1
|
Bienes KM, Mao L, Selekon B, Gonofio E, Nakoune E, Wong G, Berthet N. Rapid Detection of the Varicella-Zoster Virus Using a Recombinase-Aided Amplification-Lateral Flow System. Diagnostics (Basel) 2022; 12:diagnostics12122957. [PMID: 36552964 PMCID: PMC9777233 DOI: 10.3390/diagnostics12122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (shingles). VZV infections are ubiquitous and highly contagious, and diagnosis is mostly based on the assessment of signs and symptoms. However, monkeypox, an emerging infectious disease caused by the monkeypox virus (MPXV), has clinical manifestations that are similar to those of VZV infections. With the recent monkeypox outbreak in non-endemic regions, VZV infections are likely to be misdiagnosed in the absence of laboratory testing. Considering the lack of accessible diagnostic tests that discriminate VZV from MPXV or other poxviruses, a handy and affordable detection system for VZV is crucial for rapid differential diagnosis. Here, we developed a new detection method for VZV using recombinase-aided amplification technology, combined with the lateral flow system (RAA-LF). Given the prevalence of VZV worldwide, this method can be applied not only to distinguish VZV from other viruses causing rash, but also to foster early detection, contributing substantially to disease control.
Collapse
Affiliation(s)
- Kathrina Mae Bienes
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjing Mao
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ella Gonofio
- Institut Pasteur of Bangui, Bangui, Central African Republic
| | | | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (G.W.); (N.B.)
| | - Nicolas Berthet
- Unit of Discovery and Molecular Characterization of Pathogens, Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Cellule d’Intervention Biologique d’Urgence, Unité Environnement et Risque Infectieux, Institut Pasteur, 75724 Paris, France
- Correspondence: (G.W.); (N.B.)
| |
Collapse
|
2
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Laemmle L, Goldstein RS, Kinchington PR. Modeling Varicella Zoster Virus Persistence and Reactivation - Closer to Resolving a Perplexing Persistent State. Front Microbiol 2019; 10:1634. [PMID: 31396173 PMCID: PMC6667558 DOI: 10.3389/fmicb.2019.01634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
The latent state of the human herpesvirus varicella zoster virus (VZV) has remained enigmatic and controversial. While it is well substantiated that VZV persistence is established in neurons after the primary infection (varicella or chickenpox), we know little of the types of neurons harboring latent virus genomes, if all can potentially reactivate, what exactly drives the reactivation process, and the role of immunity in the control of latency. Viral gene expression during latency has been particularly difficult to resolve, although very recent advances indicate that it is more restrictive than was once thought. We do not yet understand how genes expressed in latency function in the maintenance and reactivation processes. Model systems of latency are needed to pursue these questions. This has been especially challenging for VZV because the development of in vivo models of VZV infection has proven difficult. Given that up to one third of the population will clinically reactivate VZV to develop herpes zoster (shingles) and suffer from its common long term problematic sequelae, there is still a need for both in vivo and in vitro model systems. This review will summarize the evolution of models of VZV persistence and address insights that have arisen from the establishment of new in vitro human neuron culture systems that not only harbor a latent state, but permit experimental reactivation and renewed virus production. These models will be discussed in light of the recent data gleaned from the study of VZV latency in human cadaver ganglia.
Collapse
Affiliation(s)
- Lillian Laemmle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses 2019; 11:v11060502. [PMID: 31159224 PMCID: PMC6631480 DOI: 10.3390/v11060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.
Collapse
|
5
|
Varicella-Zoster Virus ORF63 Protects Human Neuronal and Keratinocyte Cell Lines from Apoptosis and Changes Its Localization upon Apoptosis Induction. J Virol 2018; 92:JVI.00338-18. [PMID: 29593042 DOI: 10.1128/jvi.00338-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023] Open
Abstract
There are many facets of varicella-zoster virus (VZV) pathogenesis that are not fully understood, such as the mechanisms involved in the establishment of lifelong latency, reactivation, and development of serious conditions like postherpetic neuralgia (PHN). Virus-encoded modulation of apoptosis has been suggested to play an important role in these processes. VZV open reading frame 63 (ORF63) has been shown to modulate apoptosis in a cell-type-specific manner, but the impact of ORF63 on cell death pathways has not been examined in isolation in the context of human cells. We sought to elucidate the effect of VZV ORF63 on apoptosis induction in human neuron and keratinocyte cell lines. VZV ORF63 was shown to protect differentiated SH-SY5Y neuronal cells against staurosporine-induced apoptosis. In addition, VZV infection did not induce high levels of apoptosis in the HaCaT human keratinocyte line, highlighting a delay in apoptosis induction. VZV ORF63 was shown to protect HaCaT cells against both staurosporine- and Fas ligand-induced apoptosis. Confocal microscopy was utilized to examine VZV ORF63 localization during apoptosis induction. In VZV infection and ORF63 expression alone, VZV ORF63 became more cytoplasmic, with aggregate formation during apoptosis induction. Taken together, this suggests that VZV ORF63 protects both differentiated SH-SY5Y cells and HaCaT cells from apoptosis induction and may mediate this effect through its localization change during apoptosis. VZV ORF63 is a prominent VZV gene product in both productive and latent infection and thus may play a critical role in VZV pathogenesis by aiding neuron and keratinocyte survival.IMPORTANCE VZV, a human-specific alphaherpesvirus, causes chicken pox during primary infection and establishes lifelong latency in the dorsal root ganglia (DRG). Reactivation of VZV causes shingles, which is often followed by a prolonged pain syndrome called postherpetic neuralgia. It has been suggested that the ability of the virus to modulate cell death pathways is linked to its ability to establish latency and reactivate. The significance of our research lies in investigating the ability of ORF63, a VZV gene product, to inhibit apoptosis in novel cell types crucial for VZV pathogenesis. This will allow an increased understanding of critical enigmatic components of VZV pathogenesis.
Collapse
|
6
|
Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, Wrensch M, Wiemels J. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. Int J Cancer 2013; 134:2199-210. [PMID: 24127236 DOI: 10.1002/ijc.28535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/05/2013] [Accepted: 09/30/2013] [Indexed: 12/26/2022]
Abstract
Glioma is the most common cancer of the central nervous system but with few confirmed risk factors. It has been inversely associated with chicken pox, shingles and seroreactivity to varicella virus (VZV), as well as to allergies and allergy-associated IgE. The role of antibody reactivity against individual VZV antigens has not been assessed. Ten VZV-related proteins, selected for high immunogenicity or known function, were synthesized and used as targets for antibody measurements in the sera of 143 glioma cases and 131 healthy controls selected from the San Francisco Bay Area Adult Glioma Study. Glioma cases exhibited significantly reduced seroreactivity compared to controls for six antigens, including proteins IE63 [odds ratio (OR) = 0.26, 95% confidence interval (CI): 0.12-0.58, comparing lowest quartile to highest) and the VZV-unique protein ORF2p (OR = 0.44, 95% CI: 0.21-0.96, lowest quartile to highest). When stratifying the study population into those with low and high self-reported allergy history, VZV protein seroreactivity was only associated inversely with glioma among individuals self-reporting more than two allergies. The data provide insight into both allergy and VZV effects on glioma: strong anti-VZV reactions in highly allergic individuals are associated with reduced occurrence of glioma. This result suggests a role for specificity in the anti-VZV immunity in brain tumor suppression for both individual VZV antigens and in the fine-tuning of the immune response by allergy. Anti-VZV reactions may also be a biomarker of effective CNS immunosurveillance owing to the tropism of the virus.
Collapse
Affiliation(s)
- Seung-Tae Lee
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Li M, Zhao Z, Chen J, Wang B, Li Z, Li J, Cai M. Characterization of synonymous codon usage bias in the pseudorabies virus US1 gene. Virol Sin 2012; 27:303-15. [PMID: 23055006 DOI: 10.1007/s12250-012-3270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 12/11/2022] Open
Abstract
In the present study, we examined the codon usage bias between pseudorabies virus (PRV) US1 gene and the US1-like genes of 20 reference alphaherpesviruses. Comparative analysis showed noticeable disparities of the synonymous codon usage bias in the 21 alphaherpesviruses, indicated by codon adaptation index, effective number of codons (ENc) and GC3s value. The codon usage pattern of PRV US1 gene was phylogenetically conserved and similar to that of the US1-like genes of the genus Varicellovirus of alphaherpesvirus, with a strong bias towards the codons with C and G at the third codon position. Cluster analysis of codon usage pattern of PRV US1 gene with its reference alphaherpesviruses demonstrated that the codon usage bias of US1-like genes of 21 alphaherpesviruses had a very close relation with their gene functions. ENc-plot revealed that the genetic heterogeneity in PRV US1 gene and the 20 reference alphaherpesviruses was constrained by G+C content, as well as the gene length. In addition, comparison of codon preferences in the US1 gene of PRV with those of E. coli, yeast and human revealed that there were 50 codons showing distinct usage differences between PRV and yeast, 49 between PRV and human, but 48 between PRV and E. coli. Although there were slightly fewer differences in codon usages between E.coli and PRV, the difference is unlikely to be statistically significant, and experimental studies are necessary to establish the most suitable expression system for PRV US1. In conclusion, these results may improve our understanding of the evolution, pathogenesis and functional studies of PRV, as well as contributing to the area of herpesvirus research or even studies with other viruses.
Collapse
Affiliation(s)
- Meili Li
- Department of Pathogenic Biology and Immunology, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Kinchington PR, Leger AJS, Guedon JMG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. HERPESVIRIDAE 2012; 3:5. [PMID: 22691604 PMCID: PMC3541251 DOI: 10.1186/2042-4280-3-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/12/2012] [Indexed: 12/16/2022]
Abstract
Human alphaherpesviruses including herpes simplex viruses (HSV-1, HSV-2) and varicella zoster virus (VZV) establish persistent latent infection in sensory neurons for the life of the host. All three viruses have the potential to reactivate causing recurrent disease. Regardless of the homology between the different virus strains, the three viruses are characterized by varying pathologies. This review will highlight the differences in infection pattern, immune response, and pathogenesis associated with HSV-1 and VZV.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
9
|
A sequence within the varicella-zoster virus (VZV) OriS is a negative regulator of DNA replication and is bound by a protein complex containing the VZV ORF29 protein. J Virol 2011; 85:12188-200. [PMID: 21937644 DOI: 10.1128/jvi.05501-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The architecture of the varicella-zoster virus (VZV) origin of DNA replication (OriS) differs significantly from that of the herpes simplex virus (HSV) DNA replication origin. Novel aspects of the VZV OriS include a GA-rich region, three binding sites for the VZV origin-binding protein (OBP) all on the same strand and oriented in the same direction, and a partial OBP binding site of unknown function. We have designated this partial binding site Box D and have investigated the role it plays in DNA replication and flanking gene expression. This has been done with a model system using a replication-competent plasmid containing OriS and a replication- and transcription-competent dual-luciferase reporter plasmid containing both the OriS and the intergenic region between VZV open reading frames (ORFs) 62 and 63. We have found that (i) Box D is a negative regulator of DNA replication independent of flanking gene expression, (ii) the mutation of Box D results in a decrease in flanking gene expression, thus a sequence within the VZV OriS affects transcription, which is in contrast to results reported for HSV-1, (iii) there is a specific Box D complex formed with infected cell extracts in electrophoretic mobility shift assay experiments, (iv) supershift assays show that this complex contains the VZV ORF29 single-strand DNA-binding protein, and (v) the formation of this complex is dependent on the presence of CGC motifs in Box D and its downstream flanking region. These findings show that the VZV ORF29 protein, while required for DNA replication, also plays a novel role in the suppression of that process.
Collapse
|
10
|
Abstract
Varicella-zoster virus (VZV) causes varicella in primary infection and zoster after reactivation from latency. Both herpes simplex virus (HSV) and VZV are classified into the same alpha-herpesvirus subfamily. Although most VZV genes have their HSV homologs, VZV has many unique biological characteristics. In this review, we summarized recent studies on 1) animal models for VZV infection and outcomes from studies using the models, including 2) viral dissemination processes from respiratory mucosa, T cells, to skin, 3) cellular receptors for VZV entry, 4) functions of viral genes required uniquely for in vivo growth and for establishment of latency, 5) host immune responses and viral immune evasion mechanisms, and 6) varicella vaccine and anti-VZV drugs.
Collapse
|
11
|
Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol 2011; 85:8436-42. [PMID: 21632750 DOI: 10.1128/jvi.00515-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Varicella-zoster virus (VZV) is a highly species-specific herpesvirus that targets sensory ganglionic neurons. This species specificity has limited the study of many aspects of VZV pathogenesis, including neuronal infection. We report development of a highly efficient neuroblastoma cell model to study productive VZV infection of neuronal cells. We show that differentiation of SH-SY5Y neuroblastoma cells yields a homogenous population of neuron-like cells that are permissive to the full VZV replicative cycle. These cells supported productive infection by both laboratory and clinical VZV isolates, including the live varicella vaccine. This model may enable rapid identification of genetic determinants facilitating VZV neurotropism.
Collapse
|
12
|
Simian varicella virus open reading frame 63/70 expression is required for efficient virus replication in culture. J Neurovirol 2011; 17:274-80. [PMID: 21479719 DOI: 10.1007/s13365-011-0025-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Simian varicella virus (SVV) open reading frame (ORF) 63, duplicated in the virus genome as ORF 70, is homologous to varicella zoster virus ORF 63/70. Transfection of bacterial artificial chromosome clones containing the wild-type SVV genome and mutants with stop codons in ORF 70, in both ORFs 63 and 70 and the repaired virus DNA sequences into Vero cells produced a cytopathic effect (CPE). The onset of CPE was much slower with the double-mutant transfectants (10 days vs. 3 days) and plaques were smaller. While SVV ORF 63 is not required for replication in culture, its expression leads to robust virus replication.
Collapse
|
13
|
Abstract
Primary infection by varicella zoster virus (VZV) typically results in childhood chickenpox, at which time latency is established in the neurons of the cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. During latency, the histone-associated virus genome assumes a circular episomal configuration from which transcription is epigenetically regulated. The lack of an animal model in which VZV latency and reactivation can be studied, along with the difficulty in obtaining high-titer cell-free virus, has limited much of our understanding of VZV latency to descriptive studies of ganglia removed at autopsy and analogy to HSV-1, the prototype alphaherpesvirus. However, the lack of miRNA, detectable latency-associated transcript and T-cell surveillance during VZV latency highlight basic differences between the two neurotropic herpesviruses. This article focuses on VZV latency: establishment, maintenance and reactivation. Comparisons are made with HSV-1, with specific attention to differences that make these viruses unique human pathogens.
Collapse
Affiliation(s)
| | - Aamir Shahzad
- Department for Biomolecular Structural Chemistry Max F. Perutz Laboratories, University of Vienna, Austria
| | - Randall J Cohrs
- Author for correspondence: University of Colorado Denver Medical School, Aurora, CO, USA, Tel.: +1 303 742 4325
| |
Collapse
|
14
|
Ambagala APN, Krogmann T, Qin J, Pesnicak L, Cohen JI. A varicella-zoster virus mutant impaired for latency in rodents, but not impaired for replication in cell culture. Virology 2010; 399:194-200. [PMID: 20116820 DOI: 10.1016/j.virol.2010.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/06/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
While trying to generate a site-directed deletion in the ORF63 latency-associated gene of varicella-zoster virus (VZV) Oka, we constructed a virus with an unexpected rearrangement. The virus has a small deletion in both copies of ORF63 and two copies of a cassette inserted between ORFs 64/65 and 68/69 containing (a) truncated ORF62, (b) ORF63 with a small deletion, and (c) full-length ORF64. The virus was not impaired for growth in human cells, induced higher levels of neutralizing antibodies in guinea pigs, and was impaired for latency in cotton rats compared with parental virus (p=0.0022). Additional mutants containing the same truncation in ORF62, with or without the ORF63 deletion, were less impaired for latency. A VZV Oka mutant, replicating to similar titers and inducing a comparable immune response as parental virus, but impaired for latency, might serve as a safer vaccine and be less likely to reactivate to cause zoster.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Mueller NH, Walters MS, Marcus RA, Graf LL, Prenni J, Gilden D, Silverstein SJ, Cohrs RJ. Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J Gen Virol 2010; 91:1133-7. [PMID: 20089801 DOI: 10.1099/vir.0.019067-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient replication of varicella-zoster virus (VZV) in cell culture requires expression of protein encoded by VZV open reading frame 63 (ORF63p). Two-dimensional gel analysis demonstrates that ORF63p is extensively modified. Mass spectroscopy analysis of ORF63p isolated from transiently transfected HEK 293 and stably transfected MeWo cells identified 10 phosphorylated residues. In VZV-infected MeWo cells, only six phosphorylated residues were detected. This report identifies phosphorylation of two previously uncharacterized residues (Ser5 and Ser31) in ORF63p extracted from cells infected with VZV or transfected with an ORF63p expression plasmid. Computational analysis of ORF63p for known kinase substrates did not identify Ser5 or Ser31 as candidate phosphorylation sites, suggesting that either atypical recognition sequences or novel cellular kinases are involved in ORF63p post-translational modification.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado Denver School of Medicine, Denver, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr Top Microbiol Immunol 2010; 342:189-209. [PMID: 20397071 DOI: 10.1007/82_2010_29] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus that causes varicella and zoster. VZV initiates primary infection by inoculation of the respiratory mucosa. In the course of primary infection, VZV establishes a life-long persistence in sensory ganglia; VZV reactivation from latency may result in zoster in healthy and immunocompromised patients. The VZV genome has at least 70 known or predicted open reading frames (ORFs), but understanding how these gene products function in virulence is difficult because VZV is a highly human-specific pathogen. We have addressed this obstacle by investigating VZV infection of human tissue xenografts in the severe combined immunodeficiency mouse model. In studies relevant to the pathogenesis of primary VZV infection, we have examined VZV infection of human T cell (thymus/liver) and skin xenografts. This work supports a new paradigm for VZV pathogenesis in which VZV T cell tropism provides a mechanism for delivering the virus to skin. We have also shown that VZV-infected T cells transfer VZV to neurons in sensory ganglia. The construction of infectious VZV recombinants that have deletions or targeted mutations of viral genes or their promoters and the evaluation of VZV mutants in T cell and skin xenografts has revealed determinants of VZV virulence that are important for T cell and skin tropism in vivo.
Collapse
|
17
|
Abstract
Inoculation of rodents with varicella-zoster virus (VZV) results in a latent infection in dorsal root ganglia with expression of at least five of the six VZV transcripts and one of the viral proteins that are reported to be expressed during latency in human ganglia. Rats develop allodynia and hyperalgesia in the limb distal to the site of injection and the resulting exaggerated withdrawal response to stimuli is reduced by treatment with gabapentin and amitryptyline, but not by antiviral therapy. Inoculation of rats with VZV mutants show that most viral genes are dispensable for latency, but that some genes (e.g., ORF4, 29, and ORF63) that are expressed during latency are important for the establishment of latency in rodents, but not for infection of rodent ganglia. The rodent model for VZV latency allows one to study ganglia removed immediately after death, avoiding the possibility of reactivation, and helps to identify VZV genes required for latency.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Phosphorylation of the nuclear form of varicella-zoster virus immediate-early protein 63 by casein kinase II at serine 186. J Virol 2009; 83:12094-100. [PMID: 19759161 DOI: 10.1128/jvi.01526-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 is abundantly transcribed in latently infected human ganglia and encodes a 278-amino-acid protein, IE63, with immediate-early kinetics. IE63 is expressed in the cytoplasm of neurons during VZV latency and in both the cytoplasm and the nucleus during productive infection; however, the mechanism(s) involved in IE63 nuclear import and retention has remained unclear. We constructed and identified a recombinant monoclonal antibody to detect a posttranslationally modified form of IE63. Analysis of a series of IE63 truncation and substitution mutants showed that amino acids 186 to 195 are required for antibody binding. Synthetic peptides corresponding to this region identified IE63 S186 as a target for casein kinase II phosphorylation. In addition, acidic charges supplied by E194 and E195 were required for antibody binding. Immunofluorescence analysis of VZV-infected MeWo cells using the recombinant monoclonal antibody detected IE63 exclusively in the nuclei of infected cells, indicating that casein kinase II phosphorylation of S186 occurs in the nucleus and possibly identifying an initial molecular event operative in VZV reactivation.
Collapse
|
19
|
Cun W, Guo L, Zhang Y, Liu L, Wang L, Li J, Dong C, Wang J, Li Q. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16. ACTA ACUST UNITED AC 2009; 52:344-51. [PMID: 19381460 DOI: 10.1007/s11427-009-0051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/21/2008] [Indexed: 11/27/2022]
Abstract
Herpes Simplex Virus 1 (HSV1) is capable of inducing two forms of infection in individuals, and the establishment of which type of infection occurs is linked to the transcriptional activation of viral alpha genes. One of the HSV1 alpha genes, ICP22, is known to have multiple functions during virus replication, but its distinct roles are still unclear. This study showed that ICP22 functions as a general repressor for certain viral and cellular promoters, and this transcriptional repression by ICP22 is independent of the specific upstream promoter element, as shown using the CAT enzyme assay system. Further work also found that VP16 interfered with ICP22 mediated transcriptional repression of the viral alpha4 gene, through interactions with specific elements upstream of the alpha4 gene promoter. These findings support the possibility that ICP22 and VP16 control transcription of HSV1alpha genes in a common pathway for the establishment of either viral lytic or latent infections.
Collapse
Affiliation(s)
- Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2008; 83:200-9. [PMID: 18971269 DOI: 10.1128/jvi.00645-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.
Collapse
|
21
|
Liu M, Vafai N, Liu A, Hart J, Liu H, He J, Tang X, Wang D, Vafai A. Stability of varicella-zoster virus open reading frame 63. Arch Virol 2008; 153:1943-7. [PMID: 18807114 DOI: 10.1007/s00705-008-0197-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/07/2008] [Indexed: 11/25/2022]
Abstract
The stability of varicella-zoster virus (VZV) open reading frame (ORF) 63 was analyzed by sequential passage of a virus strain in cell culture. VZV was propagated in culture for 1,206 passages. ORF63 from six passages (18, 220, 516, 730, 1060, and 1,206) was selected and sequenced. Among the six passages, only passage 1,206 showed point mutations at three locations: 551, 618 and 661. In addition, western blot analysis with anti-ORF63 monoclonal antibodies showed no discernable difference in the size of the ORF63 gene product from passage 18 and that from passage 1,206. These results indicate the stability of VZV ORF63 gene in culture over 1,206 passages.
Collapse
Affiliation(s)
- Merry Liu
- Biologics Branch, Division of Scientific Resources, National Center for Preparedness, Detection and Control of Infectious Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008; 82:8673-86. [PMID: 18562514 DOI: 10.1128/jvi.00685-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame (ORF) 63 protein (ORF63p) is one of six VZV ORFs shown to be transcribed and translated in latently infected human dorsal root ganglia. ORF63p accumulates exclusively in the cytoplasm of latently infected sensory neurons, whereas it is both nuclear and cytoplasmic during lytic infection and following reactivation from latency. Here, we demonstrate that infection of primary guinea pig enteric neurons (EN) with an adenovirus expressing ORF63p results in the exclusive cytoplasmic localization of the protein reminiscent of its distribution during latent VZV infection in humans. We show that the addition of the simian virus 40 large-T-antigen nuclear localization signal (NLS) results in the nuclear import of ORF63p in EN and that the ORF63p endogenous NLSs are functional in EN when fused to a heterologous protein. These data suggest that the cytoplasmic localization of ORF63p in EN results from the masking of the NLSs, thus blocking nuclear import. However, the coexpression of ORF61p, a strictly lytic VZV protein, and ORF63p in EN results in the nuclear import of ORF63p in a proteasome-dependent manner, and both ORF63p NLSs are required for this event. We propose that the cytoplasmic localization of ORF63p in neurons results from NLS masking and that the expression of ORF61p removes this block, allowing nuclear import to proceed.
Collapse
|
23
|
Varicella-zoster virus open reading frame 66 protein kinase is required for efficient viral growth in primary human corneal stromal fibroblast cells. J Virol 2008; 82:7653-65. [PMID: 18495764 DOI: 10.1128/jvi.00311-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 66 (ORF66) encodes a serine/threonine protein kinase that is not required for VZV growth in most cell types but is needed for efficient growth in T cells. The ORF66 kinase affects nuclear import and virion packaging of IE62, the major regulatory protein, and is known to regulate apoptosis in T cells. Here, we further examined the importance of ORF66 using VZV recombinants expressing green fluorescent protein (GFP)-tagged functional and kinase-negative ORF66 proteins. VZV virions with truncated or kinase-inactivated ORF66 protein were marginally reduced for growth and progeny yields in MRC-5 fibroblasts but were severely growth and replication impaired in low-passage primary human corneal stromal fibroblasts (PCF). To determine if the growth impairment was due to ORF66 kinase regulation of IE62 nuclear import, recombinant VZVs that expressed IE62 with alanine residues at S686, the suspected target by which ORF66 kinase blocks IE62 nuclear import, were made. IE62 S686A expressed by the VZV recombinant remained nuclear throughout infection and was not packaged into virions. However, the mutant virus still replicated efficiently in PCF cells. We also show that inactivation of the ORF66 kinase resulted in only marginally increased levels of apoptosis in PCF cells, which could not fully account for the cell-specific growth requirement of ORF66 kinase. Thus, the unique short region VZV kinase has important cell-type-specific functions that are separate from those affecting IE62 and apoptosis.
Collapse
|
24
|
Jones L, Black AP, Malavige GN, Ogg GS. Phenotypic analysis of human CD4+ T cells specific for immediate-early 63 protein of varicella-zoster virus. Eur J Immunol 2008; 37:3393-403. [PMID: 18034426 DOI: 10.1002/eji.200737648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Open reading frame 63 of varicella-zoster Virus (VZV) encodes an immediate early (IE) phosphoprotein (IE63) that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication; however, data addressing the existence of IE63 protein-specific CD4+ T cells are limited. Using IFN-gamma immunosorbent assays, we identified high frequencies of responses to overlapping peptides spanning the IE63 protein both ex vivo and after in vitro restimulation in healthy VZV-seropositive individuals. We identified a commonly recognised epitope, restricted by HLA-DRB1*1501, which was naturally processed and presented by keratinocytes. We proceeded to investigate the frequency and phenotype of the epitope-specific CD4+ T cells using HLA class II tetrameric complexes. Epitope-specific CD4+ T cells were detectable ex vivo and showed a mixed central and effector-memory differentiation phenotype, with a significant proportion showing evidence of recent activation and rapid effector function. In summary these data implicate persistent low-level or recurrent VZV antigen exposure in healthy immune donors and are compatible with a role for IE63-specific CD4+ T cells in the control of viral reactivation.
Collapse
Affiliation(s)
- Louise Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Department of Dermatology, Churchill Hospital, Oxford, UK.
| | | | | | | |
Collapse
|
25
|
Ambagala APN, Cohen JI. Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 2007; 81:7844-51. [PMID: 17507475 PMCID: PMC1951283 DOI: 10.1128/jvi.00325-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is the most abundant transcript expressed during latency in human sensory ganglia. VZV with ORF63 deleted is impaired for replication in melanoma cells and fibroblasts and for latency in rodents. We found that replication of the ORF63 deletion mutant is fully complemented in U2OS cells, which have been shown to complement the growth of herpes simplex virus type 1 (HSV-1) ICP0 mutants. Since HSV-1 ICP0 mutants are hypersensitive to alpha interferon (IFN-alpha), we examined the effect of IFN-alpha on VZV replication. Replication of the ORF63 mutant in melanoma cells was severely inhibited in the presence of IFN-alpha, in contrast to other VZV mutants that were similarly impaired for replication or to parental virus. The VZV ORF63 mutant was not hypersensitive to IFN-gamma. IFN-alpha inhibited viral-gene expression in cells infected with the ORF63 mutant at a posttranscriptional level. Since IFN-alpha stimulates gene products that can phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) and inhibit translation, we determined whether cells infected with the ORF63 mutant had increased phosphorylation of eIF-2alpha compared with cells infected with parental virus. While phosphorylated eIF-2alpha was undetectable in uninfected cells or cells infected with parental virus, it was present in cells infected with the ORF63 mutant. Conversely, expression of IE63 (encoded by ORF63) in the absence of other viral proteins inhibited phosphorylation of eIF-2alpha. Since IFN-alpha has been shown to limit VZV replication in human skin xenografts, the ability of VZV IE63 to block the effects of the cytokine may play a critical role in VZV pathogenesis.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Grinfeld E, Goodwin R, Kennedy PGE. Varicella-Zoster virus gene expression at variable periods following death in a rat model of ganglionic infection. Virus Genes 2006; 35:29-32. [PMID: 17039406 DOI: 10.1007/s11262-006-0041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/04/2006] [Indexed: 12/17/2022]
Abstract
We used a rat model of Varicella-Zoster virus (VZV) ganglionic infection, which mirrors some of the features of VZV latency in humans, to determine the temporal pattern of expression of a VZV immediate-early gene (63) and a VZV late gene (40) at 0, 24 and 48 h after death of the animal. The immediate-early VZV gene 63 is known to be abundantly expressed during human ganglionic latency, while the late VZV gene 40 is not expressed during human latency. Using both RNA in situ hybridisation (ISH) and nested RT-PCR, it was found that at all time points in both thoracic and lumbar ganglia, the number of ganglia positive for VZV gene 63 was higher than for gene 40. The expression of gene 40 did not increase with time postmortem (pm) These results provide indirect support for the hypothesis that patterns of expression of VZV genes detected in human tissue at even 48 h pm reflect the pattern of expression during human ganglionic latency.
Collapse
Affiliation(s)
- Esther Grinfeld
- Division of Clinical Neurosciences, Institute of Neurological Sciences, University of Glasgow, Southern General Hospital, Glasgow, G51 4TF, Scotland, UK
| | | | | |
Collapse
|
27
|
Abstract
VZV is a highly cell-associated member of the Herpesviridae family and one of the eight herpesviruses to infect humans. The virus is ubiquitous in most populations worldwide, primary infection with which causes varicella, more commonly known as chickenpox. Characteristic of members of the alphaherpesvirus sub-family, VZV is neurotropic and establishes latency in sensory neurones. Reactivation from latency, usually during periods of impaired cellular immunity, causes herpes zoster (shingles). Despite being one of the most genetically stable human herpesviruses, nucleotide alterations in the virus genome have been used to classify VZV strains from different geographical regions into distinct clades. Such studies have also provided evidence that, despite pre-existing immunity to VZV, subclinical reinfection and reactivation of reinfecting strains to cause zoster is also occurring. During both primary infection and reactivation, VZV infects several PBMC and skin cell lineages. Difficulties in studying the pathogenesis of VZV because of its high cell association and narrow host range have been overcome through the development of the VZV severe combined immunodeficient mouse model carrying human tissue implants. This model has provided a valuable tool for studying the importance of individual viral proteins during both the complex intracellular replication and assembly of new virions and for understanding the underlying mechanism of attenuation of the live varicella vaccine. In addition, a rat model has been developed and successfully used to uncover which viral proteins are important for both the establishment and maintenance of latent VZV infection.
Collapse
Affiliation(s)
- Mark Quinlivan
- Centre for Infectious Diseases, Institute for Cell and Molecular Science, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | | |
Collapse
|
28
|
Hoover SE, Cohrs RJ, Rangel ZG, Gilden DH, Munson P, Cohen JI. Downregulation of varicella-zoster virus (VZV) immediate-early ORF62 transcription by VZV ORF63 correlates with virus replication in vitro and with latency. J Virol 2006; 80:3459-68. [PMID: 16537613 PMCID: PMC1440367 DOI: 10.1128/jvi.80.7.3459-3468.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 63 (ORF63) protein is expressed during latency in human sensory ganglia. Deletion of ORF63 impairs virus replication in cell culture and establishment of latency in cotton rats. We found that cells infected with a VZV ORF63 deletion mutant yielded low titers of cell-free virus and produced very few enveloped virions detectable by electron microscopy compared with those infected with parental virus. Microarray analysis of cells infected with a recombinant adenovirus expressing ORF63 showed that transcription of few human genes was affected by ORF63; a heat shock 70-kDa protein gene was downregulated, and several histone genes were upregulated. In experiments using VZV transcription arrays, deletion of ORF63 from VZV resulted in a fourfold increase in expression of ORF62, the major viral transcriptional activator. A threefold increase in ORF62 protein was observed in cells infected with the ORF63 deletion mutant compared with those infected with parental virus. Cells infected with ORF63 mutants impaired for replication and latency (J. I. Cohen, T. Krogmann, S. Bontems, C. Sadzot-Delvaux, and L. Pesnicak, J. Virol. 79:5069-5077, 2005) showed an increase in ORF62 transcription compared with those infected with parental virus. In contrast, cells infected with an ORF63 mutant that is not impaired for replication or latency showed ORF62 RNA levels equivalent to those in cells infected with parental virus. The ability of ORF63 to downregulate ORF62 transcription may play an important role in virus replication and latency.
Collapse
Affiliation(s)
- Susan E Hoover
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
30
|
Hood C, Cunningham AL, Slobedman B, Arvin AM, Sommer MH, Kinchington PR, Abendroth A. Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol 2006; 80:1025-31. [PMID: 16379003 PMCID: PMC1346839 DOI: 10.1128/jvi.80.2.1025-1031.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-encoded modulation of apoptosis may serve as a mechanism to enhance cell survival and virus persistence. The impact of productive varicella-zoster virus (VZV) infection on apoptosis appears to be cell type specific, as infected human sensory neurons are resistant to apoptosis, yet human fibroblasts readily become apoptotic. We sought to identify the viral gene product(s) responsible for this antiapoptotic phenotype in primary human sensory neurons. Treatment with phosphonoacetic acid to inhibit viral DNA replication and late-phase gene expression did not alter the antiapoptotic phenotype, implicating immediate-early (IE) or early genes or a virion component. Compared to the parental VZV strain (rOKA), a recombinant virus unable to express one copy of the diploid IE gene ORF63 (rOka deltaORF63) demonstrated a significant induction of apoptosis in infected neurons, as determined by three methods: annexin V staining, deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining, and transmission electron microscopy. Furthermore, neurons transfected with a plasmid expressing ORF63 resisted apoptosis induced by nerve growth factor withdrawal. These results show that ORF63 can suppress apoptosis of neurons and provide the first identification of a VZV gene encoding an antiapoptotic function. As ORF63 is expressed in neurons during both productive and latent infection, it may play a significant role in viral pathogenesis by promoting neuron survival during primary and reactivated infections.
Collapse
Affiliation(s)
- Chantelle Hood
- Centre for Virus Research, Westmead Millennium Institute, and University of Sydney, P.O. Box 412, Westmead, 2145 NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Zuranski T, Nawar H, Czechowski D, Lynch JM, Arvin A, Hay J, Ruyechan WT. Cell-type-dependent activation of the cellular EF-1alpha promoter by the varicella-zoster virus IE63 protein. Virology 2005; 338:35-42. [PMID: 15936796 DOI: 10.1016/j.virol.2005.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/02/2005] [Accepted: 05/05/2005] [Indexed: 11/20/2022]
Abstract
The varicella-zoster virus (VZV) IE63 protein is abundantly expressed during productive viral infection and is one of six gene products that appear to be expressed during latency. We have found that the IE63 protein can activate expression from the cellular EF-1alpha promoter in the absence of other viral proteins. The VZV IE62 protein, in contrast, was not found to transactivate this promoter. These data indicate that IE63 can function independently of the IE62 protein to positively influence the cellular transcription apparatus. We show that IE63 activation of the EF-1alpha promoter is cell type dependent and have examined the effects of point mutations important for IE63 phosphorylation and virus viability on this activation.
Collapse
Affiliation(s)
- Tricia Zuranski
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 2005; 280:29135-43. [PMID: 15955820 DOI: 10.1074/jbc.m503312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested.
Collapse
Affiliation(s)
- Lionel Habran
- Laboratory of Virology and Immunology, Center for Biomedical Genoproteomics, Institute of Pathology B23, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|