A, Darniot M, Guillon P, Charpilienne A, Pothier P. Intrarectal immunization with rotavirus 2/6 virus-like particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice. J Virol 2006; 80:3823-32. [PMID: 16571799 PMCID: PMC1440434 DOI: 10.1128/jvi.80.8.3823-3832.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus (RV) is the main etiological agent of severe gastroenteritis in infants, and vaccination seems the most effective way to control the disease. Recombinant rotavirus-like particles composed of the viral protein 6 (VP6) and VP2 (2/6-VLPs) have been reported to induce protective immunity in mice when administered by the intranasal (i.n.) route. In this study, we show that administration of 2/6-VLPs by the intrarectal (i.r.) route together with either cholera toxin (CT) or a CpG-containing oligodeoxynucleotide as the adjuvant protects adult mice against RV infection. Moreover, when CT is used, RV shedding in animals immunized by the i.r. route is even reduced in comparison with that in animals immunized by the i.n. route. Humoral and cellular immune responses induced by these immunization protocols were analyzed. We found that although i.r. immunization with 2/6-VLPs induces lower RV-specific immunoglobulin G (IgG) and IgA levels in serum, intestinal anti-RV IgA production is higher in mice immunized by the i.r. route. Cellular immune response has been evaluated by measuring cytokine production by spleen and Peyer's patch cells (PPs) after ex vivo restimulation with RV. Mice immunized by the i.n. and i.r. routes display higher gamma interferon production in spleen and PPs, respectively. In conclusion, we demonstrate that i.r. immunization with 2/6-VLPs protects against RV infection in mice and is more efficient than i.n. immunization in inducing an anti-RV immune response in intestinal mucosa.
Collapse
Affiliation(s)
- Davide Agnello
- Laboratoire de Virologie et Centre National de Référence des Virus Entériques, CHU et Faculté de Médecine, Université de Bourgogne, 7 boulevard Jeanne d'Arc, 21079 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu W, Meng X, Xu Q, Flower DR, Li T. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics 2006; 7:182. [PMID: 16579851 PMCID: PMC1513606 DOI: 10.1186/1471-2105-7-182] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/31/2006] [Indexed: 11/20/2022] Open
Abstract
Background The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.
Collapse
Affiliation(s)
- Wen Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiangshan Meng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qiqi Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darren R Flower
- The Jenner Institute, University of Oxford, Compton, Berkshire RG20 7NN, UK
| | - Tongbin Li
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Affiliation(s)
- David I Bernstein
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, OH 45229, USA.
| | | |
Collapse
|