1
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Second site reversion of HIV-1 envelope protein baseplate mutations maps to the matrix protein. J Virol 2024; 98:e0174223. [PMID: 38193694 PMCID: PMC10878238 DOI: 10.1128/jvi.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
2
|
Wen Y, Feigenson GW, Vogt VM, Dick RA. Mechanisms of PI(4,5)P2 Enrichment in HIV-1 Viral Membranes. J Mol Biol 2020; 432:5343-5364. [PMID: 32739462 PMCID: PMC8262684 DOI: 10.1016/j.jmb.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is critical for HIV-1 virus assembly. The viral membrane is enriched in PIP2, suggesting that the virus assembles at PIP2-rich microdomains. We showed previously that in model membranes PIP2 can form nanoscopic clusters bridged by multivalent cations. Here, using purified proteins we quantitated the binding of HIV-1 Gag-related proteins to giant unilamellar vesicles containing either clustered or free PIP2. Myristoylated MA strongly preferred binding to clustered PIP2. By contrast, unmyristoylated HIV-1 MA, RSV MA, and a PH domain all preferred to interact with free PIP2. We also found that HIV-1 Gag multimerization promotes PIP2 clustering. Truncated Gag proteins comprising the MA, CA, and SP domains (MACASP) or the MA and CA domains (MACA) induced self-quenching of acyl chain-labeled fluorescent PIP2 in liposomes, implying clustering. However, HIV-1 MA itself did not induce PIP2 clustering. A CA inter-hexamer dimer interface mutation led to a loss of induced PIP2 clustering in MACA, indicating the importance of protein multimerization. Cryo-electron tomography of liposomes with bound MACA showed an amorphous protein layer on the membrane surface. Thus, it appears that while protein–protein interactions are required for PIP2 clustering, formation of a regular lattice is not. Protein-induced PIP2 clustering and multivalent cation-induced PIP2 clustering are additive. Taken together, these results provide the first evidence that HIV-1 Gag can selectively target pre-existing PIP2-enriched domains of the plasma membrane for viral assembly, and that Gag multimerization can further enrich PIP2 at assembly sites. These effects could explain the observed PIP2 enrichment in HIV-1.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gerald W Feigenson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Volker M Vogt
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Dick
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Salimi H, Johnson J, Flores MG, Zhang MS, O'Malley Y, Houtman JC, Schlievert PM, Haim H. The lipid membrane of HIV-1 stabilizes the viral envelope glycoproteins and modulates their sensitivity to antibody neutralization. J Biol Chem 2019; 295:348-362. [PMID: 31757809 DOI: 10.1074/jbc.ra119.009481] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 are embedded in the cholesterol-rich lipid membrane of the virus. Chemical depletion of cholesterol from HIV-1 particles inactivates their infectivity. We observed that diverse HIV-1 strains exhibit a range of sensitivities to such treatment. Differences in sensitivity to cholesterol depletion could not be explained by variation in Env components known to interact with cholesterol, including the cholesterol-recognition motif and cytoplasmic tail of gp41. Using antibody-binding assays, measurements of virus infectivity, and analyses of lipid membrane order, we found that depletion of cholesterol from HIV-1 particles decreases the conformational stability of Env. It enhances exposure of partially cryptic epitopes on the trimer and increases sensitivity to structure-perturbing treatments such as antibodies and cold denaturation. Substitutions in the cholesterol-interacting motif of gp41 induced similar effects as depletion of cholesterol. Surface-acting agents, which are incorporated into the virus lipid membrane, caused similar effects as disruption of the Env-cholesterol interaction. Furthermore, substitutions in gp120 that increased structural stability of Env (i.e. induced a "closed" conformation of the trimer) increased virus resistance to cholesterol depletion and to the surface-acting agents. Collectively, these results indicate a critical contribution of the viral membrane to the stability of the Env trimer and to neutralization resistance against antibodies. Our findings suggest that the potency of poorly neutralizing antibodies, which are commonly elicited in vaccinated individuals, may be markedly enhanced by altering the lipid composition of the viral membrane.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jacklyn Johnson
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Manuel G Flores
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Michael S Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Yunxia O'Malley
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jon C Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
4
|
Alfadhli A, Staubus AO, Tedbury PR, Novikova M, Freed EO, Barklis E. Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. J Virol 2019; 93:e01079-19. [PMID: 31375589 PMCID: PMC6803273 DOI: 10.1128/jvi.01079-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023] Open
Abstract
The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
5
|
Narasimhulu VGS, Bellamy-McIntyre AK, Laumaea AE, Lay CS, Harrison DN, King HAD, Drummer HE, Poumbourios P. Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell-cell viral transmission and cell-cell fusion. J Biol Chem 2018; 293:6099-6120. [PMID: 29496992 DOI: 10.1074/jbc.ra117.000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.
Collapse
Affiliation(s)
- Vani G S Narasimhulu
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Anna K Bellamy-McIntyre
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Departments of Microbiology and
| | - Annamarie E Laumaea
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Chan-Sien Lay
- Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David N Harrison
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004
| | - Hannah A D King
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Heidi E Drummer
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and.,the Departments of Microbiology and
| | - Pantelis Poumbourios
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004, .,the Departments of Microbiology and.,Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Abstract
A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus-cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix-gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.
Collapse
|
7
|
Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology 2016; 13:70. [PMID: 27670680 PMCID: PMC5037607 DOI: 10.1186/s12977-016-0304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. RESULTS Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant mutants in vivo was shown by its high rate of neutralization by IgG from HIV patient samples. CONCLUSIONS Mutations in gp41 that confer fusion inhibitor resistance exert enhanced sensitivity to broad neutralizing antibodies (e.g., VRC01 and 10E8) and other conventional antibodies developed in HIV-1 infected patients. Therefore, next-generation fusion inhibitors and monoclonal antibodies could be a potential combination for future regimens of combined antiretroviral therapy.
Collapse
Affiliation(s)
- Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kristel Paola Ramirez Valdez
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| |
Collapse
|
8
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
9
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
10
|
Detection of HIV-1 matrix protein p17 quasispecies variants in plasma of chronic HIV-1-infected patients by ultra-deep pyrosequencing. J Acquir Immune Defic Syndr 2014; 66:332-9. [PMID: 24732873 DOI: 10.1097/qai.0000000000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The HIV-1 matrix protein p17 (p17MA) is a pleiotropic protein that plays a key role in the HIV-1 life cycle. It has been long believed to have a highly conserved primary amino acid sequence and a well-preserved structural integrity to avoid severe fitness consequences. However, recent data revealed that the carboxy (COOH)-terminus of p17MA possesses high levels of predicted intrinsic disorder, which would subtend to at least partially unfolded status of this region. This finding pointed to the need of investigating p17MA heterogeneity. METHODS The degree of intrapatient variations in the p17MA primary sequence was assessed on plasma viral RNA by using ultra-deep pyrosequencing. RESULTS Data obtained support a complex nature of p17MA quasispecies, with variants present at variable frequency virtually in all patients. Clusters of mutations were scattered along the entire sequence of the viral protein, but they were more frequently detected within the COOH-terminal region of p17MA. Moreover, deletions and insertions also occurred in a restricted area of the COOH-terminal region. CONCLUSIONS On the whole, our data show that the intrapatient level of sequence diversity in the p17MA is much higher than predicted before. Our results pave the way for further studies aimed at unraveling possible correlations between the presence of distinct p17MA variants and peculiar clinical evolutions of HIV-1 disease. The presence of p17MA quasispecies diversity may offer new tools to improve our understanding of the viral adaptation during the natural history of HIV-1 infection.
Collapse
|
11
|
Alfadhli A, Barklis E. The roles of lipids and nucleic acids in HIV-1 assembly. Front Microbiol 2014; 5:253. [PMID: 24917853 PMCID: PMC4042026 DOI: 10.3389/fmicb.2014.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| |
Collapse
|
12
|
Renga B, Francisci D, Schiaroli E, Carino A, Cipriani S, D'Amore C, Sidoni A, Sordo RD, Ferri I, Lucattelli M, Lunghi B, Baldelli F, Fiorucci S. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2. PLoS One 2014; 9:e94798. [PMID: 24736615 PMCID: PMC3988079 DOI: 10.1371/journal.pone.0094798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. AIM In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | | | | | - Franco Baldelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Kuhlmann AS, Steckbeck JD, Sturgeon TJ, Craigo JK, Montelaro RC. Unique functional properties of conserved arginine residues in the lentivirus lytic peptide domains of the C-terminal tail of HIV-1 gp41. J Biol Chem 2014; 289:7630-40. [PMID: 24497632 PMCID: PMC3953275 DOI: 10.1074/jbc.m113.529339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.
Collapse
Affiliation(s)
- Anne-Sophie Kuhlmann
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathan D. Steckbeck
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Jodi K. Craigo
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ronald C. Montelaro
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
14
|
Vlach J, Samal AB, Saad JS. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J Biol Chem 2014; 289:8697-705. [PMID: 24500712 DOI: 10.1074/jbc.m113.543694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8-43 (MA-(8-43)). Here, we present the NMR structure of CaM bound to MA-(8-43). Our data revealed that MA-(8-43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8-43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8-43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.
Collapse
Affiliation(s)
- Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
15
|
Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol 2013; 88:2877-90. [PMID: 24371049 DOI: 10.1128/jvi.03376-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED To investigate the potential benefits which may arise from pseudotyping the HIV-1 lentiviral vector with its homologous gp41 envelope glycoprotein (GP) cytoplasmic tail (CT), we created chimeric RVG/HIV-1gp41 GPs composed of the extracellular and transmembrane sequences of RVG and either the full-length gp41 CT or C terminus gp41 truncations sequentially removing existing conserved motifs. Lentiviruses (LVs) pseudotyped with the chimeric GPs were evaluated in terms of particle release (physical titer), biological titers, infectivity, and in vivo central nervous system (CNS) transduction. We report here that LVs carrying shorter CTs expressed higher levels of envelope GP and showed a higher average infectivity than those bearing full-length GPs. Interestingly, complete removal of GP CT led to vectors with the highest transduction efficiency. Removal of all C-terminal gp41 CT conserved motifs, leaving just 17 amino acids (aa), appeared to preserve infectivity and resulted in a significantly increased physical titer. Furthermore, incorporation of these 17 aa in the RVG CT notably enhanced the physical titer. In vivo stereotaxic delivery of LV vectors exhibiting the best in vitro titers into rodent striatum facilitated efficient transduction of the CNS at the site of injection. A particular observation was the improved retrograde transduction of neurons in connected distal sites that resulted from the chimeric envelope R5 which included the "Kennedy" sequence (Ken) and lentivirus lytic peptide 2 (LLP2) conserved motifs in the CT, and although it did not exhibit a comparable high titer upon pseudotyping, it led to a significant increase in distal retrograde transduction of neurons. IMPORTANCE In this study, we have produced novel chimeric envelopes bearing the extracellular domain of rabies fused to the cytoplasmic tail (CT) of gp41 and pseudotyped lentiviral vectors with them. Here we report novel effects on the transduction efficiency and physical titer of these vectors, depending on CT length and context. We also managed to achieve increased neuronal transduction in vivo in the rodent CNS, thus demonstrating that the efficiency of these vectors can be enhanced following merely CT manipulation. We believe that this paper is a novel contribution to the field and opens the way for further attempts to surface engineer lentiviral vectors and make them more amenable for applications in human disease.
Collapse
|
16
|
Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Invest 2013; 123:3848-60. [PMID: 23979165 DOI: 10.1172/jci67399] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/30/2013] [Indexed: 11/17/2022] Open
Abstract
HIV-1 protease inhibitors (PIs) are among the most effective antiretroviral drugs. They are characterized by highly cooperative dose-response curves that are not explained by current pharmacodynamic theory. An unresolved problem affecting the clinical use of PIs is that patients who fail PI-containing regimens often have virus that lacks protease mutations, in apparent violation of fundamental evolutionary theory. Here, we show that these unresolved issues can be explained through analysis of the effects of PIs on distinct steps in the viral life cycle. We found that PIs do not affect virion release from infected cells but block entry, reverse transcription, and post-reverse transcription steps. The overall dose-response curves could be reconstructed by combining the curves for each step using the Bliss independence principle, showing that independent inhibition of multiple distinct steps in the life cycle generates the highly cooperative dose-response curves that make these drugs uniquely effective. Approximately half of the inhibitory potential of PIs is manifest at the entry step, likely reflecting interactions between the uncleaved Gag and the cytoplasmic tail (CT) of the Env protein. Sequence changes in the CT alone, which are ignored in current clinical tests for PI resistance, conferred PI resistance, providing an explanation for PI failure without resistance.
Collapse
Affiliation(s)
- S Alireza Rabi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bohl CR, Abrahamyan LG, Wood C. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner. PLoS One 2013; 8:e69359. [PMID: 23861967 PMCID: PMC3704627 DOI: 10.1371/journal.pone.0069359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023] Open
Abstract
The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.
Collapse
Affiliation(s)
- Christopher R. Bohl
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Levon G. Abrahamyan
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
18
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
19
|
Forced virus evolution reveals functional crosstalk between the disulfide bonded region and membrane proximal ectodomain region of HIV-1 gp41. Retrovirology 2013; 10:44. [PMID: 23618462 PMCID: PMC3643854 DOI: 10.1186/1742-4690-10-44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/26/2013] [Indexed: 01/22/2023] Open
Abstract
Background The disulfide-bonded region (DSR) of HIV-1 gp41 mediates association with gp120 and plays a role in transmission of receptor-induced conformational changes in gp120 to gp41 that activate membrane fusion function. In this study, forced viral evolution of a DSR mutant that sheds gp120 was employed to identify domains within gp120-gp41 that are functionally linked to the glycoprotein association site. Results The HIV-1AD8 mutant, W596L/K601D, was serially passaged in U87.CD4.CCR5 cells until replication was restored. Whereas the W596L mutation persisted throughout the cultures, a D601H pseudoreversion in the DSR partially restored cell-free virus infectivity and virion gp120-gp41 association, with further improvements to cell-free virus infectivity following a 2nd-site D674E mutation in the membrane-proximal external region (MPER) of gp41. In an independent culture, D601H appeared with a deletion in V4 (Thr-394-Trp-395) and a D674N substitution in the MPER, however this MPER mutation was inhibitory to W596L/K601H cell-free virus infectivity. While cell-free virus infectivity was not fully restored for the revertant genotypes, their cell-to-cell transmission approached the levels observed for WT. Interestingly, the functional boost associated with the addition of D674E to W596L/K601H was not observed for cell-cell fusion where the cell-surface expressed glycoproteins function independently of virion assembly. The W596L/K601H and W596L/K601H/D674E viruses exhibited greater sensitivity to neutralization by the broadly reactive MPER directed monoclonal antibodies, 2F5 and 4E10, indicating that the reverting mutations increase the availability of conserved neutralization epitopes in the MPER. Conclusions The data indicate for the first time that functional crosstalk between the DSR and MPER operates in the context of assembled virions, with the Leu-596-His-601-Glu-674 combination optimizing viral spread via the cell-to-cell route. Our data also indicate that changes in the gp120-gp41 association site may increase the exposure of conserved MPER neutralization epitopes in virus.
Collapse
|
20
|
Alfadhli A, McNett H, Eccles J, Tsagli S, Noviello C, Sloan R, López CS, Peyton DH, Barklis E. Analysis of small molecule ligands targeting the HIV-1 matrix protein-RNA binding site. J Biol Chem 2012; 288:666-76. [PMID: 23135280 DOI: 10.1074/jbc.m112.399865] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). MA also binds to RNA at a site that overlaps its PI(4,5)P(2) site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P(2) and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Loureiro ME, D’Antuono A, Levingston Macleod JM, López N. Uncovering viral protein-protein interactions and their role in arenavirus life cycle. Viruses 2012; 4:1651-67. [PMID: 23170177 PMCID: PMC3499824 DOI: 10.3390/v4091651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022] Open
Abstract
The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.
Collapse
Affiliation(s)
- Maria Eugenia Loureiro
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Ciencia y Tecnología (CONICET), Saladillo 2468, Buenos Aires C1440FFX, Argentina. (M.E.L.); (A.D.A.)
| | - Alejandra D’Antuono
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Ciencia y Tecnología (CONICET), Saladillo 2468, Buenos Aires C1440FFX, Argentina. (M.E.L.); (A.D.A.)
| | - Jesica M. Levingston Macleod
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA. (J.M.L.M.)
| | - Nora López
- Author to whom correspondence should be addressed; (N.L.); Tel/Fax: +54-11-4687-8735
| |
Collapse
|
22
|
Klasse PJ. The molecular basis of HIV entry. Cell Microbiol 2012; 14:1183-92. [PMID: 22583677 PMCID: PMC3417324 DOI: 10.1111/j.1462-5822.2012.01812.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
Infection by HIV starts when the virus attaches to a susceptible cell. For viral replication to continue, the viral envelope must fuse with a cellular membrane, thereby delivering the viral core to the cytoplasm, where the RNA genome is reverse-transcribed. The key players in this entry by fusion are the envelope glycoprotein, on the viral side, and CD4 and a co-receptor, CCR5 or CXCR4, on the cellular side. Here, the interplay of these molecules is reviewed from cell-biological, structural, mechanistic, and modelling-based perspectives. Hypotheses are evaluated regarding the cellular compartment for entry, the transfer of virus through direct cell-to-cell contact, the sequence of molecular events, and the number of molecules involved on each side of the virus-cell divide. An emerging theme is the heterogeneity among the entry mediators on both sides, a diversity that affects the efficacy of entry inhibitors, be they small-molecule ligands, peptides or neutralizing antibodies. These insights inform rational strategies for therapy as well as vaccination.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Cornell University, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, NY 10065-4896, USA.
| |
Collapse
|
23
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
24
|
Ringe R, Bhattacharya J. Association of enhanced HIV-1 neutralization by a single Y681H substitution in gp41 with increased gp120-CD4 interaction and macrophage infectivity. PLoS One 2012; 7:e37157. [PMID: 22606344 PMCID: PMC3351407 DOI: 10.1371/journal.pone.0037157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/14/2012] [Indexed: 11/18/2022] Open
Abstract
HIV-1 variants that show unusual sensitivity to autologous antibodies due to presence of critical neutralization signatures would likely contribute towards rational envelope based HIV-1 vaccine design. In the present study, we found that presence of a naturally occurring H681 in gp41 membrane proximal external region (MPER) of a clade C envelope (Env) obtained from a recently infected Indian patient conferred increased sensitivity to autologous and heterologous plasma antibodies. Furthermore, Env-pseudotyped viruses expressing H681 showed increased sensitivity to soluble CD4, b12 and 4E10 monoclonal antibodies both in related and unrelated Envs and was corroborated with increased Env susceptibility and binding to cellular CD4 as well as with prolonged exposure of MPER epitopes. The increased gp120-CD4 interaction was further associated with relative exposure of CD4-induced epitopes and macrophage infectivity. In summary, our data indicate that Y681H substitution exposes neutralizing epitopes in CD4bs and MPER towards comprehensive interference in HIV-1 entry.
Collapse
Affiliation(s)
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, Indian Council of Medical Research, Bhosari, Pune, India
- * E-mail:
| |
Collapse
|
25
|
Yang R, Shi J, Byeon IJL, Ahn J, Sheehan JH, Meiler J, Gronenborn AM, Aiken C. Second-site suppressors of HIV-1 capsid mutations: restoration of intracellular activities without correction of intrinsic capsid stability defects. Retrovirology 2012; 9:30. [PMID: 22515365 PMCID: PMC3351742 DOI: 10.1186/1742-4690-9-30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
Background Disassembly of the viral capsid following penetration into the cytoplasm, or uncoating, is a poorly understood stage of retrovirus infection. Based on previous studies of HIV-1 CA mutants exhibiting altered capsid stability, we concluded that formation of a capsid of optimal intrinsic stability is crucial for HIV-1 infection. Results To further examine the connection between HIV-1 capsid stability and infectivity, we isolated second-site suppressors of HIV-1 mutants exhibiting unstable (P38A) or hyperstable (E45A) capsids. We identified the respective suppressor mutations, T216I and R132T, which restored virus replication in a human T cell line and markedly enhanced the fitness of the original mutants as revealed in single-cycle infection assays. Analysis of the corresponding purified N-terminal domain CA proteins by NMR spectroscopy demonstrated that the E45A and R132T mutations induced structural changes that are localized to the regions of the mutations, while the P38A mutation resulted in changes extending to neighboring regions in space. Unexpectedly, neither suppressor mutation corrected the intrinsic viral capsid stability defect associated with the respective original mutation. Nonetheless, the R132T mutation rescued the selective infectivity impairment exhibited by the E45A mutant in aphidicolin-arrested cells, and the double mutant regained sensitivity to the small molecule inhibitor PF74. The T216I mutation rescued the impaired ability of the P38A mutant virus to abrogate restriction by TRIMCyp and TRIM5α. Conclusions The second-site suppressor mutations in CA that we have identified rescue virus infection without correcting the intrinsic capsid stability defects associated with the P38A and E45A mutations. The suppressors also restored wild type virus function in several cell-based assays. We propose that while proper HIV-1 uncoating in target cells is dependent on the intrinsic stability of the viral capsid, the effects of stability-altering mutations can be mitigated by additional mutations that affect interactions with host factors in target cells or the consequences of these interactions. The ability of mutations at other CA surfaces to compensate for effects at the NTD-NTD interface further indicates that uncoating in target cells is controlled by multiple intersubunit interfaces in the viral capsid.
Collapse
Affiliation(s)
- Ruifeng Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghanam RH, Samal AB, Fernandez TF, Saad JS. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Front Microbiol 2012; 3:55. [PMID: 22363329 PMCID: PMC3281212 DOI: 10.3389/fmicb.2012.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/01/2012] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P(2) to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag's intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
27
|
A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles. J Virol 2011; 86:2347-59. [PMID: 22156517 DOI: 10.1128/jvi.06047-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incorporation of viral envelope (Env) glycoproteins into nascent particles is an essential step in the production of infectious human immunodeficiency virus type 1 (HIV-1). This process has been shown to require interactions between Env and the matrix (MA) domain of the Gag polyprotein. Previous studies indicate that several residues in the N-terminal region of MA are required for Env incorporation. However, the precise mechanism by which Env proteins are acquired during virus assembly has yet to be fully defined. Here, we examine whether a highly conserved glutamate at position 99 in the C-terminal helix is required for MA function and HIV-1 replication. We analyze a panel of mutant viruses that contain different amino acid substitutions at this position using viral infectivity studies, virus-cell fusion assays, and immunoblotting. We find that E99V mutant viruses are defective for fusion with cell membranes and thus are noninfectious. We show that E99V mutant particles of HIV-1 strains LAI and NL4.3 lack wild-type levels of Env proteins. We identify a compensatory substitution in MA residue 84 and show that it can reverse the E99V-associated defects. Taken together, these results indicate that the C-terminal hydrophobic pocket of MA, which encompasses both residues 84 and 99, has a previously unsuspected and key role in HIV-1 Env incorporation.
Collapse
|
28
|
Alfadhli A, McNett H, Tsagli S, Bächinger HP, Peyton DH, Barklis E. HIV-1 matrix protein binding to RNA. J Mol Biol 2011; 410:653-66. [PMID: 21762806 DOI: 10.1016/j.jmb.2011.04.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/26/2022]
Abstract
The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P(2)-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P(2) binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS. NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein. J Biol Chem 2011; 286:33533-43. [PMID: 21799007 DOI: 10.1074/jbc.m111.273623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Subcellular distribution of Calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM has been shown to interact and co-localize with the HIV-1 Gag protein in infected cells. However, the precise molecular mechanism of this interaction is not known. Binding of Gag to CaM is dependent on calcium and is mediated by the N-terminal-myristoylated matrix (myr(+)MA) domain. We have recently shown that CaM binding induces a conformational change in the MA protein, triggering exposure of the myristate group. To unravel the molecular mechanism of CaM-MA interaction and to identify the minimal CaM binding domain of MA, we devised multiple approaches utilizing NMR, biochemical, and biophysical methods. Short peptides derived from the MA protein have been examined. Our data revealed that whereas peptides spanning residues 11-28 (MA-(11-28)) and 31-46 (MA-(31-46)) appear to bind preferentially to the C-terminal lobe of CaM, a peptide comprising residues 11-46 (MA-(11-46)) appears to engage both domains of CaM. Limited proteolysis data conducted on the MA-CaM complex yielded a MA peptide (residues 8-43) that is protected by CaM and resistant to proteolysis. MA-(8-43) binds to CaM with a very high affinity (dissociation constant = 25 nm) and in a manner that is similar to that observed for the full-length MA protein. The present findings provide new insights on how MA interacts with CaM that may ultimately help in identification of the functional role of CaM-Gag interactions in the HIV replication cycle.
Collapse
Affiliation(s)
- Alexandra B Samal
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
30
|
Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608. [PMID: 21762802 PMCID: PMC3139147 DOI: 10.1016/j.jmb.2011.04.042] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Benjamin G. Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| |
Collapse
|
31
|
Abstract
The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.
Collapse
|
32
|
Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate. J Virol 2011; 85:3584-95. [PMID: 21270152 DOI: 10.1128/jvi.02266-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag assembles into virus particles predominantly at the plasma membrane (PM). Previously, we observed that phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] is essential for Gag binding to the plasma membrane and virus release in HeLa cells. In the current study, we found that PI(4,5)P(2) also facilitates Gag binding to the PM and efficient virus release in T cells. Notably, serial passage of HIV-1 in an A3.01 clone that expresses polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), yielded an adapted mutant with a Leu-to-Arg change at matrix residue 74 (74LR). Virus replication in T cells expressing 5ptaseIV was accelerated by the 74LR mutation relative to replication of wild type HIV-1 (WT). This accelerated replication of the 74LR mutant was not due to improved virus release. In control T cells, the 74LR mutant releases virus less efficiently than does the WT, whereas in cells expressing 5ptaseIV, the WT and the 74LR mutant are similarly inefficient in virus release. Unexpectedly, we found that the 74LR mutation increased virus infectivity and compensated for the inefficient virus release. Altogether, these results indicate that PI(4,5)P(2) is essential for Gag-membrane binding, targeting of Gag to the PM, and efficient virus release in T cells, which in turn likely promotes efficient virus spread in T cell cultures. In T cells with low PI(4,5)P(2) levels, however, the reduced virus particle production can be compensated for by a mutation that enhances virus infectivity.
Collapse
|
33
|
Ghanam RH, Fernandez TF, Fledderman EL, Saad JS. Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. J Biol Chem 2010; 285:41911-20. [PMID: 20956522 PMCID: PMC3009918 DOI: 10.1074/jbc.m110.179093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/12/2010] [Indexed: 01/16/2023] Open
Abstract
Steady progress has been made in defining both the viral and cellular determinants of retroviral assembly and release. Although it is widely accepted that targeting of the Gag polypeptide to the plasma membrane is critical for proper assembly of HIV-1, the intracellular interactions and trafficking of Gag to its assembly sites in the infected cell are poorly understood. HIV-1 Gag was shown to interact and co-localize with calmodulin (CaM), a ubiquitous and highly conserved Ca(2+)-binding protein expressed in all eukaryotic cells, and is implicated in a variety of cellular functions. Binding of HIV-1 Gag to CaM is dependent on calcium and is mediated by the N-terminally myristoylated matrix (myr(+)MA) domain. Herein, we demonstrate that CaM binds to myr(+)MA with a dissociation constant (K(d)) of ∼2 μm and 1:1 stoichiometry. Strikingly, our data revealed that CaM binding to MA induces the extrusion of the myr group. However, in contrast to all known examples of CaM-binding myristoylated proteins, our data show that the myr group is exposed to solvent and not involved in CaM binding. The interactions between CaM and myr(+)MA are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. As revealed by NMR data, both CaM and MA appear to engage substantial regions and/or undergo significant conformational changes upon binding. We believe that our findings will provide new insights on how Gag may interact with CaM during the HIV replication cycle.
Collapse
Affiliation(s)
- Ruba H. Ghanam
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Timothy F. Fernandez
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Emily L. Fledderman
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jamil S. Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
34
|
Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 2010; 128:433-44. [PMID: 20816696 DOI: 10.1016/j.pharmthera.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
35
|
Abstract
Tetraspanins are small integral membrane proteins that are known to control a variety of cellular processes, including signaling, migration and cell-cell fusion. Research over the past few years established that they are also regulators of various steps in the HIV-1 replication cycle, but the mechanisms through which these proteins either enhance or repress virus spread remain largely unknown.
Collapse
Affiliation(s)
- Markus Thali
- Department of Microbiology and Molecular Genetics, College of Medicine and CALS, University of Vermont, 318 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0084, USA.
| |
Collapse
|
36
|
Abstract
Infection of domestic cats with virulent strains of the feline immunodeficiency virus (FIV) leads to an acquired immunodeficiency syndrome (AIDS), similar to the pathogenesis induced in humans by infection with human immunodeficiency virus type 1 (HIV-1). Thus, FIV is a highly relevant model for anti-HIV therapy and vaccine development. FIV is not infectious in humans, so it is also a potentially effective non-toxic gene therapy vector. To make better use of this model, it is important to define the cellular machinery utilized by each virus to produce virus particles so that relevant similarities can be identified. It is well understood that all replication-competent retroviruses encode gag, pol, and env genes, which provide core elements for virus replication. As a result, most antiretroviral therapy targets pol-derived enzymes (protease, reverse transcriptase, and integrase) orenv-derived glycoproteins that mediate virus attachment and entry. However, resistance to drugs against these targets is a persistent problem, and novel targets must be identified to produce more effective drugs that can either substitute or be combined with current therapy. Elements of the gag gene (matrix, capsid, nucleocapsid, and "late" domains) have yet to be exploited as antiviral targets, even though the Gag precursor polyprotein is self-sufficient for the assembly and release of virus particles from cells. This process is far better understood in primate lentiviruses, especially HIV-1. However, there has been significant progress in recent years in defining how FIV Gag is targeted to the cellular plasma membrane, assembles into virions, incorporates FIV Env glycoproteins, and utilizes host cell machinery to complete virus release. Recent discoveries of intracellular restriction factors that target HIV-1 and FIV capsids after virus entry have also opened exciting new areas of research. This review summarizes currently known interactions involving HIV-1 and FIV Gag that affect virus release, infectivity, and replication.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
37
|
Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 2009; 83:12196-203. [PMID: 19776118 DOI: 10.1128/jvi.01197-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P(2) through headgroup and 2' acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P(2)-containing membranes, that PI(4,5)P(2) binding tolerates 2' acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P(2) analogues do not compete effectively with PI(4,5)P(2)-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P(2)-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.
Collapse
|
38
|
Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 2009; 83:7467-74. [PMID: 19458002 DOI: 10.1128/jvi.00163-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro propagation studies have established that human immunodeficiency virus type 1 (HIV-1) is most efficiently transmitted at the virological synapse that forms between producer and target cells. Despite the presence of the viral envelope glycoprotein (Env) and CD4 and chemokine receptors at the respective surfaces, producer and target cells usually do not fuse with each other but disengage after the viral particles have been delivered, consistent with the idea that syncytia, at least in vitro, are not required for HIV-1 spread. Here, we tested whether tetraspanins, which are well known regulators of cellular membrane fusion processes that are enriched at HIV-1 exit sites, regulate syncytium formation. We found that overexpression of tetraspanins in producer cells leads to reduced syncytium formation, while downregulation has the opposite effect. Further, we document that repression of Env-induced cell-cell fusion by tetraspanins depends on the presence of viral Gag, and we demonstrate that fusion repression requires the recruitment of Env by Gag to tetraspanin-enriched microdomains (TEMs). However, sensitivity to fusion repression by tetraspanins varied for different viral strains, despite comparable recruitment of their Envs to TEMs. Overall, these data establish tetraspanins as negative regulators of HIV-1-induced cell-cell fusion, and they start delineating the requirements for this regulation.
Collapse
|
39
|
Alfadhli A, Barklis RL, Barklis E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009; 387:466-72. [PMID: 19327811 DOI: 10.1016/j.virol.2009.02.048] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P(2)). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P(2). Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, Portland, 97201-3098, USA
| | | | | |
Collapse
|
40
|
Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J Virol 2009; 83:5375-87. [PMID: 19297499 DOI: 10.1128/jvi.00109-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs predominantly at the plasma membrane of infected cells. The targeting of assembly to intracellular compartments such as multivesicular bodies (MVBs) generally leads to a significant reduction in virus release efficiency, suggesting that MVBs are a nonproductive site for HIV-1 assembly. In the current study, we make use of an HIV-1 Gag-matrix mutant, 29/31KE, that is MVB targeted. We previously showed that this mutant is severely defective for virus particle production in HeLa cells but more modestly affected in primary macrophages. To more broadly examine the consequences of MVB targeting for virus production, we investigated 29/31KE particle production in a range of cell types. Surprisingly, this mutant supported highly efficient assembly and release in T cells despite its striking MVB Gag localization. Manipulation of cellular endocytic pathways revealed that unlike Vpu-defective HIV-1, which demonstrated intracellular Gag localization as a result of Gag endocytosis from the plasma membrane, 29/31KE mutant Gag was targeted directly to an MVB compartment. The 29/31KE mutant was unable to support multiple-round replication; however, this defect could be reversed by truncating the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 and by the acquisition of a 16EK change in matrix. The 16EK/29/31KE matrix mutant replicated efficiently in the MT-4 T-cell line despite maintaining an MVB-targeting phenotype. These results indicate that MVB-targeted Gag can be efficiently released from T cells and primary macrophages, suggesting that under some circumstances, late endosomal compartments can serve as productive sites for HIV-1 assembly in these physiologically relevant cell types.
Collapse
|
41
|
Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail. Virology 2008; 384:233-41. [PMID: 19059618 DOI: 10.1016/j.virol.2008.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/14/2008] [Accepted: 10/30/2008] [Indexed: 12/21/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.
Collapse
Affiliation(s)
- Ajay K Bhatia
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
42
|
Importance of the membrane-perturbing properties of the membrane-proximal external region of human immunodeficiency virus type 1 gp41 to viral fusion. J Virol 2008; 82:5118-26. [PMID: 18353966 DOI: 10.1128/jvi.00305-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-proximal external region (MPER; K(665)WASLWNWFNITNWLWYIK(683)) of the human immunodeficiency virus type 1 (HIV-1) gp41 ectodomain plays a critical role in envelope glycoprotein-mediated fusion. In addition, the epitopes of important neutralizing antibodies (2F5, Z13, and 4E10) and the sequence of the peptide fusion inhibitor T20 overlap this conserved region. The MPER has an unusually high percentage of tryptophan residues that likely contribute to the membrane-disrupting nature of the region, which is predicted to adopt an alpha-helical conformation on membrane contact. We have investigated the membrane-disruptive requirements for this region using a panel of mutants that replace most of the MPER with antibacterial, membrane-active peptides. The results demonstrate that the mutant Envs were processed, transported, and expressed on the cell surface similar to wild type. Some of the mutant Envs induced moderate levels of cell-cell fusion, demonstrating that the region can accommodate the substitution of proline-rich foreign peptides while retaining significant biological function. In contrast, the incorporation into and stability of the mutated Envs in virions was reduced, consistent with the severely impaired viral entry observed for all the mutants. These data suggest that both structural (for Env incorporation) and functional (membrane disruption) constraints may contribute to the highly conserved nature of this region.
Collapse
|
43
|
Nora T, Bouchonnet F, Labrosse B, Charpentier C, Mammano F, Clavel F, Hance AJ. Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses. Retrovirology 2008; 5:23. [PMID: 18312646 PMCID: PMC2270869 DOI: 10.1186/1742-4690-5-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies have shown that viral quasi-species with genetically diverse envelope proteins (Env) replicate simultaneously in patients infected with the human immunodeficiency virus type 1 (HIV-1). Less information is available concerning the extent that envelope sequence diversity translates into a diversity of phenotypic properties, including infectivity and resistance to entry inhibitors. Methods To study these questions, we isolated genetically distinct contemporaneous clonal viral populations from the plasma of 5 HIV-1 infected individuals (n = 70), and evaluated the infectivity of recombinant viruses expressing Env proteins from the clonal viruses in several target cells. The sensitivity to entry inhibitors (enfuvirtide, TAK-799), soluble CD4 and monoclonal antibodies (2G12, 48d, 2F5) was also evaluated for a subset of the recombinant viruses (n = 20). Results Even when comparisons were restricted to viruses with similar tropism, the infectivity for a given target cell of viruses carrying different Env proteins from the same patient varied over an approximately 10-fold range, and differences in their relative ability to infect different target cells were also observed. Variable region haplotypes associated with high and low infectivity could be identified for one patient. In addition, clones carrying unique mutations in V3 often displayed low infectivity. No correlation was observed between viral infectivity and sensitivity to inhibition by any of the six entry inhibitors evaluated, indicating that these properties can be dissociated. Significant inter-patient differences, independent of infectivity, were observed for the sensitivity of Env proteins to several entry inhibitors and their ability to infect different target cells. Conclusion These findings demonstrate the marked functional heterogeneity of HIV-1 Env proteins expressed by contemporaneous circulating viruses, and underscore the advantage of clonal analyses in characterizing the spectrum of functional properties of the genetically diverse viral populations present in a given patient.
Collapse
Affiliation(s)
- Tamara Nora
- Unité de Recherche Antivirale, INSERM U 552, Université Denis Diderot Paris 7, Paris F-75018, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Scholz I, Still A, Dhenub TC, Coday K, Webb M, Barklis E. Analysis of human immunodeficiency virus matrix domain replacements. Virology 2007; 371:322-35. [PMID: 17996264 DOI: 10.1016/j.virol.2007.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
The matrix (MA) domain of the HIV-1 structural precursor Gag (PrGag) protein targets PrGag proteins to membrane assembly sites, and facilitates incorporation of envelope proteins into virions. To evaluate the specific requirements for the MA membrane-binding domain (MBD) in HIV-1 assembly and replication, we examined viruses in which MA was replaced by alternative MBDs. Results demonstrated that the pleckstrin homology domains of AKT protein kinase and phospholipase C delta1 efficiently directed the assembly and release of virus-like particles (VLPs) from cells expressing chimeric proteins. VLP assembly and release also were mediated in a phorbol ester-dependent fashion by the cysteine-rich binding domain of phosphokinase Cgamma. Although alternative MBDs promoted VLP assembly and release, the viruses were not infectious. Notably, PrGag processing was reduced, while cleavage of GagPol precursors resulted in the accumulation of Pol-derived intermediates within virions. Our results indicate that the HIV-1 assembly machinery is flexible with regard to its means of membrane association, but that alternative MBDs can interfere with the elaboration of infectious virus cores.
Collapse
Affiliation(s)
- Isabel Scholz
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
45
|
Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J Virol 2007; 82:1021-33. [PMID: 17989173 DOI: 10.1128/jvi.01044-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that human immunodeficiency virus type 1 (HIV-1) acquires various cellular membrane proteins in the lipid bilayer of the viral envelope membrane. Although some virion-incorporated cellular membrane proteins are known to potently affect HIV-1 infectivity, the virological functions of most virion-incorporated membrane proteins remain unclear. Among these host proteins, we found that CD63 was eliminated from the plasma membranes of HIV-1-producing T cells after activation, followed by a decrease in the amount of virion-incorporated CD63, and in contrast, an increase in the infectivity of the released virions. On the other hand, we found that CD63 at the cell surface was preferentially embedded on the membrane of released virions in an HIV-1 envelope protein (Env)-independent manner and that virion-incorporated CD63 had the potential to inhibit HIV-1 Env-mediated infection in a strain-specific manner at the postattachment entry step(s). In addition, these behaviors were commonly observed in other tetraspanin proteins, such as CD9, CD81, CD82, and CD231. However, L6 protein, whose topology is similar to that of tetraspanins but which does not belong to the tetraspanin superfamily, did not have the potential to prevent HIV-1 infection, despite its successful incorporation into the released particles. Taken together, these results suggest that tetraspanin proteins have the unique potential to modulate HIV-1 infectivity through incorporation into released HIV-1 particles, and our findings may provide a clue to undiscovered aspects of HIV-1 entry.
Collapse
|
46
|
Blay WM, Kasprzyk T, Misher L, Richardson BA, Haigwood NL. Mutations in envelope gp120 can impact proteolytic processing of the gp160 precursor and thereby affect neutralization sensitivity of human immunodeficiency virus type 1 pseudoviruses. J Virol 2007; 81:13037-49. [PMID: 17855534 PMCID: PMC2169095 DOI: 10.1128/jvi.01215-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The design of an efficient human immunodeficiency virus (HIV) immunogen able to generate broad neutralizing antibodies (NAbs) remains an elusive goal. As more data emerge, it is becoming apparent that one important aspect of such an immunogen will be the proper representation of the envelope protein (Env) as it exists on native virions. Important questions that are yet to be fully addressed include what factors dictate Env processing, how different Env forms are represented on the virion, and ultimately how these issues influence the development and efficacy of NAbs. Recent data have begun to illuminate the extent to which changes in gp41 can impact the overall structure and neutralizing sensitivity of Env. Here, we present evidence to suggest that minor mutations in gp120 can significantly impact Env processing. We analyzed the gp120 sequences of 20 env variants that evolved in multiple macaques over 8 months of infection with simian/human immunodeficiency virus 89.6P. Variant gp120 sequences were subcloned into gp160 expression plasmids with identical cleavage motifs and gp41 sequences. Cells cotransfected with these plasmids and delta env genomes were able to produce competent virus. The resulting pseudoviruses incorporated high levels of Env onto virions that exhibited a range of degrees of virion-associated Env cleavage (15 to 40%). Higher levels of cleavage correlated with increased infectivity and increased resistance to macaque plasma, HIV immunoglobulin, soluble CD4, and human monoclonal antibodies 4E10, 2F5, and b12. Based on these data, we discuss a model whereby changes in gp120 of 89.6P impact Env processing and thereby mediate escape from a range of neutralizing agents.
Collapse
Affiliation(s)
- Wendy M Blay
- Seattle Biomedical Research Institute, 307 Westlake Ave. N, Seattle, WA 98019, USA
| | | | | | | | | |
Collapse
|
47
|
Murphy SL, Gaulton GN. TR1.3 viral pathogenesis and syncytium formation are linked to Env-Gag cooperation. J Virol 2007; 81:10777-85. [PMID: 17634219 PMCID: PMC2045439 DOI: 10.1128/jvi.00816-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infection with murine leukemia virus (MLV) TR1.3 or the related molecular construct W102G causes severe neuropathology in vivo. Infection is causally linked to the development of extensive syncytia in brain capillary endothelial cells (BCEC). These viruses also induce cell fusion of murine cell lines, such as SC-1 and NIH 3T3, which are otherwise resistant to MLV-induced syncytium formation. Although the virulence of these viruses maps within the env gene, the mechanism of fusion enhancement is not fully determined. To this end, we examined the capacity of the syncytium-inducing (SI) TR1.3 and W102G MLVs to overcome the fusion inhibitory activity inherent in the full-length Env cytoplasmic tail. These studies showed that the TR1.3 and W102G Envs did not induce premature cleavage of p2E, nor did they override p2E fusion inhibition. Indeed, in the presence of mutations that disrupt p2E function, the TR1.3 and W102G Envs significantly increased the extent of cell fusion compared to that with the non-syncytium-inducing MLV FB29. Surprisingly, we also observed that TR1.3 and W102G Envs failed to elicit syncytium formation in these in vitro assays. Coexpression of gag-pol with env restored syncytium formation, and accordingly, mutations within gag-pol were used to examine the minimal functional requirements for the SI phenotype. The results indicate that both gag-dependent particle budding and cleavage of p2E are required to activate the SI phenotype of TR1.3 and W102G viruses. Collectively, these data suggest that the TR1.3 and W102G viruses induce cell fusion by the fusion-from-without pathway.
Collapse
Affiliation(s)
- Samuel L Murphy
- The Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, 354 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6142, USA
| | | |
Collapse
|
48
|
Jiang J, Aiken C. Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 2007; 81:9999-10008. [PMID: 17609279 PMCID: PMC2045384 DOI: 10.1128/jvi.00592-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode fusion glycoproteins with long cytoplasmic tails (CTs). We previously reported that immature HIV-1 particles are inhibited for fusion with target cells by a mechanism requiring the 152-amino-acid CT of gp41. The gp41 CT was also shown to mediate the detergent-resistant association of the HIV-1 envelope glycoprotein complex with immature HIV-1 particles, indicating that the gp41 CT forms a stable complex with Gag in immature virions. In the present study, we analyzed the effects of progressive truncations and point mutations in the gp41 CT on the fusion of mature and immature HIV-1 particles with target cells. We also determined the effects of these mutations on the detergent-resistant association of gp41 with immature HIV-1 particles. Removal of the C-terminal 28 amino acids relieved the dependence of HIV-1 fusion on maturation. However, a mutant Env protein lacking this region remained associated with immature HIV-1 particles treated with nonionic detergent. Further mutational analysis of the C-terminal region of gp41 revealed two specific sequences required for maturation-dependent HIV-1 fusion. Collectively, our results demonstrate that the extreme C terminus of gp41 plays a key role in coupling HIV-1 fusion competence to virion maturation. They further indicate that the stable association of gp41 with Gag in immature virions is not sufficient for inhibition of immature HIV-1 particle fusion.
Collapse
Affiliation(s)
- Jiyang Jiang
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
49
|
Bellamy-McIntyre AK, Lay CS, Baär S, Maerz AL, Talbo GH, Drummer HE, Poumbourios P. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem 2007; 282:23104-16. [PMID: 17526486 DOI: 10.1074/jbc.m703485200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp(666), Trp(672), Phe(673), and Ile(675) in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by approximately 10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu(537) with Trp(666), Trp(672), Phe(673), or Ile(675) abolished entry with 50-80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an approximately 80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.
Collapse
Affiliation(s)
- Anna K Bellamy-McIntyre
- Macfarlane Burnet Institute for Medical Research and Public Health, Prahran, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Holtkotte D, Pfeiffer T, Bosch V. Cell-free infectivity of HIV type 1 produced in nonpermissive cells is only moderately impacted by C-terminal Env truncation despite abrogation of viral spread. AIDS Res Hum Retroviruses 2007; 23:729-40. [PMID: 17531000 DOI: 10.1089/aid.2006.0260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutant HIV virions, encoding C-terminally truncated Env proteins, exhibit a cell-specific replication defect, i.e., they can replicate in a few T cell lines (termed permissive cells) but not in the majority of T cell lines (termed nonpermissive cells). We have studied the properties of two mutant virions (pNL-Tr712 and pNL-Tr752), encoding Envs with C-terminal truncations of 144 and 104 amino acids, respectively. We show that although unable to give rise to a spreading infection in nonpermissive H9 cells, both cell-free pNL-Tr712 and pNL-Tr752 virions, produced in these cells, still exhibit relatively high levels of infectivity (30-80% of wildtype) when tested in nonpermissive target cells. Compatible with this high remaining infectivity, we observed that the levels of Env incorporation into mutant virions, produced in nonpermissive cells, were not drastically reduced as has been reported by others. The high remaining infectivity of cell-free mutant virions in nonpermissive cells is difficult to reconcile with the complete lack of spreading infection in these cells. We demonstrate that nonpermissive cells are less susceptible to single-round infection with cell-free virus than permissive cells. It is thus conceivable that in these cells other transmission routes, e.g., cell-cell transmission, may be more important for total virus spread and that this route may be more severely impacted by the C-terminal Env truncations.
Collapse
Affiliation(s)
- Denise Holtkotte
- Forschungsschwerpunkt Infektion und Krebs, F020, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | |
Collapse
|