1
|
Yang Y, Brown MC, Zhang G, Stevenson K, Mohme M, Kornahrens R, Bigner DD, Ashley DM, López GY, Gromeier M. Polio virotherapy targets the malignant glioma myeloid infiltrate with diffuse microglia activation engulfing the CNS. Neuro Oncol 2023; 25:1631-1643. [PMID: 36864784 PMCID: PMC10479910 DOI: 10.1093/neuonc/noad052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Malignant gliomas commandeer dense inflammatory infiltrates with glioma-associated macrophages and microglia (GAMM) promoting immune suppression, evasion, and tumor progression. Like all cells in the mononuclear phagocytic system, GAMM constitutively express the poliovirus receptor, CD155. Besides myeloid cells, CD155 is widely upregulated in the neoplastic compartment of malignant gliomas. Intratumor treatment with the highly attenuated rhino:poliovirus chimera, PVSRIPO, yielded long-term survival with durable radiographic responses in patients with recurrent glioblastoma (Desjardins et al. New England Journal of Medicine, 2018). This scenario raises questions about the contributions of myeloid versus neoplastic cells to polio virotherapy of malignant gliomas. METHODS We investigated PVSRIPO immunotherapy in immunocompetent mouse brain tumor models with blinded, board-certified neuropathologist review, a range of neuropathological, immunohistochemical, and immunofluorescence analyses, and RNAseq of the tumor region. RESULTS PVSRIPO treatment caused intense engagement of the GAMM infiltrate associated with substantial, but transient tumor regression. This was accompanied by marked microglia activation and proliferation in normal brain surrounding the tumor, in the ipsilateral hemisphere and extending into the contralateral hemisphere. There was no evidence for lytic infection of malignant cells. PVSRIPO-instigated microglia activation occurred against a backdrop of sustained innate antiviral inflammation, associated with induction of the Programmed Cell Death Ligand 1 (PD-L1) immune checkpoint on GAMM. Combining PVSRIPO with PD1/PD-L1 blockade led to durable remissions. CONCLUSIONS Our work implicates GAMM as active drivers of PVSRIPO-induced antitumor inflammation and reveals profound and widespread neuroinflammatory activation of the brain-resident myeloid compartment by PVSRIPO.
Collapse
Affiliation(s)
- Yuanfan Yang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Gao Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Kevin Stevenson
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reb Kornahrens
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Darell D Bigner
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Giselle Y López
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
2
|
Olivet MM, Brown MC, Reitman ZJ, Ashley DM, Grant GA, Yang Y, Markert JM. Clinical Applications of Immunotherapy for Recurrent Glioblastoma in Adults. Cancers (Basel) 2023; 15:3901. [PMID: 37568717 PMCID: PMC10416859 DOI: 10.3390/cancers15153901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.
Collapse
Affiliation(s)
- Meagan Mandabach Olivet
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Michael C. Brown
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA;
| | - David M. Ashley
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Yuanfan Yang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
3
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
4
|
Muacevic A, Adler JR, Bisen YT, Iratwar S, Kesharwani A, Vardhan S, Singh A. Emerging Recombinant Oncolytic Poliovirus Therapies Against Malignant Glioma: A Review. Cureus 2023; 15:e34028. [PMID: 36814733 PMCID: PMC9939956 DOI: 10.7759/cureus.34028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/21/2023] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a fourth-grade malignant glioma that continues to be the main contributor to primary malignant brain tumour-related death in humans. The most prevalent primary brain tumours are gliomas. The most dangerous of these neoplasms, GBM, has been shown to be one of the most lethal and refractory tumours. For those who have been diagnosed with GBM, the median time to progression, as determined by magnetic resonance imaging, is roughly six months, and the median survival is approximately one year. GBM is challenging to manage with old treatments like chemotherapy, tumour debulking, and radiation therapy. Treatment outcomes are poor, and due to this effect, the treatment is not up to the mark. GBM also shows diagnostic complexity due to limitations in the use of specific targeted therapies. The treatment protocol followed currently has an entire focus on safe resection and radiotherapy. Protein synthesis is not tightly regulated physiologically in malignant cells, which promotes unchecked growth and proliferation. An innovative, experimental technique for treating cancer uses polioviruses that have been genetically altered to target a fascinating aberration of translation regulation in cancer. This approach enables precise and effective cancer cell targeting based on the convergence of numerous variables. Oncolytic viruses have revolutionised cancer treatment. However, their effectiveness in glioblastoma remains restricted, necessitating more improvement. Oncolytic poliovirus has shown great potential in the treatment of GBM. Factors like the blood-brain barrier, immunosuppressive tumour microenvironment (TME), and tumour heterogeneity make treatment for malignant gliomas ineffective. In this review, we have focused on oncolytic viruses, specifically oncolytic poliovirus, and we explore malignant glioma treatments. We have also discussed currently available conventional treatment options for malignant glioma and other brain tumours.
Collapse
|
5
|
Dobrikov MI, Dobrikova EY, McKay ZP, Kastan JP, Brown MC, Gromeier M. PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. mBio 2022; 13:e0085422. [PMID: 35652592 PMCID: PMC9239082 DOI: 10.1128/mbio.00854-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
For RNA virus families except Picornaviridae, viral RNA sensing includes Toll-like receptors and/or RIG-I. Picornavirus RNAs, whose 5' termini are shielded by a genome-linked protein, are predominately recognized by MDA5. This has important ramifications for adaptive immunity, as MDA5-specific patterns of type-I interferon (IFN) release are optimal for CD4+T cell TH1 polarization and CD8+T cell priming. We are exploiting this principle for cancer immunotherapy with recombinant poliovirus (PV), PVSRIPO, the type 1 (Sabin) PV vaccine containing a rhinovirus type 2 internal ribosomal entry site (IRES). Here we show that PVSRIPO-elicited MDA5 signaling is preceded by early sensing of the IRES by the double-stranded (ds)RNA-activated protein kinase (PKR). PKR binding to IRES stem-loop domains 5-6 led to dimerization and autoactivation, displaced host translation initiation factors, and suppressed viral protein synthesis. Early PKR-mediated antiviral responses tempered incipient viral translation and the activity of cytopathogenic viral proteinases, setting up accentuated MDA5 innate inflammation in response to PVSRIPO infection. IMPORTANCE Among the RIG-I-like pattern recognition receptors, MDA5 stands out because it senses long dsRNA duplexes independent of their 5' features (RIG-I recognizes viral [v]RNA 5'-ppp blunt ends). Uniquely among RNA viruses, the innate defense against picornaviruses is controlled by MDA5. We show that prior to engaging MDA5, recombinant PV RNA is sensed upon PKR binding to the viral IRES at a site that overlaps with the footprint for host translation factors mediating 40S subunit recruitment. Our study demonstrates that innate antiviral type-I IFN responses orchestrated by MDA5 involve separate innate modules that recognize distinct vRNA features and interfere with viral functions at multiple levels.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
6
|
Hamad A, Soboleva AV, Vorobyev PO, Mahmoud M, Vasilenko KV, Chumakov PM, Lipatova AV. Development of a recombinant oncolytic poliovirus type 3 strain with altered cell tropism. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diffuse gliomas are incurable, prevalent, and aggressive central nervous system tumors. Therefore, the development of selective oncolytic viral strains for malignant neoplasms is highly relevant. This study aimed to create an oncolytic virus based on a vaccine strain of poliovirus type 3 with natural antitumor activity. To achieve this goal, we replaced the internal ribosome entry site (IRES) of poliovirus with the corresponding fragment of human rhinovirus 30. The resulting recombinant oncolytic strain RVP3 retained the serotype of poliovirus type 3, as confirmed by virus neutralization micro-test with specific antiserum. In addition, the oncolytic efficacy of RVP3 was assessed in vitro on a broad panel of cell cultures. According to the results, RVP3 has changed its tropism, losing the ability to replicate in conditionally normal cell lines of embryonic astrocytes and embryonic fibroblasts while retaining the ability to replicate in tumor cells.
Collapse
Affiliation(s)
- A Hamad
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Soboleva
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - PO Vorobyev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - M Mahmoud
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | - PM Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - AV Lipatova
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|
7
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
8
|
Estevez-Ordonez D, Chagoya G, Salehani A, Atchley TJ, Laskay NMB, Parr MS, Elsayed GA, Mahavadi AK, Rahm SP, Friedman GK, Markert JM. Immunovirotherapy for the Treatment of Glioblastoma and Other Malignant Gliomas. Neurosurg Clin N Am 2021; 32:265-281. [PMID: 33781507 DOI: 10.1016/j.nec.2020.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) represents one of the most challenging malignancies due to many factors including invasiveness, heterogeneity, and an immunosuppressive microenvironment. Current treatment modalities have resulted in only modest effect on outcomes. The development of viral vectors for oncolytic immunovirotherapy and targeted drug delivery represents a promising therapeutic prospect for GBM and other brain tumors. A host of genetically engineered viruses, herpes simplex virus, poliovirus, measles, and others, have been described and are at various stages of clinical development. Herein we provide a review of the advances and current state of oncolytic virotherapy for the targeted treatment of GBM and malignant gliomas.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Arsalaan Salehani
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Travis J Atchley
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Matthew S Parr
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Galal A Elsayed
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Anil K Mahavadi
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Sage P Rahm
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA; Department of Pediatrics, Division of Pediatric Hematology-Oncology, The University of Alabama at Birmingham
| | - James M Markert
- Department of Neurosurgery, Neurosurgery, Pediatrics, and Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA.
| |
Collapse
|
9
|
Mosaheb MM, Brown MC, Dobrikova EY, Dobrikov MI, Gromeier M. Harnessing virus tropism for dendritic cells for vaccine design. Curr Opin Virol 2020; 44:73-80. [PMID: 32771959 DOI: 10.1016/j.coviro.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are pivotal stimulators of T cell responses. They provide essential signals (epitope presentation, proinflammatory cytokines, co-stimulation) to T cells and prime adaptive immunity. Therefore, they are paramount to immunization strategies geared to generate T cell immunity. The inflammatory signals DCs respond to, classically occur in the context of acute virus infection. Yet, enlisting viruses for engaging DCs is hampered by their penchant for targeting DCs with sophisticated immune evasive and suppressive ploys. In this review, we discuss our work on devising vectors based on a recombinant polio:rhinovirus chimera for effectively targeting and engaging DCs. We are juxtaposing this approach with commonly used, recently studied dsDNA virus vector platforms.
Collapse
Affiliation(s)
- Mubeen M Mosaheb
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Michael C Brown
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Elena Y Dobrikova
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Mikhail I Dobrikov
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Matthias Gromeier
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States.
| |
Collapse
|
10
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
11
|
Mosaheb MM, Dobrikova EY, Brown MC, Yang Y, Cable J, Okada H, Nair SK, Bigner DD, Ashley DM, Gromeier M. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun 2020; 11:524. [PMID: 31988324 PMCID: PMC6985231 DOI: 10.1038/s41467-019-13939-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. Here we devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; they recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in murine tumor models. Experimental PVSRIPO oncolytic virus therapy of glioblastoma has shown long-term efficacy in a subset of patients. Here the authors engineer the virus to enable incorporation of tumor-specific antigens, and show proof-of-principle evidence that this modification increases anti-tumor immunity and extends survival in mice.
Collapse
Affiliation(s)
- Mubeen M Mosaheb
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA
| | - Elena Y Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Yuanfan Yang
- Department of Pathology, Duke University Medical School, Durham, NC, 27701, USA
| | - Jana Cable
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, University of California at San Francisco, San Francisco, CA, 94129, USA.,Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, 94129, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA. .,Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA.
| |
Collapse
|
12
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Abstract
Mechanisms to elicit antiviral immunity, a natural host response to viral pathogen challenge, are of eminent relevance to cancer immunotherapy. "Oncolytic" viruses, naturally existing or genetically engineered viral agents with cell type-specific propagation in malignant cells, were ostensibly conceived for their tumor cytotoxic properties. Yet, their true therapeutic value may rest in their ability to provoke antiviral signals that engage antitumor immune responses within the immunosuppressive tumor microenvironment. Coopting oncolytic viral agents to instigate antitumor immunity is not an easy feat. In the course of coevolution with their hosts, viruses have acquired sophisticated strategies to block inflammatory signals, intercept innate antiviral interferon responses, and prevent antiviral effector responses, e.g., by interfering with antigen presentation and T cell costimulation. The resulting struggle of host innate inflammatory and antiviral responses versus viral immune evasion and suppression determines the potential for antitumor immunity to occur. Moreover, paradigms of early host:virus interaction established in normal immunocompetent organisms may not hold in the profoundly immunosuppressive tumor microenvironment. In this review, we explain the mechanisms of recombinant nonpathogenic poliovirus, PVSRIPO, which is currently in phase I clinical trials against recurrent glioblastoma. We focus on an unusual host:virus relationship defined by the simple and cytotoxic replication strategy of poliovirus, which generates inflammatory perturbations conducive to tumor antigen-specific immune priming.
Collapse
Affiliation(s)
- Matthias Gromeier
- Department of Neurosurgery.,Department of Molecular Genetics and Microbiology
| | - Smita K Nair
- Department of Surgery.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
14
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
15
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
16
|
Al-Allaf FA, Abduljaleel Z, Athar M, Taher MM, Khan W, Mehmet H, Colakogullari M, Apostolidou S, Bigger B, Waddington S, Coutelle C, Themis M, Al-Ahdal MN, Al-Mohanna FA, Al-Hassnan ZN, Bouazzaoui A. Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Noncoding RNA Res 2018; 4:1-14. [PMID: 30891532 PMCID: PMC6404380 DOI: 10.1016/j.ncrna.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
Abstract
Internal ribosome entry site (IRES) sequences have become a valuable tool in the construction of gene transfer and therapeutic vectors for multi-cistronic gene expression from a single mRNA transcript. The optimal conditions for effective use of this sequence to construct a functional expression vector are not precisely defined but it is generally assumed that the internal ribosome entry site dependent expression of the second gene in such as cassette is less efficient than the cap-dependent expression of the first gene. Mainly tailoring inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector further in construction of optimised cassette for gene therapy of familial hypercholesterolemia. We tailored the size of the inter-cistronic spacer sequence at the 5′ region of the internal ribosome entry site sequence using sequential deletions and demonstrated that the expression of the 3′ gene can be significantly increased to similar levels as the cap-dependent expression of the 5’ gene. Maximum expression efficiency of the downstream gene was obtained when the spacer is composed of 18–141 base pairs. In this case a single mRNA transcriptional unit containing both the first and the second Cistron was detected. Whilst constructs with spacer sequences of 216 bp or longer generate a single transcriptional unit containing only the first Cistron. This suggests that long spacers may affect transcription termination. When the spacer is 188 bp, both transcripts were produced simultaneously in most transfected cells, while a fraction of them expressed only the first but not the second gene. Expression analyses of vectors containing optimised cassettes clearly confirm that efficiency of gene transfer and biological activity of the expressed transgenic proteins in the transduced cells can be achieved. Furthermore, Computational analysis was carried out by molecular dynamics (MD) simulation to determine the most emerges as viable containing specific binding site and bridging of 5′ and 3′ ends involving direct RNA-RNA contacts and RNA-protein interactions. These results provide a mechanistic basis for translation stimulation and RNA resembling for the synergistic stimulation of cap-dependent translation.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, 21955, Saudi Arabia.,Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK.,Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, PO Box 3124, Riyadh, 11426, Saudi Arabia
| | - Huseyin Mehmet
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mukaddes Colakogullari
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sophia Apostolidou
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Brian Bigger
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Simon Waddington
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Charles Coutelle
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Michael Themis
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| |
Collapse
|
17
|
Engineered Oncolytic Poliovirus PVSRIPO Subverts MDA5-Dependent Innate Immune Responses in Cancer Cells. J Virol 2018; 92:JVI.00879-18. [PMID: 29997212 DOI: 10.1128/jvi.00879-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
We are pursuing cancer immunotherapy with a neuro-attenuated recombinant poliovirus, PVSRIPO. PVSRIPO is the live attenuated type 1 (Sabin) poliovirus vaccine carrying a heterologous internal ribosomal entry site (IRES) of human rhinovirus type 2 (HRV2). Intratumoral infusion of PVSRIPO is showing promise in the therapy of recurrent WHO grade IV malignant glioma (glioblastoma), a notoriously treatment-refractory cancer with dismal prognosis. PVSRIPO exhibits profound cytotoxicity in infected neoplastic cells expressing the poliovirus receptor CD155. In addition, it elicits intriguing persistent translation and replication, giving rise to sustained type I interferon (IFN)-dominant proinflammatory stimulation of antigen-presenting cells. A key determinant of the inflammatory footprint generated by neoplastic cell infection and its role in shaping the adaptive response after PVSRIPO tumor infection is the virus's inherent relationship to the host's innate antiviral response. In this report, we define subversion of innate host immunity by PVSRIPO, enabling productive viral translation and cytopathogenicity with extremely low multiplicities of infection in the presence of an active innate antiviral IFN response.IMPORTANCE Engaging innate antiviral responses is considered key for instigating tumor-antigen-specific antitumor immunity with cancer immunotherapy approaches. However, they are a double-edged sword for attempts to enlist viruses in such approaches. In addition to their role in the transition from innate to adaptive immunity, innate antiviral IFN responses may intercept the viral life cycle in cancerous cells, prevent viral cytopathogenicity, and restrict viral spread. This has been shown to reduce overall antitumor efficacy of several proposed oncolytic virus prototypes, presumably by limiting direct cell killing and the ensuing inflammatory profile within the infected tumor. In this report, we outline how an unusual recalcitrance of polioviruses toward innate antiviral responses permits viral cytotoxicity and propagation in neoplastic cells, combined with engaging active innate antiviral IFN responses.
Collapse
|
18
|
Direct and Indirect Effects on Viral Translation and RNA Replication Are Required for AUF1 Restriction of Enterovirus Infections in Human Cells. mBio 2018; 9:mBio.01669-18. [PMID: 30181254 PMCID: PMC6123441 DOI: 10.1128/mbio.01669-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses primarily infect the gastrointestinal or upper respiratory tracts of humans and animals and may disseminate to tissues of the central nervous system, heart, skin, liver, or pancreas. Many common human pathogens belong to the Picornaviridae family, which includes viruses known to cause paralytic poliomyelitis (poliovirus); myocarditis (coxsackievirus B3 [CVB3]); the common cold (human rhinovirus [HRV]); and hand, foot, and mouth disease (enterovirus 71 [EV71]), among other illnesses. There are no specific treatments for infection, and vaccines exist for only two picornaviruses: poliovirus and hepatitis A virus. Given the worldwide distribution and prevalence of picornaviruses, it is important to gain insight into the host mechanisms used to restrict infection. Other than proteins involved in the innate immune response, few host factors have been identified that restrict picornavirus replication. The work presented here seeks to define the mechanism of action for the host restriction factor AUF1 during infection by poliovirus and CVB3. The cellular mRNA decay protein AUF1 acts as a restriction factor during infection by picornaviruses, including poliovirus, coxsackievirus, and human rhinovirus. AUF1 relocalizes from the nucleus to the cytoplasm during infection by these viruses due to the disruption of nucleocytoplasmic trafficking by viral proteinases. Previous studies have demonstrated that AUF1 binds to poliovirus and coxsackievirus B3 (CVB3) RNA during infection, with binding shown to occur within the internal ribosome entry site (IRES) of the 5′ noncoding region (NCR) or the 3′ NCR, respectively. Binding to different sites within the viral RNA suggests that AUF1 may negatively regulate infection by these viruses using different mechanisms. The work presented here addresses the mechanism of AUF1 inhibition of the replication of poliovirus and CVB3. We demonstrate that AUF1 knockdown in human cells results in increased viral translation, RNA synthesis, and virus production. AUF1 is shown to negatively regulate translation of a poliovirus and CVB3 IRES reporter RNA during infection but not in uninfected cells. We found that this inhibitory activity is not mediated through destabilization of viral genomic RNA; however, it does require virus-induced relocalization of AUF1 from the nucleus to the cytoplasm during the early phases of infection. Our findings suggest that AUF1 restriction of poliovirus and CVB3 replication uses a common mechanism through the viral IRES, which is distinct from the canonical role that AUF1 plays in regulated mRNA decay in uninfected host cells.
Collapse
|
19
|
Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, Peters KB, Randazzo D, Sampson JH, Vlahovic G, Harrison WT, McLendon RE, Ashley D, Bigner DD. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N Engl J Med 2018; 379:150-161. [PMID: 29943666 PMCID: PMC6065102 DOI: 10.1056/nejmoa1716435] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prognosis of patients with recurrent World Health Organization (WHO) grade IV malignant glioma is dismal, and there is currently no effective therapy. We conducted a dose-finding and toxicity study in this population of patients, evaluating convection-enhanced, intratumoral delivery of the recombinant nonpathogenic polio-rhinovirus chimera (PVSRIPO). PVSRIPO recognizes the poliovirus receptor CD155, which is widely expressed in neoplastic cells of solid tumors and in major components of the tumor microenvironment. METHODS We enrolled consecutive adult patients who had recurrent supratentorial WHO grade IV malignant glioma, confirmed on histopathological testing, with measurable disease (contrast-enhancing tumor of ≥1 cm and ≤5.5 cm in the greatest dimension). The study evaluated seven doses, ranging between 107 and 1010 50% tissue-culture infectious doses (TCID50), first in a dose-escalation phase and then in a dose-expansion phase. RESULTS From May 2012 through May 2017, a total of 61 patients were enrolled and received a dose of PVSRIPO. Dose level -1 (5.0×107 TCID50) was identified as the phase 2 dose. One dose-limiting toxic effect was observed; a patient in whom dose level 5 (1010 TCID50) was administered had a grade 4 intracranial hemorrhage immediately after the catheter was removed. To mitigate locoregional inflammation of the infused tumor with prolonged glucocorticoid use, dose level 5 was deescalated to reach the phase 2 dose. In the dose-expansion phase, 19% of the patients had a PVSRIPO-related adverse event of grade 3 or higher. Overall survival among the patients who received PVSRIPO reached a plateau of 21% (95% confidence interval, 11 to 33) at 24 months that was sustained at 36 months. CONCLUSIONS Intratumoral infusion of PVSRIPO in patients with recurrent WHO grade IV malignant glioma confirmed the absence of neurovirulent potential. The survival rate among patients who received PVSRIPO immunotherapy was higher at 24 and 36 months than the rate among historical controls. (Funded by the Brain Tumor Research Charity and others; ClinicalTrials.gov number, NCT01491893 .).
Collapse
Affiliation(s)
- Annick Desjardins
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Matthias Gromeier
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - James E Herndon
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Nike Beaubier
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Dani P Bolognesi
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Allan H Friedman
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Henry S Friedman
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Frances McSherry
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Andrea M Muscat
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Smita Nair
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Katherine B Peters
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Dina Randazzo
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - John H Sampson
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Gordana Vlahovic
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - William T Harrison
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Roger E McLendon
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - David Ashley
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| | - Darell D Bigner
- From the Departments of Neurosurgery (A.D., M.G., A.H.F., H.S.F., K.B.P., D.R., J.H.S., G.V., D.A., D.D.B.), Biostatistics (J.E.H., F.M.), Surgery (D.P.B., S.N.), and Pathology (W.T.H., R.E.M.) and the Preston Robert Tisch Brain Tumor Center (A.D., M.G., J.E.H., D.P.B., A.H.F., H.S.F., F.M., S.N., K.B.P., D.R., J.H.S., G.V., W.T.H., R.E.M., D.A., D.D.B.), Duke University Medical Center, and Istari Oncology (D.P.B.) - all in Durham, NC; Tempus Labs, Chicago (N.B.); and the School of Medicine, Deakin University, Geelong, VIC, Australia (A.M.M.)
| |
Collapse
|
20
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
21
|
Kung YA, Hung CT, Chien KY, Shih SR. Control of the negative IRES trans-acting factor KHSRP by ubiquitination. Nucleic Acids Res 2017; 45:271-287. [PMID: 27899653 PMCID: PMC5224474 DOI: 10.1093/nar/gkw1042] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chuan-Tien Hung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| |
Collapse
|
22
|
Li T, Li X, Zhu W, Wang H, Mei L, Wu S, Lin X, Han X. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Lett 2016; 590:2797-810. [PMID: 27423063 DOI: 10.1002/1873-3468.12311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
NF90 is a novel host antiviral factor that regulates PKR activation and stress granule formation in influenza A virus (IAV)-infected cells, but the precise mechanisms by which it operates remain unclear. We identified NF90 as a novel interacting protein of IAV nonstructural protein 1 (NS1). The interaction was dependent on the RNA-binding properties of NS1. NS1 associated with NF90 and PKR simultaneously; however, the interaction between NF90 and PKR was restricted by NS1. Knockdown of NF90 promoted inhibition of PKR phosphorylation induced by NS1, while coexpression of NF90 impeded reduction of PKR phosphorylation and stress granule formation triggered by NS1. In summary, NF90 exerts its antiviral activity by antagonizing the inhibitory role of NS1 on PKR phosphorylation.
Collapse
Affiliation(s)
- Ting Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Xi Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - WenFei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - HuiYu Wang
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Lin Mei
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - ShaoQiang Wu
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XiangMei Lin
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XueQing Han
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| |
Collapse
|
23
|
Sun C, Yang D, Gao R, Liang T, Wang H, Zhou G, Yu L. Modification of the internal ribosome entry site element impairs the growth of foot-and-mouth disease virus in porcine-derived cells. J Gen Virol 2016; 97:901-911. [PMID: 26795299 DOI: 10.1099/jgv.0.000406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 5' untranslated region (5'UTR) of foot-and-mouth disease virus (FMDV) contains an internal ribosome entry site (IRES) that facilitates translation initiation of the viral ORF in a 5' (m7GpppN) cap-independent manner. IRES elements are responsible for the virulence phenotypes of several enteroviruses. Here, we constructed a chimeric virus in which the IRES of FMDV was completely replaced with that of bovine rhinitis B virus (BRBV) in an infectious clone of serotype O FMDV. The resulting IRES-replaced virus, FMDV(BRBV), replicated as efficiently as WT FMDV in hamster-derived BHK-21 cells, but was restricted for growth in porcine-derived IBRS-2, PK-15 and SK-6 cells, which are susceptible to WT FMDV. To identify the genetic determinants of FMDV underlying this altered cell tropism, a series of IRES-chimeric viruses were constructed in which each domain of the FMDV IRES was replaced with its counterpart from the BRBV IRES. The replication kinetics of these chimeric viruses in different cell lines revealed that the growth restriction phenotype in porcine-derived cells was produced after the replacement of domain 3 or 4 in the FMDV IRES. Furthermore, the change in FMDV cell tropism due to IRES replacement in porcine-derived cells was mainly attributed to a decline in cell-specific IRES translation initiation efficiency. These findings demonstrate that IRES domains 3 and 4 of FMDV are novel cell-specific cis-elements for viral replication in vitro and suggest that IRES-mediated translation determines the species specificity of FMDV infection in vivo.
Collapse
Affiliation(s)
- Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Rongyuan Gao
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Te Liang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PRChina
| |
Collapse
|
24
|
RNA–protein interaction methods to study viral IRES elements. Methods 2015; 91:3-12. [DOI: 10.1016/j.ymeth.2015.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
|
25
|
Abstract
Oncolytic viruses represent a new class of therapeutic agents that promote anti-tumour responses through a dual mechanism of action that is dependent on selective tumour cell killing and the induction of systemic anti-tumour immunity. The molecular and cellular mechanisms of action are not fully elucidated but are likely to depend on viral replication within transformed cells, induction of primary cell death, interaction with tumour cell antiviral elements and initiation of innate and adaptive anti-tumour immunity. A variety of native and genetically modified viruses have been developed as oncolytic agents, and the approval of the first oncolytic virus by the US Food and Drug Administration (FDA) is anticipated in the near future. This Review provides a comprehensive overview of the basic biology supporting oncolytic viruses as cancer therapeutic agents, describes oncolytic viruses in advanced clinical trials and discusses the unique challenges in the development of oncolytic viruses as a new class of drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Howard L. Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Frederick J. Kohlhapp
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| |
Collapse
|
26
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
27
|
Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13:81-5. [PMID: 26083317 DOI: 10.1016/j.coviro.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
An oncolytic virus (OV) based on poliovirus (PV), the highly attenuated polio/rhinovirus recombinant PVSRIPO, may deliver targeted inflammatory cancer cell killing; a principle that is showing promise in clinical trials for recurrent glioblastoma (GBM). The two decisive factors in PVSRIPO anti-tumor efficacy are selective cytotoxicity and its in situ immunogenic imprint. While our work is focused on what constitutes PVSRIPO cancer cytotoxicity, we are also studying how this engenders host immune responses that are vital to tumor regression. We hypothesize that PVSRIPO cytotoxicity and immunogenicity are inextricably linked in essential, complimentary roles that define the anti-neoplastic response. Herein we delineate mechanisms we unraveled to decipher the basis for PVSRIPO cytotoxicity and its immunotherapeutic potential.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Brown MC, Gromeier M. Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus. DISCOVERY MEDICINE 2015; 19:359-365. [PMID: 26105699 PMCID: PMC4780852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achieving tumor-specific, robust, and durable effector cytotoxic immune responses is key to successful immunotherapy. This has been accomplished with adoptive cell transfer of ex vivo-expanded autologous tumor-infiltrating or engineered T cells, or with immune checkpoint inhibitors, enhancing inherent T cell reactivity. A natural ability to recruit effector responses makes tumor-targeting ('oncolytic') viruses attractive as immunotherapy vehicles. However, most viruses actively block inflammatory and immunogenic events; or, host innate immune responses may prevent immune initiating events in the first place. Moreover, the mechanisms of how virus infection can produce effector responses against host (tumor) neo-antigens are unclear. We are pioneering oncolytic immunotherapy based on poliovirus, which has no specific mechanism to interfere with host immune activation, exhibits lytic cytotoxicity in the presence of an antiviral interferon response and pre-existing immunity, and engages a powerful innate immune sensor implicated in recruiting cytotoxic T cell responses. Central to this approach is a unique confluence of factors that drive tumor-specific viral translation and cytotoxicity.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
29
|
Liu Q. Blocking IRES-mediated translation pathway as a new method to treat Alzheimer’s disease. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 2015; 108:20-4. [DOI: 10.1016/j.biochi.2014.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023]
|
31
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. J Virol 2014; 88:13135-48. [PMID: 25187541 DOI: 10.1128/jvi.01883-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells.
Collapse
|
33
|
Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J Virol 2014; 88:13149-60. [PMID: 25187540 DOI: 10.1128/jvi.01884-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy.
Collapse
|
34
|
Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, Desjardins A, Sampson JH, Friedman HS, Friedman AH, Tyler DS, Bigner DD, Gromeier M. Oncolytic polio virotherapy of cancer. Cancer 2014; 120:3277-86. [PMID: 24939611 DOI: 10.1002/cncr.28862] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 01/23/2023]
Abstract
Recently, the century-old idea of targeting cancer with viruses (oncolytic viruses) has come of age, and promise has been documented in early stage and several late-stage clinical trials in a variety of cancers. Although originally prized for their direct tumor cytotoxicity (oncolytic virotherapy), recently, the proinflammatory and immunogenic effects of viral tumor infection (oncolytic immunotherapy) have come into focus. Indeed, a capacity for eliciting broad, sustained antineoplastic effects stemming from combined direct viral cytotoxicity, innate antiviral activation, stromal proinflammatory stimulation, and recruitment of adaptive immune effector responses is the greatest asset of oncolytic viruses. However, it also is the source for enormous mechanistic complexity that must be considered for successful clinical translation. Because of fundamentally different relationships with their hosts (malignant or not), diverse replication strategies, and distinct modes of tumor cytotoxicity/killing, oncolytic viruses should not be referred to collectively. These agents must be evaluated based on their individual merits. In this review, the authors highlight key mechanistic principles of cancer treatment with the polio:rhinovirus chimera PVSRIPO and their implications for oncolytic immunotherapy in the clinic.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Division of Neurosurgery Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wen X, Huang X, Mok BWY, Chen Y, Zheng M, Lau SY, Wang P, Song W, Jin DY, Yuen KY, Chen H. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3753-64. [DOI: 10.4049/jimmunol.1302813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Lin JY, Shih SR. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 2014; 21:18. [PMID: 24602216 PMCID: PMC3995930 DOI: 10.1186/1423-0127-21-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023] Open
Abstract
Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5' UTR, VP1, 3C, 3D, 3' UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
37
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Moriarity BS, Rahrmann EP, Keng VW, Manlove LS, Beckmann DA, Wolf NK, Khurshid T, Bell JB, Largaespada DA. Modular assembly of transposon integratable multigene vectors using RecWay assembly. Nucleic Acids Res 2013; 41:e92. [PMID: 23444141 PMCID: PMC3632113 DOI: 10.1093/nar/gkt115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Studying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system. Further, because RecWay assembly uses truly modular components, it allows for the generation of randomly assembled multigene vector libraries. These multigene vectors are integratable, and later excisable, using the highly efficient piggyBac (PB) DNA transposon system. Moreover, we have dramatically improved the expression of stably integrated multigene vectors by incorporation of insulator elements to prevent promoter interference seen with multigene vectors. We demonstrate that insulated multigene PB transposons can stably integrate and faithfully express up to five fluorescent proteins and the puromycin-thymidine kinase resistance gene in vitro, with up to 70-fold higher gene expression compared with analogous uninsulated vectors. RecWay assembly of multigene transposon vectors allows for widely applicable modelling of highly complex biological processes and can be easily performed by other research laboratories.
Collapse
Affiliation(s)
- Branden S Moriarity
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28. [PMID: 23283963 DOI: 10.1128/jvi.02984-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.
Collapse
|
40
|
Shamanna RA, Hoque M, Pe'ery T, Mathews MB. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 2012. [PMID: 23208500 PMCID: PMC4032571 DOI: 10.1038/onc.2012.533] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterodimeric nuclear factor 90/nuclear factor 45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPV). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells, but not in other cancerous or normal cell lines. In HeLa cells, p21 mRNA increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the up-regulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated PARP cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.
Collapse
Affiliation(s)
- R A Shamanna
- 1] Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, NJ, USA [2] Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ, USA
| | | | | | | |
Collapse
|
41
|
Chumakov PM, Morozova VV, Babkin IV, Baikov IK, Netesov SV, Tikunova NV. Oncolytic enteroviruses. Mol Biol 2012. [DOI: 10.1134/s0026893312050032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Shabman RS, Leung DW, Johnson J, Glennon N, Gulcicek EE, Stone KL, Leung L, Hensley L, Amarasinghe GK, Basler CF. DRBP76 associates with Ebola virus VP35 and suppresses viral polymerase function. J Infect Dis 2011; 204 Suppl 3:S911-8. [PMID: 21987769 DOI: 10.1093/infdis/jir343] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Zaire Ebola virus (EBOV) protein VP35 is multifunctional; it inhibits IFN-α/β production and functions as a cofactor of the viral RNA polymerase. Mass spectrometry identified the double stranded RNA binding protein 76 (DRBP76/NFAR-1/NF90) as a cellular factor that associates with the VP35 C-terminal interferon inhibitory domain (IID). DRBP76 is described to regulate host cell protein synthesis and play an important role in host defense. The VP35-IID-DRBP76 interaction required the addition of exogenous dsRNA, but full-length VP35 associated with DRBP76 in the absence of exogenous dsRNA. Cells infected with a Newcastle disease virus (NDV)-expressing VP35 redistributed DRBP76 from the nucleus to the cytoplasm, the compartment in which EBOV replicates. Overexpression of DRBP76 did not alter the ability of VP35 to inhibit type I IFN production but did impair the function of the EBOV transcription/replication complex. These data suggest that DRBP76, via its association with VP35, exerts an anti-EBOV function.
Collapse
Affiliation(s)
- Reed S Shabman
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 2011; 86:2750-9. [PMID: 22171271 DOI: 10.1128/jvi.06427-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.
Collapse
|
44
|
Modification of the untranslated regions of human enterovirus 71 impairs growth in a cell-specific manner. J Virol 2011; 86:542-52. [PMID: 22031931 DOI: 10.1128/jvi.00069-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human enterovirus 71 (HEV71) is the causative agent of hand, foot, and mouth disease and associated acute neurological disease. At present, little is known about the genetic determinants of HEV71 neurovirulence. Studies of related enteroviruses have indicated that the untranslated regions (UTRs), which control virus-directed translation and replication, also exert significant influence on neurovirulence. We used an infectious cDNA clone of a subgenogroup B3 strain to construct and characterize chimeras with 5'- and 3'-UTR modifications. Replacement of the entire HEV71 5' UTR with that of human rhinovirus 2 (HRV2) resulted in a small reduction in growth efficiency in cells of both nonneuronal (rhabdomyosarcoma) and neuronal (SH-SY5Y) origin due to reduced translational efficiency. However, the introduction of a 17-nucleotide deletion into the proximal region of the 3' UTR significantly decreased the growth of HEV71-HRV2 in SH-SY5Y cells. This observation is similar to that made with stem-loop domain Z (SLD Z)-deleted coxsackievirus B3-HRV2 5'-UTR chimeras reported previously and provides the first evidence of a potentially functional SLD Z in the 3' UTR in human enterovirus A species viruses. We further showed that the cell-specific growth impairment was caused by the synergistic effects of cis-acting UTR control elements on different stages of the virus life cycle. These chimeras will further improve our understanding of the control of HEV71 replication and its relationship to neurovirulence.
Collapse
|
45
|
Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. Future Virol 2011; 6:1045-1058. [PMID: 21984883 DOI: 10.2217/fvl.11.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
NF90 binds the dengue virus RNA 3' terminus and is a positive regulator of dengue virus replication. PLoS One 2011; 6:e16687. [PMID: 21386893 PMCID: PMC3046124 DOI: 10.1371/journal.pone.0016687] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/22/2010] [Indexed: 12/03/2022] Open
Abstract
Background Viral RNA translation and replication are regulated by sequence and structural elements in the 5′ and 3′ untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5′ m7GpppG cap, and a conserved 3′-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3′ terminus. Methodology/Principal Findings Proteins eluted from a dengue 3′ SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. Conclusions/Significance The results indicate that NF90 interacts with the 3′ SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.
Collapse
|
47
|
Neplioueva V, Dobrikova EY, Mukherjee N, Keene JD, Gromeier M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS One 2010; 5:e11710. [PMID: 20668518 PMCID: PMC2909144 DOI: 10.1371/journal.pone.0011710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra- or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype.
Collapse
Affiliation(s)
- Valentina Neplioueva
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
48
|
Stress-inducible alternative translation initiation of human cytomegalovirus latency protein pUL138. J Virol 2010; 84:9472-86. [PMID: 20592073 DOI: 10.1128/jvi.00855-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously characterized a 21-kDa protein encoded by UL138 (pUL138) as a viral factor inherent to low-passage strains of human cytomegalovirus (HCMV) that is required for latent infection in vitro. pUL138 is encoded on 3.6-, 2.7-, and 1.4-kb 3' coterminal transcripts that are produced during productive and latent infections. pUL138 is encoded at the 3' end of each transcript and is preceded by an extensive 5' sequence (approximately 0.5 to 2.5 kb) containing several putative open reading frames (ORFs). We determined that three putative ORFs upstream of UL138 (UL133, UL135, and UL136) encode proteins. The UL138 transcripts are polycistronic, such that each transcript expresses pUL138 in addition to the most-5' ORF. The upstream coding sequences (CDS) present a significant challenge for the translation of pUL138 in mammalian cells. We hypothesized that sequences 5' of UL138 mediate translation initiation of pUL138 by alternative strategies. Accordingly, a 663-nucloetide (nt) sequence overlapping the UL136 CDS supported expression of a downstream cistron in a bicistronic reporter system. We did not detect cryptic promoter activity or RNA splicing events that could account for downstream cistron expression. These data are consistent with the sequence element functioning as an internal ribosome entry site (IRES). Interestingly, pUL138 expression from the 3.6- and 2.7-kb transcripts was induced by serum stress, which concomitantly inhibited normal cap-dependent translation. Our work suggests that an alternative and stress-inducible strategy of translation initiation ensures expression of pUL138 under a variety of cellular contexts. The UL138 polycistronic transcripts serve to coordinate the expression of multiple proteins, including a viral determinant of HCMV latency.
Collapse
|
49
|
Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203. [PMID: 20299272 DOI: 10.1016/j.cytogfr.2010.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PVS-RIPO is a genetically recombinant, non-pathogenic poliovirus chimera with a tumor-specific conditional replication phenotype. Consisting of the genome of the live attenuated poliovirus type 1 (Sabin) vaccine with its cognate IRES element replaced with that of human rhinovirus type 2, PVS-RIPO displays an inability to translate its genome in untransformed neuronal cells, but effectively does so in cells originating from primary tumors in the central nervous system or other cancers. Hence, PVS-RIPO unleashes potent cytotoxic effects on infected cancer cells and produces sustained anti-tumoral responses in animal tumor models. PVS-RIPO presents a novel approach to the treatment of patients with glioblastoma multiforme, based on conditions favoring an unconventional viral translation initiation mechanism in cancerous cells. In this review we summarize advances in the understanding of major molecular determinants of PVS-RIPO oncolytic efficacy and safety and discuss their implications for upcoming clinical investigations.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
50
|
Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010; 2010:458927. [PMID: 20150968 PMCID: PMC2817807 DOI: 10.1155/2010/458927] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022] Open
Abstract
Translation initiation is a highly regulated process that exerts a strong influence on the posttranscriptional control of gene expression. Two alternative mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism operating in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism, first discovered in picornaviruses. IRES elements are highly structured RNA sequences that, in most instances, require specific proteins for recruitment of the translation machinery. Some of these proteins are eukaryotic initiation factors. In addition, RNA-binding proteins (RBPs) play a key role in internal initiation control. RBPs are pivotal regulators of gene expression in response to numerous stresses, including virus infection. This review discusses recent advances on riboproteomic approaches to identify IRES transacting factors (ITAFs) and the relationship between RNA-protein interaction and IRES activity, highlighting the most relevant features on picornavirus and hepatitis C virus IRESs.
Collapse
|