1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Willard KA, Barry AP, Oduor CI, Ong'echa JM, Bailey JA, Moormann AM, Luftig MA. Viral and host factors drive a type 1 Epstein-Barr virus spontaneous lytic phenotype. mBio 2023; 14:e0220423. [PMID: 37971257 PMCID: PMC10746244 DOI: 10.1128/mbio.02204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) infects over 95% of adults worldwide. Given its connection to various cancers and autoimmune disorders, it is important to understand the mechanisms by which infection with EBV can lead to these diseases. In this study, we describe an unusual spontaneous lytic phenotype in EBV strains isolated from Kenyan endemic Burkitt lymphoma patients. Because lytic replication of EBV has been linked to the pathogenesis of various diseases, these data could illuminate viral and host factors involved in this process.
Collapse
Affiliation(s)
- Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cliff I. Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Heawchaiyaphum C, Malat P, Pientong C, Roytrakul S, Yingchutrakul Y, Aromseree S, Suebsasana S, Mahalapbutr P, Ekalaksananan T. The Dual Functions of Andrographolide in the Epstein-Barr Virus-Positive Head-and-Neck Cancer Cells: The Inhibition of Lytic Reactivation of the Epstein-Barr Virus and the Induction of Cell Death. Int J Mol Sci 2023; 24:15867. [PMID: 37958849 PMCID: PMC10648111 DOI: 10.3390/ijms242115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Andrographolide, a medicinal compound, exhibits several pharmacological activities, including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits Epstein-Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncogenesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells and the molecular modeling and docking simulation of protein. Based on the results, the expression of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andrographolide treatment also significantly induced the expression of DNA Methyltransferase (DNMT) 1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and induces cell death, probably via necroptosis.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Center, Thammasart University, Pathum Thani 12120, Thailand
| | - Praphatson Malat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Yodying Yingchutrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Sirinart Aromseree
- Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Suebsasana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Rangsit Center, Thammasat University, Pathum Thani 12120, Thailand;
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Yiu SPT, Zerbe C, Vanderwall D, Huttlin EL, Weekes MP, Gewurz BE. An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation. Mol Cell 2023; 83:2367-2386.e15. [PMID: 37311461 PMCID: PMC10372749 DOI: 10.1016/j.molcel.2023.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/05/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis, triggers multiple sclerosis, and is associated with 200,000 cancers/year. EBV colonizes the human B cell compartment and periodically reactivates, inducing expression of 80 viral proteins. However, much remains unknown about how EBV remodels host cells and dismantles key antiviral responses. We therefore created a map of EBV-host and EBV-EBV interactions in B cells undergoing EBV replication, uncovering conserved herpesvirus versus EBV-specific host cell targets. The EBV-encoded G-protein-coupled receptor BILF1 associated with MAVS and the UFM1 E3 ligase UFL1. Although UFMylation of 14-3-3 proteins drives RIG-I/MAVS signaling, BILF1-directed MAVS UFMylation instead triggered MAVS packaging into mitochondrial-derived vesicles and lysosomal proteolysis. In the absence of BILF1, EBV replication activated the NLRP3 inflammasome, which impaired viral replication and triggered pyroptosis. Our results provide a viral protein interaction network resource, reveal a UFM1-dependent pathway for selective degradation of mitochondrial cargo, and highlight BILF1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Stephanie Pei Tung Yiu
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Center for Integrated Solutions to Infectious Diseases, Broad Institute and Harvard Medical School, Cambridge, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cassie Zerbe
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - David Vanderwall
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate Program in Virology, Boston, MA 02115, USA; Center for Integrated Solutions to Infectious Diseases, Broad Institute and Harvard Medical School, Cambridge, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
7
|
Casco A, Johannsen E. EBV Reactivation from Latency Is a Degrading Experience for the Host. Viruses 2023; 15:726. [PMID: 36992435 PMCID: PMC10054251 DOI: 10.3390/v15030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
During reactivation from latency, gammaherpesviruses radically restructure their host cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review mechanisms of shutoff by Epstein-Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which specificity is achieved, and the consequences for host gene expression. We also consider non-canonical mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to accurate measurements of the EBV host shutoff phenomenon.
Collapse
Affiliation(s)
- Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
8
|
Yan B, Wang C, Chakravorty S, Zhang Z, Kadadi SD, Zhuang Y, Sirit I, Hu Y, Jung M, Sahoo SS, Wang L, Shao K, Anderson NL, Trujillo‐Ochoa JL, Briggs SD, Liu X, Olson MR, Afzali B, Zhao B, Kazemian M. A comprehensive single cell data analysis of lymphoblastoid cells reveals the role of super-enhancers in maintaining EBV latency. J Med Virol 2023; 95:e28362. [PMID: 36453088 PMCID: PMC10027397 DOI: 10.1002/jmv.28362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.
Collapse
Affiliation(s)
- Bingyu Yan
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Wang
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Zonghao Zhang
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Simran D. Kadadi
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuxin Zhuang
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Isabella Sirit
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yonghua Hu
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Minwoo Jung
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | - Luopin Wang
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kunming Shao
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Nicole L. Anderson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jorge L. Trujillo‐Ochoa
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Scott D. Briggs
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Matthew R. Olson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Majid Kazemian
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
9
|
Herpesvirus ubiquitin deconjugases. Semin Cell Dev Biol 2022; 132:185-192. [PMID: 34776333 DOI: 10.1016/j.semcdb.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The covalent attachment of ubiquitin and ubiquitin-like polypeptides to cellular and viral proteins regulates numerous processes that enable virus infection, viral genome replication, and the spread of viruses to new hosts. The importance of these protein modifications in the regulation of the life cycle of herpesviruses is underscored by the discovery that all known members of this virus family encode at least one protease that specifically recognizes and disassembles ubiquitin conjugates. The structural and functional characterization of the viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infection and increasing evidence suggests that the viral deconjugases may also play a role in malignant transformation.
Collapse
|
10
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
11
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, Trujillo-Alonso V, Puri R, Giulino-Roth L, Gewurz BE. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab 2022; 34:1280-1297.e9. [PMID: 36070681 PMCID: PMC9482757 DOI: 10.1016/j.cmet.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) subverts host epigenetic pathways to switch between viral latency programs, colonize the B cell compartment, and reactivate. Within memory B cells, the reservoir for lifelong infection, EBV genomic DNA and histone methylation marks restrict gene expression. But this epigenetic strategy also enables EBV-infected tumors, including Burkitt lymphomas, to evade immune detection. Little is known about host cell metabolic pathways that support EBV epigenome landscapes. We therefore used amino acid restriction, metabolomic, and CRISPR approaches to identify that an abundant methionine supply and interconnecting methionine and folate cycles maintain Burkitt EBV gene silencing. Methionine restriction, or methionine cycle perturbation, hypomethylated EBV genomes and de-repressed latent membrane protein and lytic gene expression. Methionine metabolism also shaped EBV latency gene regulation required for B cell immortalization. Dietary methionine restriction altered murine Burkitt xenograft metabolomes and de-repressed EBV immunogens in vivo. These results highlight epigenetic/immunometabolism crosstalk supporting the EBV B cell life cycle and suggest therapeutic approaches.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jin Hua Liang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuchen Zhang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael Lutchenkov
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vicenta Trujillo-Alonso
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lisa Giulino-Roth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Program in Virology, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Fülöp Á, Torma G, Moldován N, Szenthe K, Bánáti F, Almsarrhad IAA, Csabai Z, Tombácz D, Minárovits J, Boldogkői Z. Integrative profiling of Epstein-Barr virus transcriptome using a multiplatform approach. Virol J 2022; 19:7. [PMID: 34991630 PMCID: PMC8740505 DOI: 10.1186/s12985-021-01734-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read-sequencing and Pacific Biosciences RS II-based long-read sequencing technologies. Since the various sequencing methods have distinct strengths and limitations, the use of multiplatform approaches have proven to be valuable. The aim of this study is to provide a more complete picture on the transcriptomic architecture of EBV. METHODS In this work, we apply the Oxford Nanopore Technologies MinION (long-read sequencing) platform for the generation of novel transcriptomic data, and integrate these with other's data generated by another LRS approach, Pacific BioSciences RSII sequencing and Illumina CAGE-Seq and Poly(A)-Seq approaches. Both amplified and non-amplified cDNA sequencings were applied for the generation of sequencing reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory. RESULTS This study detected novel genes embedded into longer host genes containing 5'-truncated in-frame open reading frames, which potentially encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel replication-origin-associated transcripts. Additionally, novel mono- and multigenic transcripts were identified. An intricate meshwork of transcriptional overlaps was revealed. CONCLUSIONS An integrative approach applying multi-technique sequencing technologies is suitable for reliable identification of complex transcriptomes because each techniques has different advantages and limitations, and the they can be used for the validation of the results obtained by a particular approach.
Collapse
Affiliation(s)
- Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Norbert Moldován
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Ltd., Szabadság u. 2., Újrónafő, 9244 Hungary
| | - Ferenc Bánáti
- RT-Europe Research Center, Vár tér 2., Mosonmagyaróvár, 9200 Hungary
| | - Islam A. A. Almsarrhad
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos krt. 64, Szeged, 6720 Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi B. u. 4., Szeged, 6720 Hungary
| |
Collapse
|
14
|
Li J, Guo Y, Deng Y, Hu L, Li B, Deng S, Zhong J, Xie L, Shi S, Hong X, Zheng X, Cai M, Li M. Subcellular Localization of Epstein-Barr Virus BLLF2 and Its Underlying Mechanisms. Front Microbiol 2021; 12:672192. [PMID: 34367081 PMCID: PMC8339435 DOI: 10.3389/fmicb.2021.672192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins required to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assay, RNA interference, and Western blot were performed to explore the nuclear import mechanism of EBV encoded BLLF2 protein. BLLF2 was shown to be a nucleocytoplasmic shuttling protein neither by a chromosomal region maintenance 1 (CRM1)- nor by a transporter associated with antigen processing (TAP)-dependent pathway. Yet, BLLF2's two functional nuclear localization signals (NLSs), NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (44RRPRPPVAKRRRFPR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proven to transport into the nucleus via a Ran-dependent and importin β1-dependent pathway. This mechanism may contribute to a more extensive insight into the assembly and synthesis of EBV virions in the nucleus, thus affording a new direction for the treatment of viruses.
Collapse
Affiliation(s)
- Jingjing Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yingjie Guo
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Hu
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Bolin Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shenyu Deng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Zhong
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Xie
- Centralab, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Shaoxuan Shi
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xuejun Hong
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xuelong Zheng
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mingsheng Cai
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Meili Li
- The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021; 13:2275. [PMID: 34068598 PMCID: PMC8126045 DOI: 10.3390/cancers13092275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is the prototypic human tumor virus whose continuous lifelong immune control is required to prevent lymphomagenesis in the more than 90% of the human adult population that are healthy carriers of the virus. Here, we review recent evidence that this immune control has not only to target latent oncogenes, but also lytic replication of EBV. Furthermore, genetic variations identify the molecular machinery of cytotoxic lymphocytes as essential for this immune control and recent studies in mice with reconstituted human immune system components (humanized mice) have begun to provide insights into the mechanistic role of these molecules during EBV infection. Finally, EBV often does not act in isolation to cause disease. Some of EBV infection-modulating co-infections, including human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been modeled in humanized mice. These preclinical in vivo models for EBV infection, lymphomagenesis, and cell-mediated immune control do not only promise a better understanding of the biology of this human tumor virus, but also the possibility to explore vaccine candidates against it.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
16
|
Avilala J, Becnel D, Abdelghani R, Nanbo A, Kahn J, Li L, Lin Z. Role of Virally Encoded Circular RNAs in the Pathogenicity of Human Oncogenic Viruses. Front Microbiol 2021; 12:657036. [PMID: 33959113 PMCID: PMC8093803 DOI: 10.3389/fmicb.2021.657036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human oncogenic viruses are a group of important pathogens that etiologically contribute to at least 12% of total cancer cases in the world. As an emerging class of non-linear regulatory RNA molecules, circular RNAs (circRNAs) have gained increasing attention as a crucial player in the regulation of signaling pathways involved in viral infection and oncogenesis. With the assistance of current circRNA enrichment and detection technologies, numerous novel virally-encoded circRNAs (vcircRNAs) have been identified in the human oncogenic viruses, initiating an exciting new era of vcircRNA research. In this review, we discuss the current understanding of the roles of vcircRNAs in the respective viral infection cycles and in virus-associated pathogenesis.
Collapse
Affiliation(s)
- Janardhan Avilala
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - David Becnel
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Ramsy Abdelghani
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Jacob Kahn
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - Li Li
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| |
Collapse
|
17
|
Farina A, Rosato E, York M, Gewurz BE, Trojanowska M, Farina GA. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front Immunol 2021; 12:651013. [PMID: 33953718 PMCID: PMC8089375 DOI: 10.3389/fimmu.2021.651013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Microvascular injury is considered an initial event in the pathogenesis of scleroderma and endothelial cells are suspected of being the target of the autoimmune process seen in the disease. EBV has long been proposed as a trigger for autoimmune diseases, including scleroderma. Nevertheless, its contribution to the pathogenic process remains poorly understood. In this study, we report that EBV lytic antigens are detected in scleroderma dermal vessels, suggesting that endothelial cells might represent a target for EBV infection in scleroderma skin. We show that EBV DNA load is remarkably increased in peripheral blood, plasma and circulating monocytes from scleroderma patients compared to healthy EBV carriers, and that monocytes represent the prominent subsets of EBV-infected cells in scleroderma. Given that monocytes have the capacity to adhere to the endothelium, we then investigated whether monocyte-associated EBV could infect primary human endothelial cells. We demonstrated that endothelial cells are infectable by EBV, using human monocytes bound to recombinant EBV as a shuttle, even though cell-free virus failed to infect them. We show that EBV induces activation of TLR9 innate immune response and markers of vascular injury in infected endothelial cells and that up-regulation is associated with the expression of EBV lytic genes in infected cells. EBV innate immune modulation suggests a novel mechanism mediating inflammation, by which EBV triggers endothelial cell and vascular injury in scleroderma. In addition, our data point to up-regulation of EBV DNA loads as potential biomarker in developing vasculopathy in scleroderma. These findings provide the framework for the development of novel therapeutic interventions to shift the scleroderma treatment paradigm towards antiviral therapies.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Michael York
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program in Virology, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Maria Trojanowska
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
18
|
van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021; 19:e3001097. [PMID: 33596193 PMCID: PMC7888593 DOI: 10.1371/journal.pbio.3001097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adrian Reich
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Widespread Traces of Lytic Kaposi Sarcoma-Associated Herpesvirus in Primary Effusion Lymphoma at Single-Cell Resolution. Microbiol Resour Announc 2020; 9:9/45/e00851-20. [PMID: 33154001 PMCID: PMC7645656 DOI: 10.1128/mra.00851-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV genes. Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV genes.
Collapse
|
20
|
Abstract
Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV's discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.
Collapse
|
21
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
22
|
Mo X, Du S, Chen X, Wang Y, Liu X, Zhang C, Zhu C, Ding L, Li Y, Tong Y, Ju Q, Qu D, Tan F, Wei F, Cai Q. Lactate Induces Production of the tRNA His Half to Promote B-lymphoblastic Cell Proliferation. Mol Ther 2020; 28:2442-2457. [PMID: 32966775 DOI: 10.1016/j.ymthe.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
High plasma lactate is emerging as a critical regulator in development and progression of many human malignancies. Small RNAs derived from cleavage of mature tRNAs have been implicated in many cellular stresses, but the detailed mechanisms that respond to lactic acid (LA; acidic lactate) are not well defined. Here, using an Epstein-Barr virus (EBV)-immortalized B lymphoblastic cell line (LCL) as a model, we report that LA induces cleavage of mature tRNA at the anticodon loop, particularly production of three 5'-tRNA halves (5'-HisGUG, 5'-ValAAC, and 5'-GlyGCC), along with increased expression of RNA polymerase III and angiogenin (ANG). Of these, only the 5'-HisGUG half binds to the chromatin regulator argonaute-2 (AGO2) instead of the AGO1 protein for stability. Notably, the levels of ANG and 5'-HisGUG half expression in peripheral blood mononuclear cells from B cell lymphoma patients are tightly correlated with lactate dehydrogenase (LDH; a lactate indicator) in plasma. Silencing production of the 5'-HisGUG half by small interfering RNA or inhibition of ANG significantly reduces colony formation and growth of LA-induced tumor cells in vitro and in vivo using a murine xenograft model. Overall, our findings identify a novel molecular therapeutic target for the diagnosis and treatment of B cell lymphoma.
Collapse
Affiliation(s)
- Xiaohui Mo
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China; Central Laboratory, Shanghai Dermatology Hospital, Shanghai 200443, P.R. China
| | - Shujuan Du
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoting Chen
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuyan Wang
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoqing Liu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Chongqi Zhang
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Caixia Zhu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ling Ding
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ying Li
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Di Qu
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Tan
- Central Laboratory, Shanghai Dermatology Hospital, Shanghai 200443, P.R. China.
| | - Fang Wei
- Department of Dermatology, Renji Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Qiliang Cai
- MOE & NHC & CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China; Expert Workstation, Baoji Central Hospital, Baoji 721008, P.R. China.
| |
Collapse
|
23
|
Park YK, Lee SY, Lee AR, Kim K, Kim K, Kim K, Choi B. Antiviral activity of interferon-stimulated gene 20, as a putative repressor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 2020; 35:1426-1436. [PMID: 31951295 PMCID: PMC7497004 DOI: 10.1111/jgh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Interferon-stimulated gene 20 (ISG20) is an interferon-inducible exonuclease that inhibits the replication of several RNA viruses. In patients with chronic hepatitis B, ISG20 expression is related to the interferon-α treatment response. However, the molecular mechanism of ISG20-mediated anti-hepatitis B virus (HBV) activity is unclear. METHODS We have investigated the effect of ISG20 on antiviral activity to address that. The life cycle of HBV was analyzed by the ectopic expression of ISG20 in HepG2 and HepG2-NTCP cells. Finally, to provide physiological relevance of our study, the expression of ISG20 from chronic hepatitis B patients was examined. RESULTS Interferon-stimulated gene 20 was mainly induced by interferon-β and dramatically inhibited HBV replication. In addition, ISG20 decreased HBV gene expression and transcription. Although ISG20 inhibited HBV replication by reducing viral enhancer activity, the expression of transcription factors that bind the HBV enhancer was not affected. Particularly, ISG20 suppressed HBV enhancer activity by binding to the enhancer II and core promoter (EnhII/Cp) region. CONCLUSION Our findings suggest that ISG20 exerts the anti-HBV activity by acting as a putative repressor binding to the HBV EnhII/Cp region.
Collapse
Affiliation(s)
- Yong Kwang Park
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Kyung‐Chang Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kyun‐Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Byeong‐Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| |
Collapse
|
24
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
25
|
Atkins SL, Motaib S, Wiser LC, Hopcraft SE, Hardy PB, Shackelford J, Foote P, Wade AH, Damania B, Pagano JS, Pearce KH, Whitehurst CB. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Antiviral Res 2020; 173:104649. [PMID: 31711927 PMCID: PMC7017600 DOI: 10.1016/j.antiviral.2019.104649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Herpesviral deubiquitinating enzymes (DUBs) were discovered in 2005, are highly conserved across the family, and are proving to be increasingly important players in herpesviral infection. EBV's DUB, BPLF1, is known to regulate both cellular and viral target activities, yet remains largely unstudied. Our work has implicated BPLF1 in a wide range of processes including infectivity, viral DNA replication, and DNA repair. Additionally, knockout of BPLF1 delays and reduces human B-cell immortalization and lymphoma formation in humanized mice. These findings underscore the importance of BPLF1 in viral infectivity and pathogenesis and suggest that inhibition of EBV's DUB activity may offer a new approach to specific therapy for EBV infections. We set out to discover and characterize small molecule inhibitors of BPLF1 deubiquitinating activity through high-throughput screening. An initial small pilot screen resulted in discovery of 10 compounds yielding >80% decrease in BPLF1 DUB activity at a 10 μM concentration. Follow-up dose response curves of top hits identified several compounds with an IC50 in the low micromolar range. Four of these hits were tested for their ability to cleave ubiquitin chains as well as their effects on viral infectivity and cell viability. Further characterization of the top hit, commonly known as suramin was found to not be selective yet decreased viral infectivity by approximately 90% with no apparent effects on cell viability. Due to the conserved nature of Herpesviral deubiquitinating enzymes, identification of an inhibitor of BPLF1 may prove to be an effective and promising new avenue of therapy for EBV and other herpesviral family members.
Collapse
Affiliation(s)
- Sage L Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Safiyyah Motaib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura C Wiser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon E Hopcraft
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul B Hardy
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia Shackelford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ashley H Wade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph S Pagano
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
B Cell-Intrinsic SHP1 Expression Promotes the Gammaherpesvirus-Driven Germinal Center Response and the Establishment of Chronic Infection. J Virol 2019; 94:JVI.01232-19. [PMID: 31597758 DOI: 10.1128/jvi.01232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.
Collapse
|
27
|
Zarei Ghobadi M, Mozhgani SH, Farzanehpour M, Behzadian F. Identifying novel biomarkers of the pediatric influenza infection by weighted co-expression network analysis. Virol J 2019; 16:124. [PMID: 31665046 PMCID: PMC6819563 DOI: 10.1186/s12985-019-1231-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Background Despite the high yearly prevalence of Influenza, the pathogenesis mechanism and involved genes have not been fully known. Finding the patterns and mapping the complex interactions between different genes help us to find the possible biomarkers and treatment targets. Methods Herein, weighted gene co-expression network analysis (WGCNA) was employed to construct a co-expression network among genes identified by microarray analysis of the pediatric influenza-infected samples. Results Three of the 38 modules were found as the most related modules to influenza infection. At a functional level, we found that the genes in these modules regulate the immune responses, protein targeting, and defense to virus. Moreover, the analysis of differentially expressed genes disclosed 719 DEGs between the normal and infected subjects. The comprehensive investigation of genes in the module involved in immune system and viral defense (yellow module) revealed that SP110, HERC5, SAMD9L, RTP4, C19orf66, HELZ2, EPSTI1, and PHF11 which were also identified as DEGs (except C19orf66) have the potential to be as the biomarkers and also drug targeting for the treatment of pediatric influenza. Conclusions The WGCN analysis revealed co-expressed genes which were involved in the innate immune system and defense to virus. The differentially expressed genes in the identified modules can be considered for designing drug targets. Moreover, modules can help to find pathogenesis routes in the future.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health Tehran University of Medical Sciences, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahdieh Farzanehpour
- Department of Virology, School of Public Health Tehran University of Medical Sciences, Tehran, Iran
| | - Farida Behzadian
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
| |
Collapse
|
28
|
Wang C, Li D, Zhang L, Jiang S, Liang J, Narita Y, Hou I, Zhong Q, Zheng Z, Xiao H, Gewurz BE, Teng M, Zhao B. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. J Virol 2019; 93:e00226-19. [PMID: 31019051 PMCID: PMC6580941 DOI: 10.1128/jvi.00226-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) infection of human primary resting B lymphocytes (RBLs) leads to the establishment of lymphoblastoid cell lines (LCLs) that can grow indefinitely in vitro EBV transforms RBLs through the expression of viral latency genes, and these genes alter host transcription programs. To globally measure the transcriptome changes during EBV transformation, primary human resting B lymphocytes (RBLs) were infected with B95.8 EBV for 0, 2, 4, 7, 14, 21, and 28 days, and poly(A) plus RNAs were analyzed by transcriptome sequencing (RNA-seq). Analyses of variance (ANOVAs) found 3,669 protein-coding genes that were differentially expressed (false-discovery rate [FDR] < 0.01). Ninety-four percent of LCL genes that are essential for LCL growth and survival were differentially expressed. Pathway analyses identified a significant enrichment of pathways involved in cell proliferation, DNA repair, metabolism, and antiviral responses. RNA-seq also identified long noncoding RNAs (lncRNAs) differentially expressed during EBV infection. Clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) and CRISPR activation (CRISPRa) found that CYTOR and NORAD lncRNAs were important for LCL growth. During EBV infection, type III EBV latency genes were expressed rapidly after infection. Immediately after LCL establishment, EBV lytic genes were also expressed in LCLs, and ∼4% of the LCLs express gp350. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) and POLR2A chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET) data linked EBV enhancers to 90% of EBV-regulated genes. Many genes were linked to enhancers occupied by multiple EBNAs or NF-κB subunits. Incorporating these assays, we generated a comprehensive EBV regulome in LCLs.IMPORTANCE Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) is a useful model system to study EBV oncogenesis. By incorporating transcriptome sequencing (RNA-seq), chromatin immune precipitation followed by deep sequencing (ChIP-seq), chromatin interaction analysis followed by paired-end tag sequencing (ChIA-PET), and genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen, we identified key pathways that EBV usurps to enable B cell growth and transformation. Multiple layers of regulation could be achieved by cooperations between multiple EBV transcription factors binding to the same enhancers. EBV manipulated the expression of most cell genes essential for lymphoblastoid cell line (LCL) growth and survival. In addition to proteins, long noncoding RNAs (lncRNAs) regulated by EBV also contributed to LCL growth and survival. The data presented in this paper not only allowed us to further define the molecular pathogenesis of EBV but also serve as a useful resource to the EBV research community.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Difei Li
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luyao Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sizun Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isabella Hou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Zhong
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zeguang Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haipeng Xiao
- Department of Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Majerciak V, Yang W, Zheng J, Zhu J, Zheng ZM. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. J Virol 2019; 93:e01593-18. [PMID: 30355690 PMCID: PMC6321932 DOI: 10.1128/jvi.01593-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen associated with Burkitt's lymphoma and nasopharyngeal carcinoma. Although the EBV genome harbors more than a hundred genes, a full transcription map with EBV polyadenylation profiles remains unknown. To elucidate the 3' ends of all EBV transcripts genome-wide, we performed the first comprehensive analysis of viral polyadenylation sites (pA sites) using our previously reported polyadenylation sequencing (PA-seq) technology. We identified that EBV utilizes a total of 62 pA sites in JSC-1, 60 in Raji, and 53 in Akata cells for the expression of EBV genes from both plus and minus DNA strands; 42 of these pA sites are commonly used in all three cell lines. The majority of identified pA sites were mapped to the intergenic regions downstream of previously annotated EBV open reading frames (ORFs) and viral promoters. pA sites lacking an association with any known EBV genes were also identified, mostly for the minus DNA strand within the EBNA locus, a major locus responsible for maintenance of viral latency and cell transformation. The expression of these novel antisense transcripts to EBNA were verified by 3' rapid amplification of cDNA ends (RACE) and Northern blot analyses in several EBV-positive (EBV+) cell lines. In contrast to EBNA RNA expressed during latency, expression of EBNA-antisense transcripts, which is restricted in latent cells, can be significantly induced by viral lytic infection, suggesting potential regulation of viral gene expression by EBNA-antisense transcription during lytic EBV infection. Our data provide the first evidence that EBV has an unrecognized mechanism that regulates EBV reactivation from latency.IMPORTANCE Epstein-Barr virus represents an important human pathogen with an etiological role in the development of several cancers. By elucidation of a genome-wide polyadenylation landscape of EBV in JSC-1, Raji, and Akata cells, we have redefined the EBV transcriptome and mapped individual polymerase II (Pol II) transcripts of viral genes to each one of the mapped pA sites at single-nucleotide resolution as well as the depth of expression. By unveiling a new class of viral lytic RNA transcripts antisense to latent EBNAs, we provide a novel mechanism of how EBV might control the expression of viral latent genes and lytic infection. Thus, this report takes another step closer to understanding EBV gene structure and expression and paves a new path for antiviral approaches.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Zheng
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
31
|
Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 2018; 92:JVI.01062-18. [PMID: 30021895 DOI: 10.1128/jvi.01062-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.
Collapse
|
32
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
33
|
Ungerleider N, Concha M, Lin Z, Roberts C, Wang X, Cao S, Baddoo M, Moss WN, Yu Y, Seddon M, Lehman T, Tibbetts S, Renne R, Dong Y, Flemington EK. The Epstein Barr virus circRNAome. PLoS Pathog 2018; 14:e1007206. [PMID: 30080890 PMCID: PMC6095625 DOI: 10.1371/journal.ppat.1007206] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Our appreciation for the extent of Epstein Barr virus (EBV) transcriptome complexity continues to grow through findings of EBV encoded microRNAs, new long non-coding RNAs as well as the more recent discovery of over a hundred new polyadenylated lytic transcripts. Here we report an additional layer to the EBV transcriptome through the identification of a repertoire of latent and lytic viral circular RNAs. Utilizing RNase R-sequencing with cell models representing latency types I, II, and III, we identified EBV encoded circular RNAs expressed from the latency Cp promoter involving backsplicing from the W1 and W2 exons to the C1 exon, from the EBNA BamHI U fragment exon, and from the latency long non-coding RPMS1 locus. In addition, we identified circular RNAs expressed during reactivation including backsplicing from exon 8 to exon 2 of the LMP2 gene and a highly expressed circular RNA derived from intra-exonic backsplicing within the BHLF1 gene. While expression of most of these circular RNAs was found to depend on the EBV transcriptional program utilized and the transcription levels of the associated loci, expression of LMP2 exon 8 to exon 2 circular RNA was found to be cell model specific. Altogether we identified over 30 unique EBV circRNAs candidates and we validated and determined the structural features, expression profiles and nuclear/cytoplasmic distributions of several predominant and notable viral circRNAs. Further, we show that two of the EBV circular RNAs derived from the RPMS1 locus are detected in EBV positive clinical stomach cancer specimens. This study increases the known EBV latency and lytic transcriptome repertoires to include viral circular RNAs and it provides an essential foundation and resource for investigations into the functions and roles of this new class of EBV transcripts in EBV biology and diseases.
Collapse
Affiliation(s)
- Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Monica Concha
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Claire Roberts
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Xia Wang
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Yi Yu
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | | | - Terri Lehman
- Reprocell USA, Beltsville, MD, United States of America
| | - Scott Tibbetts
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Erik K. Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| |
Collapse
|
34
|
Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018; 14:e1007114. [PMID: 29864140 PMCID: PMC6005644 DOI: 10.1371/journal.ppat.1007114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/14/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) lytic replication proceeds through an ordered cascade of gene expression that integrates lytic DNA amplification and late gene transcription. We and others previously demonstrated that 6 EBV proteins that have orthologs in β- and γ-, but not in α-herpesviruses, mediate late gene transcription in a lytic DNA replication-dependent manner. We proposed a model in which the βγ gene-encoded viral pre-initiation complex (vPIC) mediates transcription from newly replicated viral DNA. While this model explains the dependence of late gene transcription on lytic DNA replication, it does not account for this dependence in α-herpesviruses nor for recent reports that some EBV late genes are transcribed independently of vPIC. To rigorously define which transcription start sites (TSS) are dependent on viral lytic DNA replication or the βγ complex, we performed Cap Analysis of Gene Expression (CAGE)-seq on cells infected with wildtype EBV or EBV mutants defective for DNA replication, βγ function, or lacking an origin of lytic replication (OriLyt). This approach identified 16 true-late, 32 early, and 16 TSS that are active at low levels early and are further upregulated in a DNA replication-dependent manner (leaky late). Almost all late gene transcription is vPIC-dependent, with BCRF1 (vIL10), BDLF2, and BDLF3 transcripts being notable exceptions. We present evidence that leaky late transcription is not due to a distinct mechanism, but results from superimposition of the early and late transcription mechanisms at the same promoter. Our results represent the most comprehensive characterization of EBV lytic gene expression kinetics reported to date and suggest that most, but not all EBV late genes are vPIC-dependent.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
35
|
Lactic Acid Downregulates Viral MicroRNA To Promote Epstein-Barr Virus-Immortalized B Lymphoblastic Cell Adhesion and Growth. J Virol 2018; 92:JVI.00033-18. [PMID: 29444941 DOI: 10.1128/jvi.00033-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 01/23/2023] Open
Abstract
High plasma lactate is associated with poor prognosis of many malignancies, but its role in virally mediated cancer progression and underlying molecular mechanisms are unclear. Epstein-Barr virus (EBV), the first human oncogenic virus, causes several cancers, including B-cell lymphoma. Here, we report that lactate dehydrogenase A (LDH-A) expression and lactate production are elevated in EBV-immortalized B lymphoblastic cells, and lactic acid (LA; acidic lactate) at low concentration triggers EBV-infected B-cell adhesion, morphological changes, and proliferation in vitro and in vivo Moreover, LA-induced responses of EBV-infected B cells uniquely occurs in viral latency type III, and it is dramatically associated with the inhibition of global viral microRNAs, particularly the miR-BHRF1 cluster, and the high expression of SMAD3, JUN, and COL1A genes. The introduction of miR-BHRF1-1 blocks the LA-induced effects of EBV-infected B cells. Thus, this may be a novel mechanism to explain EBV-immortalized B lymphoblastic cell malignancy in an LA microenvironment.IMPORTANCE The tumor microenvironment is complicated, and lactate, which is created by cell metabolism, contributes to an acidic microenvironment that facilitates cancer progression. However, how LA operates in virus-associated cancers is unclear. Thus, we studied how EBV (the first tumor virus identified in humans; it is associated with many cancers) upregulates the expression of LDH-A and lactate production in B lymphoma cells. Elevated LA induces adhesion and the growth of EBV-infected B cells by inhibiting viral microRNA transcription. Thus, we offer a novel understanding of how EBV utilizes an acidic microenvironment to promote cancer development.
Collapse
|
36
|
Dugan JP, Haverkos BM, Villagomez L, Martin LK, Lustberg M, Patton J, Martin M, Huang Y, Nuovo G, Yan F, Cavaliere R, Fingeroth J, Kenney SC, Ambinder RF, Lozanski G, Porcu P, Caligiuri MA, Baiocchi RA. Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone. Clin Cancer Res 2018; 24:3273-3281. [PMID: 29632007 DOI: 10.1158/1078-0432.ccr-17-2685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/31/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Purpose: Primary central nervous system posttransplant lymphoproliferative disorder (PCNS-PTLD) is a complication of solid organ transplantation with a poor prognosis and typically associated with Epstein-Barr virus (EBV). We hypothesized EBV lytic-phase protein expression would allow successful treatment with antiviral therapy.Patients and Methods: Thirteen patients were treated with zidovudine (AZT), ganciclovir (GCV), dexamethasone, and rituximab in EBV+ PCNS-PTLD. Twice-daily, intravenous AZT 1,500 mg, GCV 5 mg/kg, and dexamethasone 10 mg were given for 14 days. Weekly rituximab 375 mg/m2 was delivered for the first 4 weeks. Twice-daily valganciclovir 450 mg and AZT 300 mg started day 15. Lytic and latent protein expression was assessed using in situ hybridization and immunohistochemistry. Immunoblot assay assessed lytic gene activation. Cells transfected with lytic kinase vectors were assessed for sensitivity to our therapy using MTS tetrazolium and flow cytometry.Results: The median time to response was 2 months. Median therapy duration was 26.5 months. Median follow-up was 52 months. The estimated 2-year overall survival (OS) was 76.9% (95% CI, 44.2%-91.9%). Overall response rate (ORR) was 92% (95% CI, 64%-100%). BXLF1/vTK and BGLF4 expression was found in the seven tumor biopsies evaluated. Lytic gene expression was induced in vitro using the four-drug regimen. Transfection with viral kinase cDNA increased cellular sensitivity to antiviral therapy.Conclusions: EBV+ PCNS-PTLD expressed lytic kinases and therapy with AZT, GCV, rituximab and dexamethasone provided durable responses. Induction of the lytic protein expression and increased cellular sensitivity to antiviral therapy after transfection with viral kinase cDNA provides a mechanistic rationale for our approach. Clin Cancer Res; 24(14); 3273-81. ©2018 AACR.
Collapse
Affiliation(s)
- James P Dugan
- Division of Hematology, University of Colorado, Aurora, Colorado
| | | | - Lynda Villagomez
- Department of Internal Medicine, Mt Sinai School of Medicine, New York, New York
| | - Ludmila K Martin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Mark Lustberg
- Division of Infectious Disease, The Ohio State University, Columbus, Ohio
| | - John Patton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Marisa Martin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Ying Huang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gerard Nuovo
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Fengting Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Robert Cavaliere
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio
| | | | - Shannon C Kenney
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Gerard Lozanski
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio
| | - Pierluigi Porcu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
37
|
The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel) 2018; 10:cancers10040098. [PMID: 29601503 PMCID: PMC5923353 DOI: 10.3390/cancers10040098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) is characterized by a bipartite life cycle in which latent and lytic stages are alternated. Latency is compatible with long-lasting persistency within the infected host, while lytic expression, preferentially found in oropharyngeal epithelial tissue, is thought to favor host-to-host viral dissemination. The clinical importance of EBV relates to its association with cancer, which we think is mainly a consequence of the latency/persistency mechanisms. However, studies in murine models of tumorigenesis/lymphomagenesis indicate that the lytic cycle also contributes to cancer formation. Indeed, EBV lytic expression is often observed in established cell lines and tumor biopsies. Within the lytic cycle EBV expresses a handful of immunomodulatory (BCRF1, BARF1, BNLF2A, BGLF5 & BILF1) and anti-apoptotic (BHRF1 & BALF1) proteins. In this review, we discuss the evidence supporting an abortive lytic cycle in which these lytic genes are expressed, and how the immunomodulatory mechanisms of EBV and related herpesviruses Kaposi Sarcoma herpesvirus (KSHV) and human cytomegalovirus (HCMV) result in paracrine signals that feed tumor cells. An abortive lytic cycle would reconcile the need of lytic expression for viral tumorigenesis without relaying in a complete cycle that would induce cell lysis to release the newly formed infective viral particles.
Collapse
|
38
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
39
|
Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency. Virol J 2017; 14:221. [PMID: 29132393 PMCID: PMC5683537 DOI: 10.1186/s12985-017-0891-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) exhibits both lytic and latent (Lat. I, II, and III) phases in an infected individual. It's during the latent phase of EBV that all EBV-associated cancers, including Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease arise. Interferon-γ-inducible protein 16 (IFI16) is a well-established innate immune sensor and viral transcriptional regulator involved in response to invading DNA viruses. During latency, IFI16 remains in the nucleus, in part bound to the EBV genome; however, neither its role in EBV lytic cycle or latency has been established. METHODS Short interfering RNA against IFI16 and IFI16 overexpression were used to identify the role of IFI16 in the maintenance of EBV latency I. We also studied how induction of the lytic cycle affected IFI16 using the EBV positive, latently infected Akata or MUTU-1 cell lines. Akata cells were induced with TPA and MUTU-1 cells with TGF-β up to 96 h and changes in IFI16 protein were analyzed by Western blotting and immunofluorescence microscopy. To assess the mechanism of IFI16 decrease, EBV DNA replication and late lytic transcripts were blocked using the viral DNA polymerase inhibitor phosphonoacetic acid. RESULTS Knockdown of IFI16 mRNA by siRNA resulted in enhanced levels of EBV lytic gene expression from all temporal gene classes, as well as an increase in the total EBV genome abundance, whereas overexpression of exogenous IFI16 reversed these effects. Furthermore, 96 h after induction of the lytic cycle with either TPA (Akata) or TGF-β (MUTU-1), IFI16 protein levels decreased up to 80% as compared to the EBV-negative cell line BJAB. Reduction in IFI16 was observed in cells expressing EBV lytic envelope glycoprotein. The decreased levels of IFI16 protein do not appear to be dependent on late lytic transcripts of EBV but suggest involvement of the immediate early, early, or a combination of both gene classes. CONCLUSIONS Reduction of IFI16 protein levels following lytic cycle induction, as well as reactivation from latency after IFI16 mRNA knockdown suggests that IFI16 is crucial for the maintenance of EBV latency. More importantly, these results identify IFI16 as a unique host factor protein involved in the EBV lifecycle, making it a potential therapeutic target to combat EBV-related malignancies.
Collapse
Affiliation(s)
- Gina Pisano
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA.
| | - Arunava Roy
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mairaj Ahmed Ansari
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Binod Kumar
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Leela Chikoti
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Bala Chandran
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
40
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
41
|
Lv DW, Zhong J, Zhang K, Pandey A, Li R. Understanding Epstein-Barr Virus Life Cycle with Proteomics: A Temporal Analysis of Ubiquitination During Virus Reactivation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:27-37. [PMID: 28271981 DOI: 10.1089/omi.2016.0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus associated with cancer, including Burkitt lymphoma, nasopharyngeal, and gastric carcinoma. EBV reactivation in latently infected B cells is essential for persistent infection whereby B cell receptor (BCR) activation is a physiologically relevant stimulus. Yet, a global view of BCR activation-regulated protein ubiquitination is lacking when EBV is actively replicating. We report here, for the first time, the long-term effects of IgG cross-linking-regulated protein ubiquitination and offer a basis for dissecting the cellular environment during the course of EBV lytic replication. Using the Akata-BX1 (EBV+) and Akata-4E3 (EBV-) Burkitt lymphoma cells, we monitored the dynamic changes in protein ubiquitination using quantitative proteomics. We observed temporal alterations in the level of ubiquitination at ∼150 sites in both EBV+ and EBV- B cells post-IgG cross-linking, compared with controls with no cross-linking. The majority of protein ubiquitination was downregulated. The upregulated ubiquitination events were associated with proteins involved in RNA processing. Among the downregulated ubiquitination events were proteins involved in apoptosis, ubiquitination, and DNA repair. These comparative and quantitative proteomic observations represent the first analysis on the effects of IgG cross-linking at later time points when the majority of EBV genes are expressed and the viral genome is actively being replicated. In all, these data enhance our understanding of mechanistic linkages connecting protein ubiquitination, RNA processing, apoptosis, and the EBV life cycle.
Collapse
Affiliation(s)
- Dong-Wen Lv
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Jun Zhong
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kun Zhang
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia
| | - Akhilesh Pandey
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Diana Helis Henry Medical Research Foundation , New Orleans, Louisiana
| | - Renfeng Li
- 1 Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University , Richmond, Virginia.,5 Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia.,6 Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
42
|
Dyson OF, Pagano JS, Whitehurst CB. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1. J Virol 2017; 91:JVI.00600-17. [PMID: 28724765 PMCID: PMC5599766 DOI: 10.1128/jvi.00600-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication.IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production.
Collapse
Affiliation(s)
- Ossie F Dyson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher B Whitehurst
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2017; 91:JVI.00312-17. [PMID: 28794023 DOI: 10.1128/jvi.00312-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers.IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology.
Collapse
|
44
|
The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Sci Rep 2017; 7:6044. [PMID: 28729695 PMCID: PMC5519699 DOI: 10.1038/s41598-017-06413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with several malignancies. It establishes a latent infection in B lymphocytes and is occasionally reactivated to enter the lytic cycle. Here we examined the role of the EBV gene BRRF1, which is expressed in the lytic state. We first confirmed, using a DNA polymerase inhibitor, that the BRRF1 gene is expressed with early kinetics. A BRRF1-deficient recombinant virus was constructed using a bacterial artificial chromosome system. No obvious differences were observed between the wild-type, BRRF1-deficient mutant and the revertant virus in HEK293 cells in terms of viral lytic protein expression, viral DNA synthesis, progeny production, pre-latent abortive lytic gene expression and transformation of primary B cells. However, reporter assays indicated that BRRF1 may activate transcription in promoter- and cell type-dependent manners. Taken together, BRRF1 is dispensable for viral replication in HEK293 cells and transformation of B cells, but it may have effects on transcription.
Collapse
|
45
|
Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA. Arsenic trioxide inhibits EBV reactivation and promotes cell death in EBV-positive lymphoma cells. Virol J 2017. [PMID: 28637474 PMCID: PMC5480106 DOI: 10.1186/s12985-017-0784-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Epstein-Barr Virus (EBV) is associated with hematopoietic malignancies, such as Burkitt’s lymphoma, post-transplantation lymphoproliferative disorder, and diffuse large B-cell lymphoma. The current approach for EBV-associated lymphoma involves chemotherapy to eradicate cancer cells, however, normal cells may be injured and organ dysfunction may occur with currently employed regimens. This research is focused on employing arsenic trioxide (ATO) as EBV-specific cancer therapy takes advantage of the fact the EBV resides within the malignant cells. Methods and results Our research reveals that low ATO inhibits EBV gene expression and genome replication. EBV spontaneous reactivation starts as early as 6 h after re-suspending EBV-positive Mutu cells in RPMI media in the absence of ATO, however this does not occur in Mutu cells cultured with ATO. ATO’s inhibition of EBV spontaneous reactivation is dose dependent. The expression of the EBV immediate early gene Zta and early gene BMRF1 is blocked with low concentrations of ATO (0.5 nM – 2 nM) in EBV latency type I cells and EBV-infected PBMC cells. The combination of ATO and ganciclovir further diminishes EBV gene expression. ATO-mediated reduction of EBV gene expression can be rescued by co-treatment with the proteasome inhibitor MG132, indicating that ATO promotes ubiquitin conjugation and proteasomal degradation of EBV genes. Co-immunoprecipitation assays with antibodies against Zta pulls down more ubiquitin in ATO treated cell lysates. Furthermore, MG132 reverses the inhibitory effect of ATO on anti-IgM-, PMA- and TGF-β-mediated EBV reactivation. Thus, mechanistically ATO’s inhibition of EBV gene expression occurs via the ubiquitin pathway. Moreover, ATO treatment results in increased cell death in EBV-positive cells compared to EBV-negative cells, as demonstrated by both MTT and trypan blue assays. ATO-induced cell death in EBV-positive cells is dose dependent. ATO and ganciclovir in combination further enhances cell death specifically in EBV-positive cells. Conclusion ATO-mediated inhibition of EBV lytic gene expression results in cell death selectively in EBV-positive lymphocytes, suggesting that ATO may potentially serve as a drug to treat EBV-related lymphomas in the clinical setting.
Collapse
Affiliation(s)
- Qinyan Yin
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mark Sides
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.,Department of Internal Medicine, University of Texas Medical Branch, 300 University Blvd, Galveston, TX, 77550, USA
| | - Christopher H Parsons
- Department of Internal Medicine, Louisiana University School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
46
|
Ersing I, Nobre L, Wang LW, Soday L, Ma Y, Paulo JA, Narita Y, Ashbaugh CW, Jiang C, Grayson NE, Kieff E, Gygi SP, Weekes MP, Gewurz BE. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells. Cell Rep 2017; 19:1479-1493. [PMID: 28514666 PMCID: PMC5446956 DOI: 10.1016/j.celrep.2017.04.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 04/20/2017] [Indexed: 01/10/2023] Open
Abstract
Epstein-Barr virus (EBV) replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.
Collapse
Affiliation(s)
- Ina Ersing
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Liang Wei Wang
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Virology Program, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yijie Ma
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Immunobiology and Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Camille W Ashbaugh
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | - Elliott Kieff
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Immunobiology and Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA; Harvard Virology Program, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Phan AT, Martinez DM, Miranda JJL. RNA-seq detects pharmacological inhibition of Epstein-Barr virus late transcription during spontaneous reactivation. GENOMICS DATA 2017; 13:5-6. [PMID: 28560170 PMCID: PMC5443917 DOI: 10.1016/j.gdata.2017.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
The stepwise and sequential expression of viral genes underlies progression of the infectious life cycle. The Epstein-Barr virus (EBV) is both a tractable model for elucidating principles of transcription as well as a global health threat. We describe an experimental protocol and bioinformatics pipeline for functional identification of EBV true late genes, the last step of transcription prior to virion packaging and egress. All data have been uploaded to the Gene Expression Omnibus under accession code GSE96689. The key improvement over previous approaches is leveraging the sensitivity of RNA-seq to detect gene expression changes during spontaneous reactivation.
Collapse
Affiliation(s)
- An T. Phan
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Delsy M. Martinez
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | - JJ L. Miranda
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
- Corresponding author at: UCSF, Cellular and Molecular Pharmacology, Box 2280, 600 16th St., San Francisco, CA 94143, USA.UCSFCellular and Molecular PharmacologyBox 2280, 600 16th St.San FranciscoCA94143USA
| |
Collapse
|
48
|
Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. J Virol 2017; 91:JVI.02438-16. [PMID: 28179525 DOI: 10.1128/jvi.02438-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated diseases of epithelial cells, including tumors that have latent infection, such as nasopharyngeal carcinoma (NPC), and oral hairy leukoplakia (OHL) lesions that have lytic infection, frequently express the viral latent membrane protein 1 (LMP1). In lytically infected cells, LMP1 expression is activated by the BRLF1 (R) immediate early (IE) protein. However, the mechanisms by which LMP1 expression is normally regulated in epithelial cells remain poorly understood, and its potential roles in regulating lytic reactivation in epithelial cells are as yet unexplored. We previously showed that the differentiation-dependent cellular transcription factors KLF4 and BLIMP1 induce lytic EBV reactivation in epithelial cells by synergistically activating the two EBV immediate early promoters (Zp and Rp). Here we show that epithelial cell differentiation also induces LMP1 expression. We demonstrate that KLF4 and BLIMP1 cooperatively induce the expression of LMP1, even in the absence of the EBV IE proteins BZLF1 (Z) and R, via activation of the two LMP1 promoters. Furthermore, we found that differentiation of NOKs-Akata cells by either methylcellulose suspension or organotypic culture induces LMP1 expression prior to Z and R expression. We show that LMP1 enhances the lytic infection-inducing effects of epithelial cell differentiation, as well as 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate treatment, in EBV-infected epithelial cells by increasing expression of the Z and R proteins. Our results suggest that differentiation of epithelial cells activates a feed-forward loop in which KLF4 and BLIMP1 first activate LMP1 expression and then cooperate with LMP1 to activate Z and R expression.IMPORTANCE The EBV protein LMP1 is expressed in EBV-associated epithelial cell diseases, regardless of whether these diseases are due to lytic infection (such as oral hairy leukoplakia) or latent infection (such as nasopharyngeal carcinoma). However, surprisingly little is known about how LMP1 expression is regulated in epithelial cells, and there are conflicting reports about whether it plays any role in regulating viral lytic reactivation. In this study, we show that epithelial cell differentiation induces LMP1 expression by increasing expression of two cellular transcription factors (KLF4 and BLIMP1) which cooperatively activate the two LMP1 promoters. We also demonstrate that LMP1 promotes efficient lytic reactivation in EBV-infected epithelial cells by enhancing expression of the Z and R proteins. Thus, in EBV-infected epithelial cells, LMP1 expression is promoted by differentiation and positively regulates lytic viral reactivation.
Collapse
|
49
|
Zheng Z, Wang L, Pan J. Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: Review and outlook. Intractable Rare Dis Res 2017; 6:35-40. [PMID: 28357179 PMCID: PMC5359350 DOI: 10.5582/irdr.2017.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interferon-stimulated exonuclease gene 20 (ISG20) is an RNA exonuclease in the yeast RNA exonuclease 4 homolog (REX4) subfamily and the DEDDh exonuclease family, and this gene codes for a 20-kDa protein. Those exonucleases are involved in cleaving single-stranded RNA and DNA. ISG20 is also referred to as HEM45 (HeLa estrogen-modulated, band 45). Expression of ISG20 can be induced or regulated by both type I and II interferons (IFNs) in various cell lines. ISG20 plays a role in mediating interferon's antiviral activities. In addition, ISG20 may be a potential susceptibility biomarker or pharmacological target in some inflammatory conditions. Exonucleases are useful components of many physiological processes. Despite recent advances in our understanding of the functions of ISG20, much work remains to be done with regard to uncovering the mechanism of action of ISG20 in specific diseases and adapting ISG20 for use as a biomarker of disease. This review describes current information on ISG20 and its potential use in marking disease. This review describes several research achievements thus far and it seeks to provide some new ideas for future related research.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
50
|
McKenzie J, Lopez-Giraldez F, Delecluse HJ, Walsh A, El-Guindy A. The Epstein-Barr Virus Immunoevasins BCRF1 and BPLF1 Are Expressed by a Mechanism Independent of the Canonical Late Pre-initiation Complex. PLoS Pathog 2016; 12:e1006008. [PMID: 27855219 PMCID: PMC5113994 DOI: 10.1371/journal.ppat.1006008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Subversion of host immune surveillance is a crucial step in viral pathogenesis. Epstein-Barr virus (EBV) encodes two immune evasion gene products, BCRF1 (viral IL-10) and BPLF1 (deubiquitinase/deneddylase); both proteins suppress antiviral immune responses during primary infection. The BCRF1 and BPLF1 genes are expressed during the late phase of the lytic cycle, an essential but poorly understood phase of viral gene expression. Several late gene regulators recently identified in beta and gamma herpesviruses form a viral pre-initiation complex for transcription. Whether each of these late gene regulators is necessary for transcription of all late genes is not known. Here, studying viral gene expression in the absence and presence of siRNAs to individual components of the viral pre-initiation complex, we identified two distinct groups of late genes. One group includes late genes encoding the two immunoevasins, BCRF1 and BPLF1, and is transcribed independently of the viral pre-initiation complex. The second group primarily encodes viral structural proteins and is dependent on the viral pre-initiation complex. The protein kinase BGLF4 is the only known late gene regulator necessary for expression of both groups of late genes. ChIP-seq analysis showed that the transcription activator Rta associates with the promoters of eight late genes including genes encoding the viral immunoevasins. Our results demonstrate that late genes encoding immunomodulatory proteins are transcribed by a mechanism distinct from late genes encoding viral structural proteins. Understanding the mechanisms that specifically regulate expression of the late immunomodulatory proteins could aid the development of antiviral drugs that impair immune evasion by the oncogenic EB virus. Late proteins are expressed during the productive cycle of Epstein-Barr virus (EBV) after the onset of viral DNA replication. Many late proteins serve structural functions; they form the capsid shell around the viral genome or mediate attachment and fusion of the virus to the host cell. EBV also encodes two late proteins that suppress the immune system during primary infection. The current model suggests that transcription of all late genes is regulated by a common mechanism involving seven late gene regulators. Here, we demonstrate that late genes encoding two viral immune suppressants are transcribed by a mechanism different from that regulating late genes encoding structural proteins. Abolishing expression of the late immunomodulators without disrupting expression of the antigenic viral structural proteins could serve as an approach to block EBV de novo infection and its associated malignancies.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis (YCGA), Yale University, West Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|